31
Atom Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17, SOSP’17

10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

AtomHorizontally Scaling Strong Anonymity

Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL

10/30/17, SOSP’17

Page 2: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Motivation

2

Anonymous bulletin board (broadcast)in the face of global adversary

Protest at 4 p.m.!

Page 3: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Anonymous communication networks

3

Anonymity provider(set of servers)

Page 4: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Existing systems vs. Atom

4

Properties Tor [USENIX Sec’04] AtomRiposte

[Oakland’15]

Scaling

Anonymity against global adversaries

Latency(1 million users)

Horizontal

Vulnerable

Vertical Horizontal

Secure Secure

< 10s 11 hrs 28min

Page 5: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

● A large number of users are malicious

Deployment and threat model

● Constant fraction of the servers are malicious○ 20%

5

● Global network adversary

Page 6: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Atom overview

6

Page 7: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

... 4 1

3 2

Atom overview

7

1

2

3

4

4

1

3

2

Unknownrandompermutationof all inputs

2

1

4

3

Layer 1 Layer 2 Layer L

Page 8: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Horizontally scalability

8

...

... ... ...Width

Depth

More servers=> Larger width

Fixed (Independent of the width)

Page 9: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Challenges

9

1. Guaranteeing anytrust property

Page 10: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Challenges

10

1. Guaranteeing anytrust property2. Group mixing and routing protocol

2

1

1

2

1

2 1

2 1

2

Page 11: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Challenges

11

1. Guaranteeing anytrust property2. Group mixing and routing protocol3. Active adversaries

0

0

1

2

0

0

Page 12: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

...

Active attacks

12

1

2

3

4

0 0

0 1

0

0

0

1

0

1

0

0

Page 13: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Challenges

13

1. Guaranteeing anytrust property2. Group mixing and routing protocol3. Active adversaries4. Tolerating server churn

1

Page 14: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Challenges

14

1. Guaranteeing anytrust property2. Group mixing and routing protocol3. Active adversaries4. Tolerating server churn

1

Page 15: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Generating anytrust groups

15

Randomly select k servers

Pr[group is fully malicious] = 0.2k

Pr[any group is fully malicious] < (# of groups) · 0.2k < 2-64

k = 3220% malicious

Public randomness

Page 16: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Handling actively malicious servers

16

Trusted third party

$

&

@

#

Trap messages(nonces)

...

$& @#

Idea: use verifiable trap messages

Page 17: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

$

&

@

#

1

4

3

2

Send trap and real messages in a random order

17

...

: encrypted for TTP$& @#

Trusted third party

Page 18: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

TTP checks for the traps

18

...

: encrypted for TTP

$& @#Trusted third party

3 2 4&$ 1@ #

Page 19: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

What happens when a trap message is dropped?

19

...

: encrypted for TTP

$& @#Trusted third party

3 2 4&$ 1@ #0

0

Page 20: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

What happens when a real message is dropped?

20

...

: encrypted for TTP

$& @#Trusted third party

3 2 4&$ 1@ #0

0

Page 21: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Improving the trap messages

21

● Distributing the trust in the third party● Distributing the trap verification and decryption

Page 22: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Properties of trap-based defense

22

● If the adversary tampers with any trap, then no plaintext revealed

● Can remove 1 message with probability ½○ Remove t messages with probability 2-t

○ Realistically remove < ~64 msgs● Reactive

Page 23: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Two modes of operation

23

Trap messages Zero-knowledge Proof

Idea Verify untamperable traps Verify protocol with ZKP

Anonymityset size N - t N

Defense type Reactive Proactive

Latency 1x 4x

Page 24: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Implementation

● ~4000 lines of Go● Both trap and ZKP based defenses● Code available at github.com/kwonalbert/atom

24

Page 25: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Evaluation setup

● Heterogenous set of 1024 EC2 servers○ 80% of the servers were 4-core machines

● 20% malicious servers● Trap messages● 160-byte msgs

25

Depth = 10

32 server group…

Page 26: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Latency is inversely proportional to the number of servers

26

Better

23x

Page 27: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Latency scales linearly with the number of users

27

Better

Page 28: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Limitations

● Medium to high latency

28

● Denial-of-service

Depth = 10

32 server group

Page 29: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Related work

● Strong anonymity but veritically scaling○ Dissent[OSDI’12], Riffle [PETS’16], Riposte [Oakland’15], ...

● Horizontally scaling systems but weaker anonymity○ Crowds [ACM’99], Mixminion [Oakland’03], Tor [USENIX Sec’04],

Aqua [SIGCOMM’13], Loopix [USENIX Sec’17], …● Distributed mixing

○ Parallel mix-net [CCS’04], matrix shuffling [Håstad’06], random switching networks [SODA’99, CRYPTO’15], ...

● Private point-to-point messaging○ Vuvuzela [SOSP’15], Pung [OSDI’16], Stadium [SOSP’17]

29

Page 30: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

Conclusion

● Atom provides horizontally-scaling strong anonymity○ Global anonymity set○ Latency is inversely proportional to the number of servers

● Supports 1 million users with 160 byte msgs in 28min

github.com/kwonalbert/atom

30

Page 31: 10/30/17, SOSP’17 Srinivas Devadas Bryan Ford MIT ...Horizontally Scaling Strong Anonymity Albert Kwon Henry Corrigan-Gibbs MIT Stanford Srinivas Devadas Bryan Ford MIT EPFL 10/30/17,

31

These icons were acquired from thenounprojcet.com, and are under CC BY 3.0 US

Created by Anil

Created by H Alberto Gongora

Created by H Alberto GongoraCreated by Andre Luiz Gollo

Created by Creative Stall