11 Rs Geology

Embed Size (px)

Citation preview

  • 7/31/2019 11 Rs Geology

    1/30

    Rem ot e Sensing o fRem ot e Sensing o f

    Soi l , Min er a ls , an dSoi l , Min er a ls , an deom or p o og yeom or p o og y

    REFERENCE: Remote SensingREFERENCE: Remote Sensingof the Environmentof the Environment

    John R. Jensen (2007)John R. Jensen (2007)

    Second EditionSecond Edition

    Pearson Prentice HallPearson Prentice Hall

    26% of the Earths surface is

    Som e Fact s abou t ou r P lane tSom e Fact s abou t ou r P lane t

    .

    74% of the Earths surface iscovered by water.

    mos a uman y ves on eterrestrial, solid Earth comprised ofbedrock and the weathered bedrockcalled soil.

  • 7/31/2019 11 Rs Geology

    2/30

    It can play a limited role in the identification, inventory, andmapping ofsurficial soilsnot covered with dense vegetation.

    W hy Rem ot e Sens ing ?W hy Rem ot e Sens ing ?

    It can provide information about the chemical compositionofrocks and minerals that are on the Earths surface, and notcompletely covered by dense vegetation.

    Emphasis is placed on understanding unique absorpt ion bandsassociated with specific types of rocks and minerals usingimaging spectroscopy tec niques.

    It can also be used to extract geologic informationincluding,lithology, structure, drainage patterns, and geomorphology(landforms).

    Soil is unconsolidated material at the surface of theEarth that serves as a natural medium for growing

    Soi l Char ac ter is t icsSoi l Char ac ter is t ics

    .extract water and nutrients. Soil is the weatheredmaterial between the atmosphere at the Earthssurface and the bedrock below the surface to amaximum depth of approximately 200 cm (USDA,1998).

    Soil is a mixture of inorganic mineral particles andorganic matter of varying size and composition. Theparticles make up about 50 percent of the soilsvolume. Pores containing air and/water occupy theremaining volume.

  • 7/31/2019 11 Rs Geology

    3/30

  • 7/31/2019 11 Rs Geology

    4/30

    So i l Tex t u r e Tr iang leSo i l Tex t u r e Tr iang le

    100

    90

    20

    10

    (%)

    70

    60

    50

    40

    30 70

    60

    50

    40

    30Cla

    y

    Silt(%

    )

    read

    read

    Clay

    sandy clay

    silty

    clay

    silty clay

    loamclay loam

    sandy

    clay

    20

    10

    100

    100 90 80 70 60 50 40 30 20 10

    90

    80

    Sand(%)read

    SiltSand

    loamysand

    sandy

    loam

    Loam

    oam

    silt loam

    Tota lTo t al Up w el l i n gU pw e ll i ng Ra d ia n ceRa di an ce (( LL tt)) Reco rd edReco r ded b yby aa

    Remo teRe m o t e Se n si n gSe n si n g Sy st e mSy st em o vero v er Ex p o se dEx p o se d So i lSo i l i sisaa Fu nct ionFu nct ion o fo f El ect r o m ag net i cEl ect r o m a g n et i c En e r g yEn er gy f romf romSeveralSevera l Sou rcesSources

  • 7/31/2019 11 Rs Geology

    5/30

    Spect r a l Ref lec tan ce Char acter is t icsSpect r a l Ref lec tan ce Char acter is t icso fo f Soi lsSoi lsAre a Fun ct ion o f Sever a lAre a Fun ct ion o f Sever a lI m po r t an t Cha racte r i s t i cs:I m po r t an t Cha racte r i s t i cs:

    soil texture (percentage of sand,silt, and clay),

    soil moisture content (e.g. dry,moist, saturated),

    , iron-oxide content, and surface roughness.

    I n si t u I n si t u Spec t ro rad iome te rSpec t ro rad iome te rRef lec tan ce Cur ves fo r DryRef lec tan ce Cur ves fo r DrySi l t and Sand So i lsSi l t and Sand So i ls

    60

    ercentReflectance

    80

    40

    Silt

    Sand

    50

    70

    90

    20

    0.5 0.7 1.1 1.3

    0

    Wavelength (m)

    0.9 1.5 1.7 1.9 2.1 2.3 2.5

    10

    30

  • 7/31/2019 11 Rs Geology

    6/30

    Radiant energy may be reflected from the

    surface of the dry soil, or it penetrates into

    specular

    reflectance

    incident energy Ref lectance f rom DryRef lectance f rom Dryversus Wet So i l sve rsus Wet So i l s

    the soil particles, where it may be

    absorbed or scattered. Total reflectance

    from the dry soil is a function of specular

    reflectance and the internal volume

    reflectance.

    interstitial

    air space

    specular

    reflectance

    a.

    dry

    soil

    volume reflectance

    specular reflectance

    incident energy

    As soil moisture increases, each soil

    soil waterb.

    wet

    soil

    part c e may e encapsu ate w t a t n

    membrane of capillary water. The

    interstitial spaces may also fill with water.The greater the amount of water in the

    soil, the greater the absorption of incident

    energy and the lower the soil reflectance.

    Ref lec tance f r omRef lec tance f r omMois t SandMois t Sand

    and Clay Soi lsand Clay Soi ls

    60

    eflectance

    40

    50

    Sand 0 4% moisture content

    5 12%

    Higher moisture content

    in (a) sandy soil, and (b)

    clayey soil results in

    decreased reflectance

    throughout the visible

    20

    PercentR

    0.5 0.7 1.1 1.3

    0

    0.9 1.5 1.7 1.9 2.1 2.3 2.5

    22 32%

    10

    60

    40

    50 2 6%

    Clay

    a.

    ctance

    - ,especially in the water-

    absorption bands at 1.4,

    1.9, and 2.7 m.

    20

    0.5 0.7 1.1 1.3

    0

    Wavelength (m)

    0.9 1.5 1.7 1.9 2.1 2.3 2.5

    35 40%10

    30

    b.

    PercentRefl

    e

  • 7/31/2019 11 Rs Geology

    7/30

    Organ icOrgan icMat t e r i nMat t e r i n

    a Sand ya Sand ySoilSoi l

    Generally, thegreater theamount oforganic contentin a soil, the

    absorption of

    incident energyand the lowerthe spectralreflectance

    I r o nI r o n OxideOx idein a Sand yin a Sand yLoam So i lLoam So i l

    Iron oxide in a

    sandy loam soil

    causes an increase

    in reflectance in the

    red portion of the

    spectrum (0.6 - 0.7

    m) and a decreasein in near-infrared

    (0.85 - 0.90 m)

    reflectance

  • 7/31/2019 11 Rs Geology

    8/30

    Rem ot e Sens in g o fRem ot e Sens in g o fRock and Miner a lsRock and Miner a ls

    Rocksare assemblages of minerals that have

    Rem ot e Sens ing o f So i ls ,Rem ot e Sens ing o f So i ls ,M ine ra ls, and Geom orp ho logyMinera ls, and Geom orp ho logy

    interlocking grains or are bound together byvarious types of cement (usually silica orcalcium carbonate). When there is minimalvegetation and soil present and the rockmaterial is visible directly by the remote

    sens ng sys em, may e poss e odifferentiate between several rock types andobtain information about their characteristicsusing remote sensing techniques. Most rocksurfaces consist of several types of minerals.

  • 7/31/2019 11 Rs Geology

    9/30

    Clark (1999) suggests that it is possible to model the reflectance

    Rem ot e Sens ing o fRem ot e Sens ing o f

    Rocks and Min era lsRocks and Min era ls

    rom an expose roc cons st ng o severa m nera s or a s ng e

    mineral based on Hapkes (1993) equation:

    r = [[(w/4) x ( / + o)] x [(1+Bg)Pg+H H o-1]

    Where r is the reflectance at wavelength ,

    w is the average single scattering albedo from the rock or mineral of interest,

    is the cosine of the angle of emitted light,

    uo is the cosine of the angle of incident light onto the rock or mineral of interest,

    g is the phase angle,Bg is a back-scattering function,

    Pg is the average single particle phase function, and

    His a function for isotropic scatterers.

    There are a number of processes that determine how a mineral will absorb or

    scatter the incident energy. Also, the processes absorb and scatter light

    Rem ot e Sens ing o f Rocks and Minera lsRem ot e Sens ing o f Rocks and Minera lsUsingUsing Spect r o rad iom ete rsSpec t ro rad iomete rs

    differently depending on the wavelength ( ) of light being investigated. The

    variety of absorption processes (e.g., electronic and vibrational) and their

    wavelength dependence allow us to derive information about the chemistry of a

    mineral from its reflected or emitted energy. The ideal sensor to use is the

    imaging spectrometerbecause it can record much of the absorption

    information, much like using an in situ spectroradiometer.

    All materials have a complex index of refraction. If we illuminate a plane

    , ,

    reflected from the surface according to the Fresnel equation:

    R = [(n - 1)2 +K2]/ [(n + 1)2 +K2]

    where n is the index of refraction, and Kis the extinction coefficient.

  • 7/31/2019 11 Rs Geology

    10/30

    Spectra of ThreeMinerals Derived fromNASAs AirborneVisible InfraredImaging Spectrometer(AVIRIS) and asMeasured Using ALaboratory

    (after Van der Meer,

    1994)

    A lun i t eA lun i t e Labo rato r y Spect ra , Sim u la tedLaborat ory Spect r a , Sim ula t ed LandsatLandsat

    Thema t i cThem at i c MapperMapper Spect r a , and Spect ra f r om a 63Spec t ra , and Spec t ra f rom a 63 --Channe l GERI S I ns t ru m ent ov erChanne l GERI S I ns t ru m ent over Cupr i t eCupr i te , Nevada, Nevada

    Laboratory

    S ectraty)

    90

    Alunite

    tReflectance(offsetforclarity

    Landsat Thematic Mapper

    ectance(offsetforclari

    40

    50

    60

    70

    80

    1 2 3 45

    7

    23 2930 31

    Perc

    e

    GERIS

    hyperspectral

    Wavelength, m

    PercentRefl

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    20

    10

    0

    28 32

  • 7/31/2019 11 Rs Geology

    11/30

    Index of refractionand extinction

    coefficient of quartzdexofRefrac

    tionor

    xtinctionCoef

    ficient

    4

    6 Quartz Optical Constants

    n, index of refraction

    K, extinction coefficient

    n

    K

    exofRefractionor

    tinctionCoeffi

    cient

    for the wavelengthinterval

    6-16 mm

    ctance

    Quartz (powdered)

    Wavelength,m

    I

    8 10 12 14 16

    2

    0

    n

    n

    n

    K K

    ectance

    InEx

    Spectral reflectance

    Wavelength,m

    RelativeRefle

    8 10 12 14 160

    RelativeRefl

    powdered quartz

    obtained using aspectroradiometer(after Clark, 1999)

    Mineral Maps ofCuprite, NV,Derived from LowAltitude 3.9 kmAGL) and HighAltitude (20 km

    AGL) AVIRIS Dataobtained on

    June 18, 1998

    Hyperspectral data were

    analyzed using the USGS

    Tetracorder program.

  • 7/31/2019 11 Rs Geology

    12/30

    em o t e en s n g oem ot e en s n g oGeolog y an dGeolog y an d

    Geo log ists o f t en use rem ote sens ing inco n j u n c t i on w i t h i n s i tu obse rva t i on t oi d en t i f y t h e l i t ho logy of a rock t ype, i .e. ,i t s o r i in . Th e d i f fer en t r ock t es ar efo rm ed by one o f th ree p rocesses ;

    igneous rocks are formed from moulten material;

    sedimentary rocks are formed from the depositionof articles of re-existin rocks and lant and

    animal remains; or

    metamorphic rocks are formed by applying heatand pressure to previously existing rock.

  • 7/31/2019 11 Rs Geology

    13/30

    The type of rock determines how much differential stress (or

    compression) it can withstand. When a rock is subjected to

    Rock St ru c tu r e : Fo ld ing and Fau l t i ngRock St ru c tu r e : Fo ld ing and Fau l t i ng

    ,

    1) elastic deformation in which case it may return to its original

    shape and size after the stress is removed,

    2)plastic deformation of rock calledfolding, which is

    irreversible i.e., the com ressional stress is be ond the elastic

    limit, and/or

    3)fracturing where the plastic limit is exceeded and the rock

    breaks into pieces (the pieces can be extremely large!). This may

    result infaulting.

    Folding takes place when horizontally bedded materials are

    compressed. The compression results in wavelike undulations

    Rock St ru c tu r e : Fo ld ingRock St ru c tu r e : Fo ld ing

    .

    monoclines (a single fold on horizontally bedded material; like a

    rounded ramp),

    anticlines (archlike convex upfold domes - oldest rocks in the

    center ,

    synclines (troughlike concave downfold - youngest rocks in the

    center),

    overturned(where the folds are on top of one another):

  • 7/31/2019 11 Rs Geology

    14/30

    Eff ect o fEf f ect o f

    Fo ld ingFo ld ing((Compress ioCompress io ))

    an n gan n g(Pu l l i ng(Pu l l i ng

    A p ar t ) o nA p ar t ) o nHor izon ta l l yHor i zon ta l l y

    Bedded St ra t aBedded St ra t a

    Typ es o fTyp es o fFold s Fou ndFold s Fou nd

    ononHor izon ta l l yHor i zon ta l l y

    BeddedBeddedTer ra inTer ra in

  • 7/31/2019 11 Rs Geology

    15/30

    Rem ot e Sens in g o fRem ot e Sens in g o fDr a in age Pa t t e rn sDr a in age Pa t t e rn s

    Drainage patterns developed through time on a landscape provide clues about

    bedrock litholo e. . i neous sedimentar metamor hic to o ra h

    Rem ot e Sens ing o f Dra inage Pa t t e rnsRem ot e Sens ing o f Dra inage Pa t t e rns

    (slope, aspect), the texture of the soil and/or bedrock materials, the permeability

    of the soil (how well water percolates through it), and the type of landform

    present (e.g,. alluvial, eolian, glacial. While in situ observations are essential,

    physical scientists often use the synoptic birds-eye-view provided by remote

    sensing to appreciate regional drainage patterns, including:

    Dendritic Pinnate Trellis Rectangular

    Parallel Annular Dichotomic Braided

    Deranged Anastomotic Sinkhole (doline)

    Radial (Centrifugal) and Centripetal

  • 7/31/2019 11 Rs Geology

    16/30

    Di f f eren t D ra inage Pa t t e rnsD i f f eren t D ra inage Pa t t e rns

    D i f f eren t D ra inage Pa t t e rnsD i f f eren t D ra inage Pa t t e rns

  • 7/31/2019 11 Rs Geology

    17/30

    Di f f eren t D ra inage Pa t t e rnsD i f f eren t D ra inage Pa t t e rns

    Typ es o f Fau l t sTyp es o f Fau l t s

  • 7/31/2019 11 Rs Geology

    18/30

    LandsatLa n dsa t Th em at i cThem at i c MapperMap per I m a g e o f t h eI m a ge o f t h eI n t e rsec t ion o f th e San Andreas andI n t e rsec t ion o f th e San Andreas and

    Gar lockGa r lo ck Fa u lt sFau l ts

    San Andreas

    Garlock

    Fault

    Landsat band 4 image Shaded relief map derived from

    a digital elevation model

    Rem ot e Sens in g o fRem ot e Sens in g o fI g n eo u s Lan d f o r m sI g n eo u s Lan d f o r m s

  • 7/31/2019 11 Rs Geology

    19/30

    Panchromatic

    Stereopair ofthe Devils

    ,

    Intrusive

    Volcanic

    Neck

    Obtained on

    September 15,

    1953 (south is

    at the top).

    Panchrom at i c Ste reopa i r o f the Menan Bu t te Tu f f CinderPanchrom at i c Ste reopa i r o f the Menan Bu t te Tu f f Cinder

    Cone Vo lcano in I daho Obta ined on June 24 , 1960 .Cone Vo lcano in I daho Obta ined on June 24 , 1960 .

    Pyroclastic material volcano

  • 7/31/2019 11 Rs Geology

    20/30

    Kilauea

    caldera

    Kilauea

    Puu Oo

    crater

    Puu Oo crater

    ca era

    Composite Space Shuttle

    SIR-C/X-SAR image

    (bands C, X, L) of Kilauea

    Hawaii volcano on

    April 12, 1994

    SIR-C image overlaid on a digital elevation model.

    Overland flow of lava on the shield volcano is evident.

    Kilauea Puu Oo

    crater

    Aerial photography of the

    overland flow of lava on the

    Kilauea Hawaii volcano

  • 7/31/2019 11 Rs Geology

    21/30

    ThreeThree--d im ens iona l Perspect i ve V iew o f I s lad im ens iona l Perspect i ve V iew o f I s la I sabelaI sa bel a o fo fthe Ga lapagos I s lands Obta ined by th e Space Shu t t l ethe Ga lapagos I s lands Obta ined by th e Space Shu t t l e

    SI RSI R-- C/ XC/ X --SAR ( d raped over a d ig i ta l e leva t ion m ode l )SAR ( d raped over a d ig i ta l e leva t ion m ode l )

    aa lava flow

    pahoehoe lava

    Extruded lava dome (shield) volcano

    Mount St. Helens

    erupting May 18, 1980

    (U.S.G.S.)

    USGS High AltitudePhotography Stereopair

    of Composite Cone

    Mount St. Helens in

    Washington

    August 6, 1981

  • 7/31/2019 11 Rs Geology

    22/30

  • 7/31/2019 11 Rs Geology

    23/30

    Geol og ic Cr ossGeol og ic Cr oss-- sec t i on o f t h esec t i on o f t heGran d Canyon in A r i zonaGran d Canyon in A r i zona

    Panch roma t i cPanchrom at i c St e reopa i rSt e r eo pai r o f t h eo f t h eGrand Canyon in A r i zonaGrand Canyon in A r i zona

  • 7/31/2019 11 Rs Geology

    24/30

  • 7/31/2019 11 Rs Geology

    25/30

    Panchr om at ic Ster eopa i r o f a Fo lded LandscapePanchr om at ic Ster eopa i r o f a Fo lded LandscapeNear Maver i ck Spr ing , WYNear Maver i ck Spr ing , WY

    This dissected asymmetric dome is an erosional remnant of a lunging

    anticline. Note the fine-textured topography, the strike of the ridges and

    valleys, the radial and trellis drainage controlled by the anticlinal

    structure, and the prominent hogback ridges.

    Panchromat i cPanchrom at i c Ste reopa i rSte reopai r o f a Sync l ina lo f a Sync l ina lVa l ley in th e Appa lach ians near Tyr one, PAVal ley in th e Appa lach ians near Tyr one, PA

    The ridge lines of Brush Mountain on the west and Canoe Mountain on theThe ridge lines of Brush Mountain on the west and Canoe Mountain on the

    east are composed of more resistant sandstone while the less resistant, solubleeast are composed of more resistant sandstone while the less resistant, soluble

    limestone sedimentary rock has been eroded. The interlimestone sedimentary rock has been eroded. The inter--bedding of thebedding of the

    sandstone and limestone results in hogback ridges at the periphery of thesandstone and limestone results in hogback ridges at the periphery of the

    syncline with a trellis drainage pattern.syncline with a trellis drainage pattern.

  • 7/31/2019 11 Rs Geology

    26/30

    LandsatLandsatThema t i cThema t i c

    MapperM ap p er Ba nd 4Band 4I m a ge of t h eI m a ge of t h e

    San RafaelSan RafaelSw e l l i nSw e l l i n

    Sou th ern UtahSou th ern Utah

    The swell is a large flat-

    topped monoclinal upwarp

    bounded by hogback ridges

    on the southern and eastern

    flanks. The more resistant

    hogback ridges arecomposed of sandstone,

    while the less resistant shale

    beds have been eroded.

    Rem ot e Sens in g o fRem ot e Sens in g o fFluv ia l Land fo r m sFluv ial Land fo r m s

  • 7/31/2019 11 Rs Geology

    27/30

    LandsatLandsat

    Thema t i cThema t i cMapperMapper

    point

    natural

    levee

    t h et h e

    Miss iss ipp iMiss iss ipp iRiver Band sRiver Band s4,3 ,2 ( RGB)4,3 ,2 ( RGB)

    bar forest

    oxbow

    lake

    man-made

    levee

    Janua ry 13 ,Janua ry 13 ,

    1 9 8 31 9 8 3

    meander

    scars

    DeltasDeltas

    Niger River Delta, AfricaNiger River Delta, AfricaMississippi River Delta, U.S.Mississippi River Delta, U.S.

    Irrawaddy RiverIrrawaddy River

    Delta,Delta, BurmahBurmah

    Nile River Delta, EgyptNile River Delta, Egypt

    birds footbirds foot

    deltadeltalobatelobate

    deltadelta

    lobatelobate

    deltadelta

    crenulatecrenulate

    deltadelta

  • 7/31/2019 11 Rs Geology

    28/30

    LandsatLa n d sa t Th e m a t i cThem at i c MapperM ap p er Ba nd 4B and 4 im agery o fim agery o fA l luv ia l Fans, Ped im ent s , and P layasAl luv ia l Fans, Ped im ent s , and P layas

    Little San

    Barnadino

    Mountains

    alluvial

    fan

    alluvial

    fanpediment

    playa White

    Mountains

    Chocolate

    Mountain

    Alluvial fan between the Little San

    Bernadino and Chocolate Mountains

    northeast of the Salton Sea in California

    Alluvial fan, several pediments, and a playa

    associated with an area in the White Mountain

    Range northwest of death Valley, California

    Salton

    Sea

    California

    Acqueduct

    Rem ot e Sens in g o fRem ot e Sens in g o fShor e l i ne Land fo r m sShor e l i ne Land fo r m s

  • 7/31/2019 11 Rs Geology

    29/30

    LandsatLan d sa t Th em a t icThem at ic MapperMapperCo lo r Com pos i tes o f Mor roCo lo r Com pos i tes o f Mor ro

    Bay,Ca l i fo rn iaBay,Ca l i fo rn ia

    beach

    ridge

    inlet

    Morro

    Morro

    Rock

    dune

    Bands 4,3,2

    (RGB)

    Bands 7,4,3

    (RGB)

    or sp t

    NAPP Color-infraredOrthophotograph of

    Sullivans Island, SC

    tidal

    Isle of

    Palms

    Mount

    Pleasant dredge

    spoil

    Spartina

    alternifloraIntercoastal

    Waterway

    sand

    barsbeach

    ridges

    inlet

    Sullivans

    Island

  • 7/31/2019 11 Rs Geology

    30/30

    NASA ATLAS Mul t ispect r a l Scanner DataNASA ATLAS Mul t ispect r a l Scanner Data( 3 x 3 m ; Bands 6 ,4 ,2 = RGB) o f t he( 3 x 3 m ; Bands 6 ,4 ,2 = RGB) o f t he

    Tida l Fla ts Beh in d I s le o f Pa lm s, SCTida l Fla ts Beh in d I s le o f Pa lm s, SC

    exposed

    mudflat

    inundated

    mudflat

    tidal

    channel

    Spartina

    alterniflora

    exposed

    mudflat

    ReefsReefsan dan d

    A to l l sA to l l s