14
DEFINISI RUANG TOPOLOGI RUANG TOPOLOGI Misal X suatu set tidak kosong. Suatu kelas yang anggotanya subset-subset dari X disebut topologi pada X, bila dan hanya bila memenuhi ketiga aksioma berikut: , - X dan termasuk dalam , - Gabngan dari set-set anggota dari adalah anggota , - Irisan dari dua set anggota adalah anggota Anggota-anggota dari disebut set-set buka dari , dan X bersama , yaitu (X, ) disebut ruang topologi. Contoh 1. Misal U adalah kelas semua set buka bilangan real. Maka U adalah topologi pada R; dan disebut topologi biasa (usual topology) pada R. demikian juga kelas U yang terdiri dari set-set buka pada adalah topologi pada Contoh 2. Misalakan * + masing masing subset dari . Manakah yang merupakan topologi pada X, bila : { *+ * + * + * +} { *+ * + * + * +} { *+ * + * + * +} Jawab : adalah topologi pada X, karena memenuhi ketiga sifat (aksioma) di atas, yaitu: , - , - , - bukan topologi pada X, karena *+ * + * + bukan topologi pada X, karena * + * + * +

114811295-MAKALAH-TOPOLOGI

Embed Size (px)

Citation preview

Page 1: 114811295-MAKALAH-TOPOLOGI

DEFINISI RUANG TOPOLOGI

RUANG TOPOLOGI

Misal X suatu set tidak kosong. Suatu kelas yang anggotanya subset-subset

dari X disebut topologi pada X, bila dan hanya bila memenuhi ketiga aksioma

berikut:

, - X dan termasuk dalam

, - Gabngan dari set-set anggota dari adalah anggota

, - Irisan dari dua set anggota adalah anggota

Anggota-anggota dari disebut set-set buka dari , dan X bersama , yaitu (X, )

disebut ruang topologi.

Contoh 1.

Misal U adalah kelas semua set buka bilangan real. Maka U adalah topologi pada

R; dan disebut topologi biasa (usual topology) pada R. demikian juga kelas U

yang terdiri dari set-set buka pada adalah topologi pada

Contoh 2.

Misalakan * + masing masing subset dari . Manakah

yang merupakan topologi pada X, bila :

{ * + * + * + * +}

{ * + * + * + * +}

{ * + * + * + * +}

Jawab :

adalah topologi pada X, karena memenuhi ketiga sifat (aksioma) di atas, yaitu:

, -

, - ⋃

, - ⋂

bukan topologi pada X, karena * + * + * +

bukan topologi pada X, karena * + * + * +

Page 2: 114811295-MAKALAH-TOPOLOGI

Contoh 3.

Misal D adalah kelas dari semua subset dari X, atau D = . Maka D adalah

topologi pada X, karena memenuhi [i], [ii], [iii]. D disebut topologi diskrit, dan

(D,X) disebut ruang topologi diskrit, atau secara singkat disebut ruang diskrit.

Contoh 4.

Dari aksioma [i], suatu topologipada X memuat set X dan . Kelas * +

yang hanya memuat X dan adalah topologi pada X. * + disebut topologi

indiskrit , dan (X,Y) disebut ruang topologi indskrit atau ruang indiskrit.

Contoh 5.

Misal ( ) ruang topologi. adalah kelas yang anggotanya semua komplemen

dari set buka dari . Maka adalah topologi pada X, dan disebut topologi kofinit

atau topologi pada X.

Contoh 6.

Irisan dari topologi-topologi dan pada X juga merupakan topologi

pada X.

, - , karena dan

, - Bila , maka dan . Karena

topologi pada X , dan , jadi .

, - Bila , maka dan . Karena

topologi pada X, maka dan , jadi .

Pernyataan dalam contoh di atas, dapat digeneralisasi untuk koleksi topologi-

topologi, seperti dinyatakan pada teorema berikut:

TEOREMA 1. Bila * + koleksi topologi pada set X, maka irisan ⋂ adalah

topologi pada X.

Dari contoh 7 berikut ditunjukkan bahwa gabungan dari topologi-topologi tak

perlu topologi:

Page 3: 114811295-MAKALAH-TOPOLOGI

Contoh 7.

Kelas-kelas { * +} dan * * ++ adalah topologi pada

* +. Tetapi * * + * ++ bukan topologi pada X, karena * + * +

, maka * + * + * + .

Bila G adalah set buka yang memuat titik , maka G disebut lingkungan

terbuka dari p, dan G tanpa p yaitu * +, disebut lingkungan terbuka terhapuskan

dari p.

Catatan:

Aksioma –aksioma , - , - , - adalah equivalen dengan dua aksioma

berikut:

, - Gabungan dari set-set dalam termasuk dalam

, - Irisan terhingga dari set-set dalam termasuk dalam

Untuk , - menyimpulkan bawa termasuk dalam karena

* +

Yaitu gabungan dari set-set kosong adalah set kosong.

Untuk , - menyimpulkan bahwa X termasuk ke dalam karena

* +

Yaitu irisan dari subset-subset dari X adalah X sendiri.

TITIK KUMPUL

Misal X adalah ruang topologi. Suaitu titik adalah titik kumpul dari

bila dan hanya bila setiap set buka G yang memuat p, memuat suatu titik yang

berbeda dengan p, atau

“bila G buka, , maka ( * + )”

Set dari titik-titik kumpul dari A ditulis dan disebut set derive dari A.

Page 4: 114811295-MAKALAH-TOPOLOGI

Contoh 1.

* * + * + * + * + adalah topologi pada * +,

dan * + .

Perhatikan bahwa adalah titik kumpul dari A, karena set-set buka yang

memuat b yaitu X dan * + masing-masing memuat titik dari A yang berbeda

dai b yaitu c. tetapi titik , buakan titik kumpul dari A, karena set buka * +,

tidak memuat titik dari A yang berbeda dengan a. Dengan cara yang sama d dan e

adalah titik kumpuldari a sedangkan c bukan titik kumpul dari A. jadi

* + yang disebut set derive dari A.

Contoh 2.

Misal X ruang topologi indiskrit yaitu ⟨ ⟩ dengan * +. Maka X adalah

set buka yang memuat sebarang . Jadi p adalah titik kumpul dari setiap

subset dari X, kecuali set kosong dan set * +. Jadi, set dari titik-titik kumpul

dari yaitu adalah

{

* + * + * +

Perhatikan bahwa, untuk topologi biasa pada garis R dan bidang , titik kumpul

didefinisikan sama seperti pada bab 4.

SET TERTUTUP

Misal X adalah ruang topologi. Subset A dari X disebut set tertutup bila dan

hanya bila komplemen adalah set buka.

Contoh 1.

Kelas * * + * + * + * ++ didefinisikan pada

* +. Subset-subset tutup dari X adalah

* + * + * + * +

Page 5: 114811295-MAKALAH-TOPOLOGI

Adalah komplemen-komplemen dari subset-subset buka dari X. Perhatikan bahwa

{b,c,d,e} adalah subset buka dan tutup dari X, sedangkan {a,b} bukan subset buka

dan bukan subset tutup dari X.

Contoh 2.

Misal X adalah ruang diskrit yaitu setiap subset dari X adalah buka. Maka setiap

subset dari X adalah juga tutup, karena komplemennya selalu buka. Dengan kata

laon, setiap subset dari X adalah buka dan tutup.

Ingat bahwa , untuk setiap subset A dari X, maka diperoleh proposisi sebagai

berikut:

Proposisi 2.

Dalam ruang topologi X, subset A dari X adalah buka bila dan hanya bila

komplemennya tutup.

Aksioma , - , - , - dari ruang topologi dan hukum de Morgan

memberikan teorema berikut:

TEOREMA 3. Bila X ruang topologi , maka kelas dari subset-subset tutup dari X

memiliki sifat –sifat sebagai berikut:

(i) adalah set-set tutup

(ii) Irisan dari set-set tutup adalah tutup

(iii) Gabungan dari dua set tutup adalah tutup

Set –set tutup dapat pula dinyatakan dengan menggunakan pengertian titik-titik

kumpul seperti berikut:

TEOREMA 4. Subset A dari ruang topologi X adalah tutup bila dan hanya bila A

memuat semua titik kumpul dari A.

Dengan kata-kata lain set A adalah tutup bila dan hanya bila derive dari A

adalah subset dari A, yaitu .

Page 6: 114811295-MAKALAH-TOPOLOGI

PENUTUP DARI SET

Misal A subset dari ruang topologi X. Penutup dari A, ditulis atau adalah irisan

dari semua subset tutup dari X yang memuat A.

Dengan kata –kata lain, bila * + adalah kelas dari semua subset tutup dari X

yang memuat A, maka

Perhatikan bahwa adalah tutu, kartena adalah irisan dari set-set tutup.

Selanjutnya juga, adalah superset tutup terkecil dari A, dengan demikian, bila F

adalah set tutup yang memuat A, maka

Berdasarkan hal tersebut, set A adalah tutup bila dan hanya bila , dan diperoleh

pernyataan berikut:

Proposisi 5.

Bila penutup dari set A, maka

(i) adalah tutup

(ii) Bila F superset tutup dari A, maka ;

(iii) A adalah tutup bila dan hanya bila

Contoh 1.

Perhatikan topologi pada * +, seperti contoh 1. Bagian 5.3 di mana

subset-subset tutup dari X adalah

* + * + * + * +

Berdasarkan hal itu,

{ } * + * + { } * +

Contoh 2.

Misal X adalah ruang topologi kofinit, yaitu komplemen dari set-set terhingga dan

adalah set-set buka. Maka setiap set-set tutup dari topologi tersebut adalah

subset-subset terhingga dari X dengan X. Jadi bila terhingga, penutup

adalah A sendiri, karena A tutup. Sebalinknya, bila tak hingga, maka X

Page 7: 114811295-MAKALAH-TOPOLOGI

adalah superset tutup dari A; jadi adalah X. Selanjutnya, untuk suatu A subset

dari ruang kofinit, maka

{

Penutup suayu set dapat dinyatakan dengan pengertian dari titik-titik kumpul dari set

tersebut sebagai berikut:

TEOREMA 6. Bila A subset dari ruang topologi X, maka penutup dari A adalah

gabungan dari A dengan , yaitu

Suatu titik disebut titik penutup dari bila dan hanya bila p ternuat

dalam penutup A, yaitu . Dari teorema 6 diperoleh bahwa , adalah titik

penutup dari bila ganya bila atau titik kumpul dari A.

Contoh 3.

Perhatikan semua set bilangan rasional Q. Di dalam topologi biasa untuk R, setiap

bilangan real adalah titik kumpul dari Q, Jadi penutup dari Q adalah set

semua bilangan real R, yaitu .

Subset dari suatu topologi X disebut padat (dense) dalam , bila B ternasuk

dalam penutup A, yaitu . Khususnya, A adalah padat pada X atau subset

dari X bila dan hanya bila

Contoh 4.

Perhatikan contoh 1 pasal 5.3, diketahui bahwa

* + { } * +,

Dengan * +. Jadi set {a,c} adalah subset padat dari X, tetapi set

{b,d} bukan subset padat dari X.

Contoh 5.

Dari contoh 3 di atas, . Dengan kata lain, dalam topologi biasa, set semua

bilangan rasional Q padat dalam R.

Page 8: 114811295-MAKALAH-TOPOLOGI

Operator “penutup”, yang menghubungkan tiap-tiap subset A dari X adalah

penutup memenuhi 4 sifat seperti ditunjukkan pada proposisi berikut, yang

disebut “Aksioma Penutup Kuratowski”.

Proposisi 7.

(i)

(ii)

(iii)

(iv) ( )

INTERIOR, EKSTERIOR, BATAS

Misal A subset dari ruang topologi X. Titik disebut titik interior dari A,

bila p termasuk set buka G subset dari A, yaitu , G set buka.

Set titik-titik interior dari A , ditulis

int (A),

Disebut interior dari A.

Interior dari A dapat dinyatakan sebagai berikut:

Proposisi 8.

Interior dari A adalah gabungan dari semua subset dari A. Selanjutnya juga bahwa

(i) adalah buka

(ii) subset terbesar dari A;

yaitu bila G subset dari A maka ; dan

(iii) A adalah buka bila hanya bila

Eksterior dari Aditulis ekst(A), adalah interior dari komplemen A, yaitu int( ).

Batas dari A, ditulis b(A), adalah set dari titik-titik yang tidak termasuk interior dan

tidak termasuk eksterior dari A.

Berikut ini hubungan interior, eksterior dan penutup:

Page 9: 114811295-MAKALAH-TOPOLOGI

TEOREMA 9. Misal A subset dari ruang topologi X. Maka penutup dari A adalah

gabungan dari interior dan batas dari A, yaitu ( ).

Contoh 1.

Diketahui empat interval , - ( ) ( - dan , ) di mana a dan b adalah

titik-titik akhir. Interior dari ke-4 interval tersebut adalah (a,b) dan batasnya

adalah titik-titik akhir a dan b yaitu {a,b}.

Contoh 2.

* * + * + * + * ++ topologi pada * + dan

* + .

c dan d titik-titik interior dari A, karena * + . Dan {c,d} set buka.

Titik bukan titik interior dari A, dan int(A)={c,d}.

Titik adalah eksterior dari A, yaitu interior dari komplemen * + jadi

int( ) * +

Batas dari A memuat titik-titik b dan e yaitu b(A)={b,e}.

Contoh 3.

Q adalah set semua bilangan rasional.

Karena setiap subset buka dari R memuat bilangan rasional dan irasional, titik-

titik itu bukan interior atau eksterior dari Q, juga ( ) dan int( ) .

Jadi batas dari Q adalah bilangan realyaitu b(Q)=R.

Suatu subset A dari ruang topologi X disebut padat tidak dimana-mana (nowhere

dense) di dalam X jika interior dari penutup A adalah kosong, yaitu int( ) .

Contoh 4.

Misal {

} subset dari R, maka A mempunyai tepat satu titik

kumpul yaitu 0.

Jadi {

} dan tidak mempunyai titik interior atau int( ) ,

jadi A padat tidak dimana-mana dalam R.

Page 10: 114811295-MAKALAH-TOPOLOGI

Contoh 5.

Misal A memuat semua bilangan rasional antara 0 dan 1, yaitu *

+. Jelas bahwa int(A)= . Tetapi A tidak padat dimana-mana dalam R :

karena penutup A adalah , -, dan

( ) (, -) ( )

LINGKUNGAN DAN SISTEM LINGKUNGAN

Misal p adalah titik dalam ruang topologi X. Suatu subset N dari X disebut

lingkungan dari p jika dan hanya jika N adalah suatu superset dari set buka G yang

memuat p yaitu:

dengan G set buka.

Dengan kata lain, relasi “N adalah lingkungan dari p” adalah invers dari “p adalah

titik interior dari N”.

Kelas dari suatu lingkungan dari , ditulis , disebut sistem lingkungan dari p”

Contoh 1.

Misal . Maka tiap-tiap interval tutup , - dengan pusat a adalah

lingkungan dari a, karena interval-interval tersebut memuat interval buka

( ) yang memuat a. Demikian pula, bila , maka setiap daerah

tutup * ( ) + dengan pusat p, adalah lingkungan dari p, karena

daerah tutup tersebut memuat daerah buka dengan pusat p.

Untuk sistem lingkungan dari suatu titik ada 4 sifat yang dinyatakan

dalam proposisi berikut, yang disebut aksioma lingkungan, seperti berikut:

Proposisi 10.

(i) dan p termasuk ke dalam tiap anggota

(ii) Irisan dari dua termasuk

(iii) Setiap super set dari anggota termasuk

Page 11: 114811295-MAKALAH-TOPOLOGI

(iv) Tiap anngota adalah superset dari anggota dengan G

adalah lingkungan dari tiap-tiap titik dari G yaitu untuk setiap

.

BARISAN KONVERGEN

Barisan ⟨ ⟩ dari titik-titik dalam ruang topologi X konvergen ke titik

atau b adalah limit dari barisan ( ) di tulis

Bila hanya bila untuk setiap set buka G yang memuat b ada bilangan bulat positif

sedemikian hingga

Bila

Contoh 1.

Misal ⟨ ⟩ adalah barisan dari titik-titik dalam ruang topologi indiskrit

(X,Y). Kita ketahui bahwa:

(i) X adalah set buka yang memuat ; dan

(ii) X memuat setiap suku dari barisan ( ).

Berdasarkan hal tersebut, barisan ⟨ ⟩ konvergen ke setiap titik

Contoh 2.

Misal ⟨ ⟩ adalah barisan titik-titik dalam ruang topologi diskrit (X<D).

Untuk setiap titik , set singleton {b} adalah set buka yang memuat b. bila

, maka set {b} haruslah termuat ke dalam semua suku (unsur) dari barisan

tersebut. Dengan kata lain, barisan ( ) konvergen ke titik bila dan hanya

bila barisan tersebut berbentuk ⟨ ⟩.

Contoh 3.

Misal adalah topologi pada set tak hingga X yang terdiri dari set kosong , dan

komplemen dari set-set kontabel. Kita menganggap bahwa barisan tersebut

berbentuk

⟨ ⟩ yaitu set A yang memuat suku ( ) yang berbeda dari

b, adalah terhingga. Sedangkan A adalah set kontabel dari adalah set buka

Page 12: 114811295-MAKALAH-TOPOLOGI

yang memuat b. Jadi, bila maka memuat terhingga banyaknya suku-

suku dari barisan tersebut, dan A adalah terhingga.

TOPOLOGI KOSER DAN TOPOLOGI FAINER

Misal dan adalah topologi pada set tidak kosong X, dan tiap-tiap set

buka anggota subset dari X adalah anggota subset X. Dengan demikian , bahwa

adalah kelas bagian dari yaitu . Maka kita katakana bahwa adalah

koser (Coarser, terkecil) terhadap atau adalah fainer (finer, terbesar) terhadap

. Perhatikan bahwa * + koleksi topologi-topologi adalah terurut parsial, dan

dapt ditulis

untuk

Dan kita katakana bahwa kedua topologi pada X tidak dapat dibandingkan bila

topologi yang satu buikan koser terhadap yang lainnya.

Contoh 1.

Perhatikan topologi diskrit D, topologi indiskrit Y, dan suatui topologi pada set

X. maka adalah koser terhadap D, dan adalah fainer terhadap Y.

Jadi .

Contoh 2.

Perhatika topologi kofinit dan topologi biasa U pada bidang . Ingat bahwa

setiap subset dari adalah set tutup U: Jadi komplemen dari subset terhingga

dari yaitu anggota adalah set buka U. Dengan kata lain, koser terhadap U,

yaitu .

RUANG BAGIAN, TOPOLOGI RELATIF

Misal A adalah subset tidak kosong dari ruang topologi ( ). Kelas yaitu

kelas dari semua irisan dari A dengan subset-subset buka dari X adalah topologi

pada A; dan topologi tersebut disebut topologi relative pada A, atau relatifisasi

terhadap A; dan ruang topologi ( ) disebut ruang bagian dari ( ).

Page 13: 114811295-MAKALAH-TOPOLOGI

Dengan kata-kata lain, subset dari A adalah set buka dari , yaitu rel;atif buka ke

A, bila dan hanya bila ada subset buka G dari X dan sedemikian hingga

Contoh1.

Perhatikan topologi * * + * + * + * ++ topologi pada

* + dan * + .

Perhatian bahwa

* + * + * + * + * + * +

* + * +.

Jadi relatifisasi terhadap A adalah

* * + * + * + * ++

Contoh 2.

Perhatikan topologi biasa U pada R dan topologi relative pada interval tutup

[3,8]. Interval tutup buka [3,5) adalah buka di dalam topologi relative pada A,

yaitu set buka dari , karena

, ) ( )

Dengan (2,5) adalah subset buka pada R. jadi dapat kita lihat bahwa suatu set,

mungkin, relative buka terhadap suatu ruang bagian tetapiu set tersebut tidak buka

dan tidak tutup dalam ruang tersebut.

EKUIVALENSI DARI DEFINISI TOPOLOGI

Definisi dari ruang topologi memberikan aksioma untuk setiap set buka dalam

ruang topologi, dan kita gunakan set buka sebagai pengertian (ide) sederhana untuk

topologi. Teorema berikut menunjukkan alternative lain untuk definisi topologi pada

suatu set, dengan menggunakan pengertian sederhana dari “lingkungan dari suatu

titik” dan penutup suatu set”.

Page 14: 114811295-MAKALAH-TOPOLOGI

TEOREMA 11. Bila X adalah set tidak kosong dan untuk tiap , kelas dari

subset-subset dari X memenuhi aksioma berikut:

[A1]. tidak kosong dan p termasuk ke dalam anggota .

[A2]. Irisan dari dua anggota ternasuk dalam .

[A3]. Setiap superset dari anggota termasuk .

[A4]. Setiap anggota adalah superset daria anggota sedemikian

hingga untuk setiap

Maka ada satu dan hanya ada satu topologi pada X sedemikian sehingga

adalah sisitem lingkunmgan dari titik .

TEOREMA 12. Bila X adalah set tidak kosong, dan k adalah operasi yang

menghubungkan tiap subset A dari X dengan Ak dari X, yang memenuhi Aksioma

penutup Kuratowski berikut:

[k1].

[k2]

[k3] ( )

[k4( )

Maka satu dan hanya satu topologi pada X sedemikian hingga Ak adalah penutup

subset A dari X.