30
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHONOLOGY DEPARTMENT OF PETROLEUM ENGINEERING AND APPLIED GEOPHYSICS Natural Gas in Trigeneration Generation of Electricity, Heat and Cooling Oluwatosin Ajayi Lorenzo Angelo Veronelli Davide Genini Hui-Gyeongiang Ho Jung Jung TPG414O Natural gas Fuel CHP unit , Heat chiller Cold I Electricity Trondheim, November 2011

11Ajayi.trigenerare Bun

Embed Size (px)

DESCRIPTION

jhli

Citation preview

  • NORWEGIAN UNIVERSITY OF SCIENCE AND TECHONOLOGYDEPARTMENT OF PETROLEUM ENGINEERING AND APPLIED GEOPHYSICS

    Natural Gas in Trigeneration

    Generation of Electricity, Heat and Cooling

    Oluwatosin AjayiLorenzo Angelo Veronelli

    Davide Genini

    Hui-Gyeongiang

    Ho Jung Jung

    TPG414O Natural gas

    Fuel

    CHPunit

    , Heat

    chillerCold

    I

    Electricity

    Trondheim, November 2011

  • *Abstract

    This work presents a technical illustration of the operation of trigeneration systems using

    Natural Gas as fuel and outlines the possibilities for future trigeneration systems powered by

    fuel cells. It demonstrates these possibilities by comparing the feasibility of trigeneration

    systems based on fuel cell with trigeneration systems using conventional fossil fuel. Primary

    Energy Saving index and first law efficiency were solved to demostrate that trigeneration

    Systems are visible solutions to the spiralling demand for energy across the globe. Although

    not well explored at present but with many developed plans and new researches for

    trigeneration underway, Trigenration systems signal themselves as a viable energy solution

    in the very near future.

  • ContentAbstract

    1. Introduction 12. Reasons for trigeneration 2

    3. How it works 34. Gas turbine 3

    4.1 Operating principle 34.2 Technical components 44.3 Emissions 54.4 State-of-art 6

    5. Internal combustion engine 65.1 Operating principle 65.2 Technical Components 7

    6. Absorption chiller 76.1 Compressor chiller and absorption chiller 8

    7. Fuel cell 97.1 Operating principle 97.2 High temperature fuel cell 10

    7.3 Hybrid systems: gas turbine and fuel cell 107.4 Solid Oxide Fuel Cell 117.5 Molten Carbonate Fuel Cell 117.6 Internal reforming 117.7 Fuel cells versus traditional combustion engines and small gas turbines in cogeneration ... 12

    8. Exergy analysis 129. Indices for trigeneration and cogeneration 1310. Trigeneration and cogeneration now and in the future 16

    10.1 Pfizer Singapore API manufacturing facility 17

    11. Conclusions 1812. References 1913. Tables 2114. Figures 23

  • 1. Introduction

    Trigeneration is the combined generation of electricity, heat and cooling, all simultaneouslyproduced from a fuel source often referred to as Combined Heat Power and Cooling CHCP.Trigeneration takes cogeneration of heat and electricity further with the utilization of wasteheat for cooling purposes through an absorption chiller. A trigeneration system is anintegration of two major technologies: The combined heating and power CHP orcogeneration technology and cooling technology through compression or absorptionsystems. CHP technologies based on gas reciprocating engines and combustion turbines arethe most mature technologies. Fuel cells are entering into the market of trigeneration.

    Natural Gas is the most appealing fuel for driving trigeneration Systems because of itsreliability, efficiency, low environmental effects and low maintenance costs. It burnsefficiently in the combustor ensuring lower emissions of local pollutants than heavier fuels.Natural Gas contains mainly methane, a gas with high hydrogen to carbon ratio which leadsto lower C02 emissions per unit of energy produced. According to the U.S. Department ofEnergy in the year 2009, 2.5 billion tons of C02 were emitted by power plants in the U.S.,which correspond to 576g of C02 per kwh. A wide use of trigeneration would reduce theamount of green- house gases emitted per unit of electricity.

    The most intriguing development in the quest for efficient and cost saving trigenerationsystems to match Energy Demand is the possibility of using Fuel Cells as alternative enginefor trigeneration systems. A technical analysis shows that fuel cells provide the nextpossibility for making trigeneration System at a very low operating cost, maintained highefficiency, with no waste nuisance to the environment (Casalegno 2010). It presents anenvironmentally clean technology for the future trigeneration Applications. Fuel cells can befed via syngas produced with steam reforming CH4 + H20 - CO + 3 H2 and Water gas shift CO +H2O- C02+H2.

    1

  • 42. Reasons for trigeneration

    Energy cost is growing, and trigeneration technology in the long term offers a cheaper andaffordable technology for producing energy when compared to other conventional energygenerating technologies. The reduction in cost in trigeneration is achieved with higheroverall cycle efficiency which decreases the amount of fuel used to produce one unit ofusable energy. Governments also offer subsidies to energy made in cogenerationcomparable to the ones given to renewable energy, making the investment more profitable.

    Microtrigeneration is becoming common in warm countries that are developing the idea ofdistributed power generation (small machines placed close to the consumers). Theapplication of cogeneration and trigeneration as well, in residential places has always beenobstructed by the high variability of loadings and humongous costs of long thermal energynetworks. Distributed power generation and microtrigeneration go together because thetrigenerative application compensates the inevitable lower efficiency of the small machinesand the higher costs. Distributed generation can be applied in crowded places where thestructures are shared by many people, and the cost of the insulated pipes to transport heatis acceptable because they do not have to be too long.

    Distributed power generation diminishes the transport losses, since electric energy does nothave to travel long distances to reach the customers. With the increased need of energy inpopulated areas new power lines have to be built to transfer the power from the generationsites in a business as usual scenario. Dispersed power generation can avoid the invasion ofpristine areas by new power lines, preserving the environment and saving money.

    The technology challenge in developed countries is the reduction of air pollution andgreenhouse gases. The application of trigeneration in cities is an effective way to solve thischallenge because of the use of clean fuel such as natural gas and the high efficiency of thesystem. Pollution in populated areas of developing countries is a huge problem which at themoment is not taken into account, but it will be in the near future.

    Trigeneration systems have usually very short start-up times because of their smalldimensions and low thermal inertia. Therefore, they can also be used for peak shaving tohelp the grid to handle the rising amount of renewable energy connected to the net. Suchdispersed systems can be remotely controlled, operated by the network management

    2

  • icompany as an integration of the grid. The ability of the system to store thermal energy

    allows a flexible management of electricity production, giving the opportunity to make

    electrical power when it is required by the grid.

    3. How it works

    Trigeneration is a new form of power generation that is becoming common in numerous

    countries placed in the warm regions of the world. In these countries the heating required

    during the year is mainly concentrated in the winter season, while in summer the demand of

    refrigeration is no more negligible (for air conditioning household or industry), as shown in

    figure 3. A constant demand of electrical power, heating and cooling comes from different

    structures such as hospitals, public buildings, universities, shopping malls and gyms.

    A trigeneration system can produce contemporaneously heat, electricity and cold depending

    on the needs. A household usually does not require the three energy forms at the same

    time, but a supermarket might require them simultaneously.

    A trigeneration plant is similar to a cogeneration power plant plus an absorption chiller to

    produce a cold flow with the heat recovered from the hot flue gases. Regarding the electric

    power generation, it can be provided by different kind of engines: internal combustion

    engines, gas turbine cycles, and Stirling engines (to name a few). They can be evaluatedaccording to cost, efficiency and environmental effects.

    4. Gas turbine

    4.1 Operating principleIn micro turbines, electricity comes from a common Joule-Brayton cycle fitted with a

    regenerator. Air is sucked up by a compressor that can work with a lower pressure ratio than

    usual, just between 2 and 12 (G. Lozza, 2006). A combustor burns the fuel and presents fluegas at 1000 C to the first stage of the expander. After the expander, the exhaust gas enters

    to a regenerator to recover some heat by warming the air coming out of the compressor.

    This is a practice that is required to elevate the efficiency, which is deeply affected by the

    temperature of exhausted gas that is again affected by the pressure ratio. If the pressure

    ratio goes down, the temperature of the flue gas goes up and the efficiency lessens. A

    Pressure-Volume and a Temperature-Entropy graph are attached (Figures 4.la-4.lb).

    3

  • The heating is obtained by cooling the exhausted gas coming from the regenerator in a gas-

    fluid heat exchanger. Here water can be heated to 90 C-115 C (M. Sileo, 2006), so theability of producing steam is not very high in micro turbines with regenerators. It is evident

    that this heat is useful where the thermal demand is at low temperature like in residential

    buildings, hotels and sport structures. The thermal efficiency is around 50 %, while the

    electrical efficiency is approximately 30% considering the energy coming from the Low

    Heating Value of the fuel used. Therefore, approximately 80% of the energy in the fuel is

    used.

    The cooling is provided by an absorption chiller. This device is based on the phase change of

    water together with a specific salt. The low temperature that the water can reach when is

    heated by the exhausted gas is enough in order to make this system working properly.

    4.2 Technical componentsMicro turbines could be still out of the market if the design of the machine had not been

    completely altered. They are characterized by radial machines that work at impressively high

    RPMS to ensure good performances keeping the dimensionless parameters in an optimal

    range.

    The turbo machines (expander and compressor) have been dramatically modified to facedifferent needs in respect of common large gas turbines (G. Lozza, 2006). They have torotate at 70000-120000 RPM, sustained by magnetic bearings because the low power

    produced requires treating low flow rates of air and exhaust gas (0.2-0.5 kg/s). These radial

    velocities are a consequence of the peripheral speed (u = w*r) which is limited by material

    resistance: if the radius(r) is small, then the angular speed (w) has to be high. Furthermore,

    from performance optimization analysis, it is understandable that a high RPM is necessary.

    The small radius forces to choose a centrifugal compressor and a centripetal expander that

    are able to cope with high pressure ratios (4-6) with a single stage, providing good

    performances with small rotors. Considering the relatively low temperatures (950 C), the

    rotors can be made of nickel alloys with no need of cooling systems.

    Small pressure ratio causes a high temperature of the exhaust gas released in the

    atmosphere while the inlet temperature of the combustor is low: the efficiency is negatively

    affected. The adoption of radial single stage machines implies smaller pressure ratio than

    usual. For example, with a pressure ratio of 4, the outlet temperature of the flue gas is 710

    4

  • C and the inlet temperature of the combustor only 184 C with an efficiency of 16, 45 %. Toovercome this problem, a common solution is the regenerator, which is a decisive device inthe development of a micro turbine. Regenerator can be of two types: a surface regeneratoror a rotary matrix regenerator. The former is a common exchanger with a physicalseparation between pressurized air and exhausted gas; it has a particular geometryoptimized to improve forced convection. The latter is based on a package of metal orceramic material rotating slowly, that acquires heat when is on the hot side and releasesheat to the air in the cold side. This system provides a high thermal exchange efficiency (85-90 %), reduced costs (because of compact surfaces and long life) and space, but it must betaken into account that the high pressure flow could seep into the low pressure stream.

    The combustor is not very different from the combustor of a common gas turbine cycle. Theonly difference from usual combustors comes from the opportunity of reaching low NOxemissions, since lower combustion temperatures reduce the NOx formation. This helps tosave money because no emissions treatment system is required. Usually the combustor of amicro turbine emits lO-lSppmvd 15% 02of NOx which is ten times lower than a common gasturbine (G. Lozza, 2006).

    The generator is designed in order to avoid the use of gear-reducers to improve theefficiency. For these reasons, it is usually equipped with permanent magnets incorporated incarbon fiber matrices, and it rotates together with the shaft of the expander producingelectrical energy at high frequency (for example 3000 Hz AC with 90000 RPM 4 poles). Thenthis energy is converted in a static rectifier and carried to 50 Hz (or 60 Hz) tn-phase 400V bya static inverter (G. Lozza, 2006). Usually the generator can work at variable speeds: thispeculiarity prevents the remarkable decline of performance typical of gas turbines at partialloads. This is a noticeable property of a trigeneration system, because it makes easier tofollow the loads imposed by consumers. The efficiency of the generator is usually close to92-94%.

    4.3 EmissionsCombustion in a gas turbine cycle is designed for reducing NOx emissions. The combustorworks with a great excess of air that quenches down the flame temperature. A lowtemperature inhibits the formation of nitrogen oxides, while the excess of air prevents theformation of CO and unburned gas (G. Lozza, 2006). According to this condition the gas

    5

  • 1.

    turbine does not need any other device to reduce emissions, but catalysts to improve theenvironment effect are being studied. (Table 4.3)

    4.4 State-of-artSome international-famed societies have been developing micro turbines for some yearswith good results. General Electric, Honeywell and Siemens have commercialized machinesfor 30-250 kW, with an electrical efficiency of 24-30 % and Turbine Inlet Temperature of1000 C (Table 4.4). At the moment these turbines offer a good availability and reliabilityeven after long working time. According to Capstone - one of the most important companiesin the field - a micro turbine costs about 1300$ per kW installed. The forecasts are for asharp decrease in prices.

    5. Internal combustion engine5.1 Operating principleFor trigenerative applications only a four-stroke engine can be used, that can be based bothon an Otto cycle or Diesel cycle. The Otto cycle is made of four transformations: twoisochoric and two isentropic processes. The piston goes from the bottom dead centre to thetop dead centre causing a high increase of pressure, so combustion takes place. Then thepiston does the opposite movement of before producing work and finally the exhausted gasgoes out from the cylinder. In reality, two other operations take place: the exhausted gasesare expelled through a drain valve and the fuel-air mixture is sucked up by an inlet valve.The Diesel cycle ideally differs from the Otto cycle only because the combustion shouldoccur at constant pressure instead of constant volume.

    The Otto cycle engines fuelled with natural gas have pressure ratios oscillating between 9:1and 12:1 similar to gasoline engines, even if natural gas has a higher antiknock (M. Sileo,2006) . The gas is injected into the carburetor forming required stoichiometric mixture whichis compressed in the cylinder.

    The Diesel cycle engines are dual fuel, they are mainly fed with methane with a smalladdition of gas oil to avoid detonation. The gas oil is usually injected at high pressure. Thegas can follow two ways: direct injection at high pressure, or injection in the collector andthen compression as in an Otto cycle. The choice among the two solutions depends on thegas pressure in the distribution network: if it is at low pressure the direct injection is betterto avoid expenses and maintenance related to a compressor to pressurize gas.

    6

  • ,

    5.2 Technical ComponentsThe internal combustion engines can use a wide variety of fuels both liquid (gas oil, gasoline,heavy oil) and gas (natural gas, propane, and biogas). It is not easy modeling the emissionscoming from an internal combustion engine. This is because of numerous parameters that

    affect emissions in different ways: piston movement, passage of the combustion from

    laminar to turbulent, low wall temperature. Generally, the main pollutants emitted are NOx,

    HC, soot and Co.

    An internal combustion engine fueled with natural gas ensures low emissions, but the

    environmental norms are actually very strict and will get stricter in the future. Therefore,

    this engine requires proper devices to reduce emissions. These devices are different

    according to the type of cycle used.

    Inside the exhaust pipes, it is common practice using systems that react with catalysts to

    reduce the emissions. When air and fuel are mixed in a stoichiometric ratio, like in Ottos

    cycles, trivalent catalysts are used. They are called trivalent, because they can reduce

    contemporaneously emissions of three pollutants: NOx, CO, HC. To guarantee that this

    catalyst works, a strong control of stoichiometry is necessary. To do that a lambda sensor

    measures the percentage of 02 in the exhaust gases, and a feedback control system

    regulates the percentage of 02.

    6. Absorption chiller

    Absorption chillers are a practical alternative to compression chillers. Their main advantage

    is that they do not require any electrical power consumption except for the pump moving

    the solutes.

    An absorption chiller works with a mixture of two fluids. The fluid with the lowest vapor

    pressure is the solvent; the fluid with the highest vapor pressure is the solute. Usually the

    couple of fluids used can be water (solvent) and ammonia (solute) or lithium bromide(solvent) and water (solute).

    There are different kind of absorption chillers that can be chosen according to the

    constraints of the project and the type of heat source available. They can use directly theexhausted gases that pass through a heat exchanger integrated with the chiller. An

    alternative is to use the fluid flowing in the engine jacket, or a combination of the options.

    7

  • An absorption chiller is made of four main parts: evaporator, absorber, generator, and

    condenser. (Figure 6)

    The evaporator is the heat exchanger in which the refrigerant absorbs the heat from the

    source at low temperature and becomes vapor. Considering that the refrigerant it is at low

    pressure, its boiling point is low and evaporates absorbing heat from the stream which

    needs to be cooled.

    The absorber is the device in which the vapor, produced in the evaporator, turns back into a

    liquid solution at constant pressure. The solute is absorbed by the liquid mixture coming

    from the generator. The absorption process takes place here because of the affinity between

    solute and solvent, producing heat. The pump raises the pressure of the rich solution coming

    from the absorber. The generator receives this mixture and separates solute from solvent in

    a process similar to distillation using the heat source available. The condenser is the heat

    exchanger in which the vapor, produced from the generator, condenses releasing heat to the

    environment. The two lamination valves cause an isenthalpic expansion of the fluid: water

    from the condenser passes through one of them, the solution coming out the generator

    passes through the other. A regenerator is used to improve the performance of the system,

    exchanging heat from the flows between the absorber and the generator.

    The cooling effect is usually provided between 7 C and 12 C when water is used as

    refrigerant. When temperatures under 0 C are required, mixtures of glycol-water or other

    mixtures are used.

    An absorption chiller uses refrigerants which are known not to have a high Green House Gas

    potential or to cause harm to the ozone layer. It does not require to run a compressor, so

    there are no emissions coming from power generation.

    6.1 Compressor chiller and absorption chillerThe comparison between an absorption chiller and a compression chiller is not easy. Looking

    at the investment, an absorption chiller is 30 % to 100 % more expensive than a compression

    chiller. This comes from cooling towers for an absorption chiller that must be 2 or 2.5 larger

    than the ones for a compression chiller. But, according to M. Sileo (2006), an absorptionchiller offers evident management advantages: no problems during blackout, silent

    operation, 20 years of lifetime (it has no moving parts), recovers heat that otherwise wouldhave been wasted. A good way of comparing should be the cost of energy, but considering

    8

  • that the prices of natural gas and electricity are variable, it is hard to say which device isbetter. A careful analysis should be made for each case to find the best solution that suitsthe situation.

    7. Fuel cell

    7.1 Operating principleA fuel cell is a device capable of converting directly the chemical energy in the fuel intoelectrical energy. Normal energy systems, which involve combustion, have first to passthrough thermal, mechanical and finally electrical energy conversion. The combustion of thefuel is the biggest source of inefficiency of the energy converting system (Pedrocchi, 2011).This is due to the fact that the combustion is never done at adiabatic temperature and theheat exchange between the flue gas and the fluid is done with high temperature differences.Heat transfer under high temperature gradient destroys huge amounts of exergy (the abilityof a system to make work). Fuel cells provide solutions to these challenges.

    ADVANTAGES

    High efficiency, not limited by Carnots theorem. Efficiency independent from dimension and just slightly dependent from the load,

    modular system and flexible working condition. High availability and reliability, no moving mechanical parts, gradual performance

    decline (predictable). Low environmental impact, no emissions of secondary pollutants.

    DISADVANTAGES

    Cost, depending on the type, on average not less than 5000$/kW. Short life cycle.

    Most of the fuel cells work with expensive high quality and purity fuel such ashydrogen.

    LOSSES

    A fuel cell has an intrinsic efficiency depending on the type and the boundary conditions ofoperations, above all the current output (Groppi, 2010). Fuel cells skip all the passages of

    9

  • energy conversions but they pay different energy tolls from normal energy converting

    systems (Figure 7.1), such as:

    Activation losses: due to kinetic reasons at the electrodes.

    Ohmic losses: they increase with the increase of current flowing and they are due to

    resistivity.

    Mass transport losses: they occur when high current is flowing through the cell

    during high loads.

    Crossover: the un-reacted fuel passes through the membrane and it is oxidized on

    the cathode without any real benefit for electrical production.

    72 High temperature fuel cellHigh temperature fuel cells are perfect to be combined with a cogeneration plant for

    industrial purposes, giving high temperature heat as a byproduct. They can work with

    different fuels such as Natural Gas converted by an internal reformer into hydrogen, carbon

    monoxide and dioxide. This kind of fuel cell can run with dirty fuels containing a lot of

    impurities, for example there has been studies at the Georgia Institute of Technology

    regarding the possibility to run SOFC (Solid Oxide Fuel Cells) with gasified coal. Otheradvantages of this type of fuel cells are the higher efficiencies, lower costs and longer term

    stability when compared with low temperature fuel cells.

    Working at high temperatures brings some serious problems concerning long startup times

    and hard thermal stresses on the components. For these reasons high temperature fuel cells

    are more suited for power generation combined with high temperature (high exergy)cogeneration (Galliani et a!, 2006). Instead low temperature fuel cells find betterapplications in portable electronic devices, automotive and small stand-alone micro-power

    generation systems.

    7.3 Hybrid systems: gas turbine and fuel cellAnother interesting application of high temperature fuel cells is their combination in gas

    turbines, replacing the normal combustor. Fuel cells need a source of cooling in all cases and

    the use of the excess heat to generate power in a Joule Brayton cycle is a natural

    consequence. This system is designed to reduce the losses due to normal combustion with

    high air excess, taking complete advantage of the chemical exergy in the fuel. To increase

    even more the efficiency of the plant the heat can be recovered from the flue gases coming

    from the turbine with a Heat Recovery Steam Generator. The steam produced can be used

    10

  • both to run a steam turbine and make more power, as a source of heat or to cool down afluid with an absorption cycle. This kind of complex plant working at full electric generationreaches efficiencies close to 70%, 10% more than the best available technology for normalcombined cycle (Campanari S. et al, 2002).

    7.4 Solid Oxide Fuel CellThese types of fuel cells are characterized by the use of a solid oxide as electrolyte usuallymade of ceramic material such as YSZ (Yttria Stabilized Zirconia). Instead the anode is madewith zirconia

    - nickel ceramic-metal, with the first component promoting the internalreforming and the second one inhibiting the nickel sinterization at high temperature. Theycan work flexibly with a wide range of sulphur-free fuels ranging from hydrogen to lighthydrocarbons. With a pre-reformer they can even work with normal heavy fuels such asgasoline, diesel or biofuels. Normal sandwich geometry Solid Oxide Fuel Cell stacks requirea few hours of start-up time, but new tubular geometries Solid Oxide Fuel Cell promise tolower this time down to a few minutes. The main advantage of these classes of fuel cells isthat they do not require expensive platinum based catalyst since they work at temperaturesapproaching 1000C and consequently they do not have problems with carbon monoxidepoisoning, though materials working at such high temperature are expensive (Groppi, 2011).

    7.5 Molten Carbonate Fuel CellThe electrolyte used in this fuel cell is a molten mixture of alkali metal carbonate held in aceramic matrix. At low temperature the electrolyte is not conductive, when the temperaturerises above 600-700C the material becomes highly ionic conductive. The unique feature,and disadvantage, of this fuel cell is the necessity of having C02 at the cathode side to makecarbonate ions. Carbon dioxide is recycled from the anode side and the flue gas from theanode is mixed with air to preheat it and oxidize the unreacted carbon monoxide andhydrogen.

    7.6 Internal reformingThe fuel fed to the fuel cells is usually natural gas which has to be converted to hydrogenand carbon monoxide via a steam reforming reaction. For example considering a natural gasmade with just methane:

    CH4 + H20 -* CO + 3H2

    11

  • We can have direct reforming where the catalyst, usually nickel, is spread directly on the

    anode, and indirect reforming where the reaction takes place separately close to the anode.

    Since this reaction is endothermic we need to provide thermal heat, this is usually done with

    the excess heat from the fuel cell itself. The steam needed comes from the combustion of

    hydrogen. Fuel cells with internal reforming are a technology which is still in a developing

    phase, white external reformers are a mature technology.

    7.7 Fuel cells versus traditional combustion engines and small gas turbines in cogeneration

    Presently, the open window for fuel cell as a commercial application in cogeneration is for

    systems under 2 MW, in this case fuel cells can be a great alternative to conventional power

    generation units. Combustion engines have great characteristics: they are cheap, reliable

    and efficient even at partial loads, but they are noisy and they make great amounts of

    pollutants. Small gas turbines with centrifugal compressor are not efficient and noise-free. A

    great advantage of fuel cells used in residential areas is the ability to produce electric power

    and heat with virtually zero-emissions of local pollutants such as carbon monoxide, NOx and

    soot. Fuel cells are stationary machines which require only pumps and fans as moving

    components, this unique characteristic enables them to work practically noiseless. Having

    high efficiencies Fuel Cells produce less carbon dioxide per energy unit produced. At the

    moment costs and lifetime limit the application of fuel cells but it is definitely a promising

    technology for the future.

    According to Casalegno (2010), fuel cells around 1-100 MW to be competitive in power

    generation, have to cut down their costs from 12 Ms/MW to 1.5 M$/MW, which is very hard

    to achieve. More research has to be done on fuel cells to get these systems on the market at

    a reasonable price. In contrary gas turbine, intrinsically more complicated from a thermo

    fluid-dynamic point of view, took the advantage of extensive research for military aviation

    (heavily financed by governments in the past).

    8. Exergy analysis

    Exergy combines the concept of energy and entropy. Exergy expresses the idea of the

    amount of work theoretically extractable from a fuel in a given environment at a certain

    temperature, pressure and composition. A system in equilibrium with the environment has

    an exergy equals to zero. Theoretically it would be possible from a fuel to produce an

    amount of work nearly equal to its calorific value with a reversible process where entropy is

    12

  • not generated. The real amount of work which can be produced has to take into accountexergy losses:

    W41rev Z EXiossesj = Teiiv Z LXS911j

    A very basic example regarding the use of 1kg of natural gas (chemical exergy approximately50Mi/kg) to heat a house at 20C with an ambient temperature of 0C can be made (Table8). Concluding:

    Burning natural gas in a gas-fired power plant making electricity to heat a house withan electric resistance is a thermodynamic disaster. A smarter way to use electricity toproduce heat consists of a heat pump.

    Burning the same amount of gas in a cogeneration unit close to the customer toproduce heat as a by-product and electricity to run a heat pump is the most efficientway to accomplish the same task.

    Burning the natural gas in a boiler on site to make heat is the cheapest way in termsof overall investment costs but it is very inefficient.

    The amount of exergy delivered in the cogenerative case is 3.6 times higher than the casewith no cogeneration and no heat pump. This can be easily explained with an exergyanalysis, taking into consideration that the heat is produced at a temperature close to theenvironment one. The greatest inefficiency is the one generated in the resistance,downgrading valuable electricity into low temperature heat. With a reversible process oneunit of electricity can be transformed in nearly 15 units of heat, though heat pumps do notreach such great conversions.

    Exergy losses are much easier to understand than entropy loss since it is something that canaffect directly the ability of the system to produce work. Exergy is closely related to themoney that will be spent for fuel. It is a useful tool to understand where improvement canbe made, measuring the efficiency of each power conversion step.

    9. Indices for trigeneration and cogenerationA trigeneration system can save energy (and money) to produce the same amount ofelectricity, heat and cold from the same source as compared to a separated generation of

    13

  • Sthese forms of energy. To evaluate this saving, it is common to use two specific indices: PES

    and first law efficiency (according to the European Ministry of Economic Development). PES

    stands for Primary Energy Saving index. it quantifies the energy saving obtained by a

    cogeneration system producing the same amount of electric and thermal energy as an

    electric power generation plant and a boiler

    tic

    PES (I )XjO()

    ______

    ______

    ___

    +

    ______

    ___

    1 1 11ci. rd trrid. rcf th. r

    In which:

    Efuel = energy coming from the fuel consumed

    Eei electrical energy produced

    Qrec thermal energy produced

    tleI = reference electrical efficiency

    flgrid,ref reference grid efficiency

    flth,ref reference thermal efficiency

    If the PES index of a cogeneration (or trigeneration) plant is greater than a certain value ( 10% in Italy), that plant gets the right of being considered cogenerative, then gets subsidies. A

    high efficiency utilization allows to produce some surplus energy (which is comparable as a

    renewable source) that otherwise would be wasted in a normal plant. This index can change

    for the same plant according to the reference efficiencies decided by the government. In

    fact, the reference electrical efficiency can be the efficiency of the Best Reference

    Technology (almost 60 % for Combined Cycles) or a national average among the power

    generation plants available (usually lower than 40%). Using high reference electrical

    efficiency lowers the value of PES. The reference grid efficiency is taken into account

    14

  • because a trigeneration system saves the energy related to the transport of electricity, sinceit is really close to the users. The reference thermal efficiency is usually fixed over 90 %.

    The first law efficiency comes from thermodynamic concept. It is computed as follows:

    PME + QIJPF

    In which:

    PME=total useful electric (or mechanical) power

    QU= total thermal power, net of losses due to heat transmission

    PF= total power coming from the primary energy source

    This is mainly for cogeneration systems, but can be applied to trigeneration systems as well.Of course it underestimates the overall efficiency of the trigenerative system, because itdoes not take into account the cooling part of the cycle.

    In Italy (AEEG, 2002), another index has to be computed before a plant can be consideredcogenerative: the Thermal Limit. It considers the ratio between thermal and total energyproduced:

    LTEe+Et

    = +

    In which:

    E= thermal energy sent to the users

    Ee electrical energy produced

    thermal energy sent to the civil use

    thermal energy sent to the industrial use

    In order to be considered as an effective cogeneration plant, the LT of the system has to begreater than 15 %.

    15

  • 10. Trigeneration and cogeneration now and in the future

    Trigeneration is not widely spread in the world at the moment because of costs and climate

    conditions. The investment necessary for such a technology is higher compared to other

    power plants (G. Lozza, 2006), because all the machines are more complicated than the

    usual sized ones. In cold countries a trigenerative system does not appear an interesting

    solution, because the requirement of cold is negligible. But even in these countries

    application of trigeneration could take place: in systems requiring comparable amounts of

    heat, electricity and cold, such as supermarkets.

    Trigeneration benefits the same subsidies given to cogeneration, because their development

    is strongly linked together. The support given by the government can be classified into four

    categories: special taxation, low interest loan, investment subsidy, and subsidy for new

    technology development. This reduction in taxation and subsidy policies will help

    trigeneration to become more cost competitive (Environment and Development Division,

    2000).

    Each country has a different policy to promote the application of cogeneration and

    trigeneration. For example, E. ON which is one of the worlds largest investor-owned power

    and gas companies in Germany supports cogeneration and trigeneration. According to their

    own press, under a nationwide support program, E. ON gives buyers of micro-CHP units a

    subsidy of 1000EUR, if they sign a gas supply contract with E.ON. UK also has subsidy policies

    for supporting cogeneration which can be applied to trigeneration market as well. It is

    estimated that about 1000 micro-CHP systems were in operation in the UK in 2002. Since

    2005, the UK government has cut the taxation from 17.5% to 5% for micro-CHP systems (E.

    ON, 2011).

    The National Energy Plan by the American Council for an Energy Efficiency Economy (ACEEE)

    has a specific chapter to promote CHP. This association estimates that an additional 95GW of

    cogeneration capacity could be added before 2020. It is expected that cogeneration and

    trigeneration will cover 29% of total power generation capacity according to ACEEE (Monty

    Goodell, 2006).

    In ASIA, many countries have also policies and plans to support cogeneration and

    trigeneration in the electrical network. For example, Japan supports 30% of the installation

    16

  • costs, and provides loans with low interest (2.3% per year). In large scale trigeneration andCogeneration plant, the government pays 15% of the investment, up to a maximum ofUS$5million (Environment and Development Division, 2000).

    Australia, a country in which coal has a large share in electricity production, has energy plansto reduce its emissions of greenhouse gases. For example, The Citys Sustainable Sydney2030 plan commits the city to produce by 2030 70% of the electricity from trigenerationusing natural and waste gas. Many projects have been undertaken to achieve the goal, andeven the city of New York is interested in this experiment (Sydney 2030 Plan, 2011).Governments are interested in promoting trigeneration to achieve Renewable penetration inpower generation. Europe, particularly Germany and England, are experiencing a hugeincrease in electricity production from wind energy which requires strong back up power inperiods of low wind (Eurostat, 2006). Remotely controlled distributed trigenerationapplications fuelled with natural gas will help this country to achieve high penetration ofrenewable sources in the grid.

    10.1 Pfizer Singapore API manufacturing facilityIn the past years Singapore has had problems caused by energy shortage

    - increases in sealevel and sudden changes in climate. Therefore, many companies in Singapore changed theirtraditional energy plants to cogeneration or trigeneration systems. Pfizer is also one of thosecompanies which, due to plant expansion, adopted a trigeneration system in 2008 (Figure10.1). This facility used a conventional system whose average power consumption was: 6.5MW Electricity bought from the grid, 5MW heat to produce steam with a gas fired boiler, and8.8MW of refrigeration power subtracted from chilled water via a normal refrigeration cycle.This systems first law efficiency was 65%, given by: the boilers thermal efficiency 85% andan average efficiency of 45% in a common gas fired generation plant (Pfizer Asia Pacific PteLtd, 2008).

    Now, this facility adopts a single integrated trigeneration system (Figure 10.2) whichcomprises: Gas Fired Turbine (5MW), Waste Heat Recovery Boiler (8MW) and AbsorptionChiller (9.1MW). Trigeneration improved energy efficiency compared to the old system, andits energy efficiency is almost 83% now. Figure 10.3 shows the comparison of thermalefficiency between these two systems.

    17

  • Using trigeneration system brought two more good impacts: reduction of electricity

    consumption adopting an absorption chiller and lower greenhouse gas emissions. 17 %

    reduction in C02 emissions, which corresponds to 5976 ton/year when compared to the old

    system. The higher efficiency is responsible for saving 587000 $/year in fuel cost, as shown in

    Table 10.1.

    11. Conclusions

    Trigeneration can be considered as one of the most environmentally friendly fossil fuel

    utilization. The overall efficiency is high, meaning that the ratio emissions/kWh is lower than

    other fossil fuel plants. Distributed power generation reduces the environmental impact

    caused by power lines. The application of trigeneration can easily help renewable energy to

    get into the market, supplying energy when the sun, wind or other are not available.

    Furthermore, with the improvement in fuel cell technology trigeneration will be even more

    appealing.

    The economic good point of a trigeneration system is represented by its operational costs.

    Its efficiency reduces the fuel required to produce the same amount of heat, electricity and

    cold compared to separate generation. In this way it offers a sort of surplus of energy from

    the same source with a resultant cost saving. This also brings to a low impact of a C02 tax on

    the economic balance of the plant. Even if natural gas is not the cheapest fuel, trigeneration

    will become more and more spread in the power generation market.

    18

  • 12. References

    1. AEEG, Delibera n. 42, AEEG, Italy, 19.03.20022. Baldini M., Simeoni P, Mattiussi A., Trigenerazione,farefreddo con ii ca/ore di

    scarto, Supplemento deIIinformatore agrario, 40/20083. B.C. Chung

    - Century Corporation Korea, Trend and application of absorptionchiller

    http://www.eurocooling.com/indexl.htm, read 20.10.20114. Campanari S., Macchi E. Future potentials of MTGs: hybrid CyCle5 and tn

    generation, in Micro Turbine Generators, ISBN 1-86058-391-1, pp. 43-66,Institution of Mechanical Engineers, England, 2002

    5. Campanari S. microcogenerazione e trigenerazione:come trasformare le opportunItin un mercato reale., Energy Department, Politecnico di Milano, 2007

    6. Casalegno Andrea, Fuel cell technology, Energy department, Politecnico di Milano,2010

    7. Chwieduk D, Pomierny W, Restuccia G, Freni A, De Boer R, Smeding S.F., Malvicino C.,Trigeneration in the tertiary sector, paper presented at the world renewable energycongress VIII, USA, 2004

    8. Environment and Development Division (EDD), Guidebook on Cogeneration as aMeans of Pollution Control and Energy Efficiency in Asia, pp. 49-63, 2000

    9. E.ON, E.ON supports micro cogeneration,http://www.eon.com/en/media/news-detail.jsp?id=10452, 22.07.2011

    10. European Environment Agency, EN2O Combined Heat and Power,http://www.eea.europa.eu/data-and-maps/indicators/en2O-combined-heat-and-power-chp, 01.04.2007 read 25th September

    11. European Ministry of Economic Development, Regulatory frameworkfor highefficiency cogeneration, Department of Energy, 2004

    12. Galliani A., Pedrocchi E., Exergy analasys, Polipress, ISBN 8873980252, 2006.13. Groppi Gianpiero Fuel cells, hand-outs from the course Fundamentals of Chemical

    Processes, Energy Department, Politecnico di Milano, 201014. Malico I., Carvalhinho A.P., Tenreiro J., Design of a trigenereration system using

    high-temperature fuel cell, International Journal of Energy Research, pp. 144-151,2009

    19

  • 15. Monty Goodell, M.B.A., Trigeneration, 2006

    http://cogeneration.net/Trigeneration.htm,, read 17.11.2011

    16. Pfizer Asia Pacific Pte Ltd. Trigeneration facility at Pfizer,

    http ://www. e2si ngapore.gov.sg/docs/Case_Study_of_Trigeneration_Project_in_Pfize

    r.pdf, 2008, read 1.11.2011

    17. PolyGeneration in Europe (Front Page Image), Trigeneration, 2011

    http://www.polygeneration.org/cms/front_content.php?idcat=77, read 11.11.2011

    18. Rayment C., Sherwin S.,lntroduction to Fuel Cell Technology, Department of

    Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, 2003

    19. Sileo Michele, The micro-combined heat and power production: A new way for

    energy saving, Ambiente e diritto, 2006

    20. Sydney 2030 Plan website,

    http://www.sydney2030.com.au/, 2011

    21. U.S. Department of Energy, Emissions from Energy Consumption at Conventional

    Power Plants and Combined-Heat-and-Power Plants,

    http://www.eia.gov/cneaf/electricity/epa/epat3p9.html, read 25.09.2011

    20

  • 13. Tables

    Flue gas NOx Co NoisePower; ;Buijder and model flow rate ppm ppm dB (A)(kW) (kg/s) (15% 02) (15% O) (10 m)

    Capstone C30 30 0.31

  • aConventional System

    Package Boiler

    Steam Pressure 8 Bar

    Steam Output 8 T/h

    NG Used(boiler@85% efficiency) 15120 mmBtu/mth

    CO2 Emission 0.19 kg/kWh

    CO2 Emission per month(Boiler) 826 T/mth

    Power from power station

    Power from Power Station 65 MW

    CO2 Emission (Average Power Station) 0.45 kg/kWh

    CO2 Emission per month (Power Station) 2106 T/mth

    Total CO2 Emission per month 2932 T/mth

    (Conventional)Trigeneration System

    Power generated 4.6 MW

    Steam generated from Trigen 11 T/h

    TriGen Output (Electricity + Steam) 12.4 MW

    CO2 Emission 0.22 Kg/kWh

    9

    CO2 Emission per month(Trigeneration) 2045 T/mth

    Power from Power Station

    Power from Power Station (less 0.7MW 1.2 MW

    from Absorption Chiller)CO2 Emission (Average Power Station) 0.45 kg/kWh

    CO2 Emission per month (Power Station) 389 T/mth

    Total CO2 Emission per month 2434 T/mth

    (Trigeneration)

    Table 10.1 Pfizer C02 emissions (Pfizer Asia Pacific Pte Ltd, 2008)

    22

  • 14. Figures

    Energy demand

    rJ.

    JanMonth

    Heat Load Electricity o Coldness

    Figure 3 Typical annual energy demand for a warm country (S. Campanari, 2007)

    p

    2 JHii /

    V

    (U0-4

    Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

    Figure 4.la: Pressure - Volume chart Joule Brayton cycle (M. Sileo, 2006)

    23

  • 4T

    1

    3

    4

    0 regenerated

    S

    Figure 4.lb Temperature Entropy chart Joule Brayton cycle(M. Sileo, 2006)

    Figure 6 Absorption Chiller Cycle (B.C. Chung)

    t

    pup,

    2I

    Condenser

    Absorbertooling Mode

    24

  • Voltage

    EV

    ccv

    Ass transporttosses

    h

    Figure 7.1 Fuel Cell Losses (Casalegno, 2010)

    Figure 10.1 Pfizer Facility (Pfizer Asia Pacific Pte Ltd, 2008)

    Ideal colt voltage

    -

    Actual no-current cell voltage

    -__--.

    Kinetic Losses

    Ohmic Losses

    II* Current

    25

  • I4

    Figure 10.2 Pfizer Trigeneration System (Pfizer Asia Pacific Pte Ltd. 2008)

    Figure 10.3 Efficiency comparison between conventional and trigeneration system in Pfizer

    (Pfizer Asia Pacific Pte Ltd, 2008)

    Fuel Input

    26

  • I