12 1989 Shaft Stress

Embed Size (px)

DESCRIPTION

12 1989 Shaft Stress

Citation preview

  • 4BENTLYROTOR DYNAMICS

    ORBIT December1989

    __ ~) ShaftCenterLINESRESEARCH CORPORATION

    FigureIRotatingshaftcircularsynchronous(IX)orbitingarounda neutralaxisataconstantspeed.Constantstressinshaftfibers.

    By Dr.AgnesMuszynskaSeniorResearchScientist

    BentlyRotorDynamicsResearchCorporation

    This articlediscussesrotorlat-eral vibrations and radial

    preload-related rotor dis-placementsas a source oflow andhighcyclefatigueof

    rotormaterial.

    The availability of vibration trans-ducersandvibrationmDnitoringsystemscreatedundisputableawarenessofvibra-tion levelsin machinery.Vibrations ofrotorsandof other machineparts,suchas blades, couplings, pedestals andcasings,occurasasideeffectof themaindynamicmode, namelyshaft rotation.Due to the existenceof severalphysicalmechanisms,part of the rotativeenergybecomestransferredinto the energyofvibration at various modes.The rotor

    itself,thecarrierof therotativeenergy,ismostpronetovibrationalmotion.Vibra-tionsof othermachineelementsareusu-

    ally secondaryto the rotor. They aretransmittedfrom therotor.Shaftlateral

    vibrationsareamongthemostdamagingandoftendestructivevibrationalmodes.

    Vibration monitoringsystems,whicharenowwidelyusedon machinery,havecreatedanoverallimpressionthatvibra-tions are unwelcome and that the

    vibrationlevelon machineryshouldbekept aslow aspossible.This philosophygenerallyholds true.There is, however,onecatch.

    A horrorstory"Our machineshaveverylowvibration

    levels;' the maintenance technician

    __ NEUTRAL AXIS

    SHAFT

    PRECESSION (ORBITING)

    WlTH FREQUENCY w

    of a chemical plant told us proudly."Since we installedthe vibration mon-

    itoringsystem,wecanmonitorandcontrolvibrations.If the vibration level is too

    high,wesimplypreloadtheshaftbymis-aligning it within the machine train,until vibration sufficiently decreases.

    No vibration,no problem!"

    COUNTERCLOCKWlSE ROTATION

    'MTH FREQUENCY W

    HIGH SPOT

    1 ROTAllON I TIME

  • ONE ORBITING PERIOD

    December1989

    Twomonthslater,thistechnicianwasverysurprisedwhen,subsequently,theshaftsin twomachinesbroke,creatingamajordisasterfortheplant.Why?Therewasnobadvibrationandyettheshaftsbroke?

    ShaftstressThis unfortunatetechnicianover-

    looked one important aspect.Themachineshaftnotonlyvibrates;theshaftalsorotates.Thus,theshaft'sdynamicmotionhastwoimportantcomponentswhichcontributetoshaftmaterialstress.Shaftbreakageis duetoeitherstressinthematerialexceedingtheultimatelimitorduetolowcycleorhighcyclefatigue.In thenextsectionswewillexplainhowto correlateshaftvibrationand shaftmaterialstress.

    Theleastdamagingmode:Shaftlateralsynchronousvibrationaroundaneutralaxis

    Synchronous(IX) lateralvibrationsof rotatingshaftsare mainlydue tounbalance.Evenwell-balancedshaftsexperiencesomeresidualsynchronousvibration in two orthogonallateraldirections(e.g,horizontalandvertical),

    ONE ROTATION

    ORBIT

    whichare perpendicularto the shaftaxis.The resultingshaftmodeis repre-sentedbythefamiliarorbiting.FigureIillustratestheinstancewheretherotat-ingshaft'sIX orbitiscircular.Thecon-ventionofthedrawingisasfollows:Theorbitis,in fact,muchsmallerthantheshaftradius.Imagine,however,thatthecirclesdonotrepresenttheentireshaftcrosssections,but just tiny portionsaroundtheshaftcenter.The stressattheshaftsurfacewillberoughlypropor-tional to the stressat the surfaceofthesetinycircles.Sincetheconsidera-tionsherearequalitative,thisconven-tionprovidessatisfactoryresults.

    When the shaftvibrationmodeispurelysynchronousandtheorbitiscir-culararoundaneutral(nostress)axis,then,ata constantrotativespeed,partof the shaft fibers are constantlystretched.Another part is constantlycompressed.Themoststretchedsectionoccursattheshafthighspot.If theIXvibrationamplitudeis not large,themaximumstressremainswithin anacceptableconstantlevel.Althoughshaftvibrationis alwaysunwelcome,this synchronouscircular vibrationmodearoundthe neutralaxisis lessdamagingtotheshaft.

    COUNTERCLOCKWISE ROTATION

    WITI-i FREQUENCY W

    ElUPTICAL 1X ORBIT

    TIME

    5

    Preloadeffect:Periodicallyvariablestress

    Assumethat the unbalancedshaft,rotatingat a constantspeed,is pre-loadedbyaconstantradialforce.Suchforcecanbegenerated,for instance,byamisalignment,bygravityonhorizontalrotorsorbyaradialpumpingsideload,suchasin asinglevolutepump.In thiscase, the shaft centerlinebecomesdeformedand thusput understress,roughlyproportionalto the preload-resultingdisplacement(Figure2).Dueto thecombinationof rotationandIXorbiting,theshaftfibersareperiodicallystretchedandcompressed.Thus, thedisplacementof theshaftneutralaxisresultsin muchmoresevereconditionsontheshaft.EvenasmallIX vibrationamplitude(asmeasuredbyaproximityprobe)andsomeshaftpreload-relateddisplacement(also measuredby theproximityprobe as the dc gap) mayresult in significantlyhigh reversal,cyclicstressin theshaft.

    Thisperiodicvariablestress(withIXfrequency)leadstomaterialfatigue,tolowcyclefatiquewhenstressamplitudesare largeand to highcyclefatique~

    ~I

    -+-

    TIME

    Figure2Preloadedrotatingshaft:displacedIX orbitexhibitsamoreellipticalshape.Shaftfibersareunderreversalcyclicstress.

    Figure3Shaftstressduringwhipconditions.Whipfrequency=1/4rotativefrequency.Shaftstressfrequency= 3/4rotativespeedfrequency.

  • 6cyclefatigueresultswhenthe ampli-tudesaresmaller.Thelowcyclefatigueoccursrelativelyquicklydue to non-linearplasticdeformations.The highcyclefatiguerequiresmanymorecyclesof reversalstress(of108to 109range)todamagetheshaftmaterial.Thenumber108seemstobeaverylarge.Calculate,however,howmanycyclesa machinemakeswhilecontinuouslyoperatingataconstantspeedof3600rpm.In only500hoursof operation,thenumberof IXfrequencyreversalstresscyclesreaches1.08X 108.Therefore,in abouttwentydaysthe highcyclefatigueconditionsmayeasilyoccur.This mayresult inshaftcrackingandbreakage.

    Othercasesof shaftstress

    Highor lowcyclefatigueconditionsmayresultfromeither(1) a largepre-load andsmallvibrationas discussedabove,(2)a largevibrationof thenon-synchronoustypeor (3) a largevibra-tiontogetherwithasmallpreload.

    In thecaseof highpreload-resultingdisplacementof the shaftcenterline,thefrequencyof shaftreversalstressisalwaysIX for anyvibrationpatternoftheshaft,if thedisplacementis larger

    ORBIT

    thanthevibrationamplitude(peak).

    In thecaseof largenonsynchronousvibrationsof the shaftwith no initialdisplacement,the reversalstressfre-quencycanbeestimatedastheabsolutevalueof thedifferencebetweenvibra-tion androtativefrequencieswith therelativedirectionsofrotationandorbit-ingtakenintoaccount.Thus,if therotoris in forwardwhipconditionwithsub-synchronousfrequencyl/4X, theshaftwillbecyclicallystressedwithfrequency3/4X(Figure3).If theshaftoperatesatits halt-balanceresonancespeed,andtheorbithasa IX andasignificant2Xforwardcomponent,then, the shaftstresswillhaveIX frequency(Figure4).The rub-relatedself-excitedbackwardvibrations("drywhip")withfrequency,for instance,twicehigherthanrotativespeed,result in 3X frequencyshaftreversalstress(Figure5). In thiscase,however,therubbingdamagewillmostprobablyoccurmuchearlierthananyfatiguedamage.

    Theunbalance-relatedIX shaftvibra-tionsseldomresultin circularorbits.Asymmetryofstiffnessandotherparam-etersin twoorthogonaldirectionsof theshaftitself,as well as the supporting

    December 1989

    structure,usuallycausestheIX orbitstobeelliptical.FortheellipticalIX orbits,theshaftstresshasapulsatingcharacterwithfrequency2X (Figure6).Pulsatingstressoccursalsointheshaft,vibratinginthecircularorbitmodewithashaftcen-teronlyslightlydisplaced(Figure7).

    Shaftmode

    The shaft-observingproximitytrans-ducersareusuallymountedat,or nextto,bearings.At themachineoperatingspeed,theselocationsmightbe verycloseto nodalpointsat whichlateralvibrationsdo notoccur.The anticipa-tionof theactualshaftvibrations,andlocationof theanti-nodal,highampli-tudevibrationsectionsshouldbebasedonmodalconsiderations.Twomils(5011m)of shaftvibrationat the bearingmaytranslateinto50mils(127011m)atmid-spanof the rotor.On the otherhand,thesetwomilsatthebearingmaybe accompaniedbythemisalignment-relatedpreloadandhighreversalstressin theshaft.The axiallocationof thepreloadforcein considerationof thevibration mode shapessignificantlyaffectsthe shaft stressdistribution.Additionalstressconcentrationfactorsalongthe shaft,suchas press-fitted

    TIME

    SHAFT

    ORBIT

    SHAFTORBIT

    Figure4Orbit, consistingof IX and a significant2Xcomponent,resultsin shaftstressfrequencyIX.

    Figure5Rotor/sealbackward"drywhip"orbitwith2Xfrequencyresultsin 3Xfrequencyreversalstressontheshaft.

  • December 1989

    partsor diameterdiscontinuities,mayjeopardizethe shaft conditionevenmore.

    Diagnosisusingvibrationmonitoringwarnsaboutshafthigh stress

    The casesdiscussedaboveindicate.thattheshaftstressconditionscanbeeasily predicted if the machine isequippedwith a vibrationmonitoringsystembasedon shaftobservingdis-placementproximitytransducers.Theadvantageof theuseof displacementtransducers,as opposedto VelocitySeismoprobesand accelerometers,consistsof theabilitytomeasureshaftstatic(zerofrequency)displacements,i.e,theshaftcenterlineposition,aroundwhichvibrationtakesplace.Changesinshaftstressconditionsdependnotablynot onlyon thevibrationlevel,tradi-tionallyconsideredas the main andoftenonlycauseof machineproblems,butalsoontheshaftcenterlineposition.The latter should be continuouslyobservedandcorrelatedwiththeshaftvibrationlevelin ordertoavoidprema-turestress-relateddamageofrotors.

    ORBIT

    ShaftcrackingShaftcrackinitiationmayhavevar-

    iousorigins,suchascorrosion,materialirregularity,and/orinclusions,etc.Interms of mechanicalperformance,thesematerialdefectsactasstresscon-centratingfactors.Theshaftstressisthemajor reasonthat crackspropagate;thus,highstresspreventionbecomesanimportanttask to maintainmachineintegrity.The earlydetectionof shaftcrackingbyusingvibrationmonitoringequipmenthasbeendescribedin sev-eralpublications[1-4].

    Closing remarksNo easilyapplicableandwidely-used

    directstressmeasuringinstrumentationisavailableasitexistsforvibrationmon-itoring.Shaft stressduringmachineoperationhasbecomesomehowhiddenand forgotten;it represents,l).owever,the major sourceof potential cata-strophicfailuresof machines.Thepur-pose of this article is to swaythevibration-orientedto a shaft stress-orientedphilosophy,by showingthecorrelationbetweenshaftvibrationandstress.

    7

    References

    1:BentlyNevadaPublicationsonShaftCrackDetection.

    2.Bently,D.E., Muszynska,A.,DetectionofRotorCracks.Pro-ceedingsofTexasA&M University15thTurbomachinerySymposiumandShortCourses.CorpusChristi,Texas,November10to13,1986,pp.129-139.

    3.Bently,D.E., Muszynska,A. EarlyDetectionofShaftCracksonFluid-HandlingMachines.ProceedingsofASME InternationalSymposiumonFluidMachineryTroubleShoot-ing.1986WinterAnnualMeeting,Anaheim,California,December7to12,1986,.pp.53-58.

    4.Bently,D.E.,Muszynska,A.,Thomson,A. S.,VibrationMon-itoringTechniquesandShaftCrackDetectiononReactorCoolantPumpsandRecirculationPumps.EPRI WorkshoponReactorCool-antPumpRecirculation.PumpMonitoringSymposium,Toronto,Ontario,Canada,March29to31,1988.

    SHAFT

    ORBIT

    TIME 1 ROTATION TIME

    Figure6IX elliptical orbit causes shaft pulsating stress withfrequency2X.

    Figure7IX circular orbit with slightlydisplacedcentercausesshaftpulsatingstresswithfrequencyIX.