12. Cartesian Coordinate Geometry and Straight Lines-1

Embed Size (px)

Citation preview

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    1/65

    Mathematics

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    2/65

    Cartesian Coordinate Geometry

    And

    Straight Lines

    Session

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    3/65

    1. Cartesian Coordinate system and

    Quadrants2. Distance formula3. Area of a triangle4. Collinearity of three points5. Section formula

    6. Special points in a triangle7. Locus and equation to a locus8. Translation of axes - shift of

    origin9. Translation of axes - rotation of

    axes

    Session Objectives

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    4/65

    Ren Descartes

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    5/65

    Coordinates

    XX

    Y

    Y

    O

    Origin

    1 2 3 4

    +ve direction

    -1-2-3-4

    -ve direction

    -1

    -2

    -3

    -ve

    direction

    1

    2

    3

    +ve

    directio

    n

    X-axis : XOX

    Y-axis : YOY

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    6/65

    Coordinates

    XX

    Y

    Y

    O

    1 2 3 4-1-2-3-4

    -1

    -2

    -3

    1

    2

    3

    (2,1)

    (-3,-2)

    Ordinate

    Abcissa

    (?,?)

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    7/65

    Coordinates

    XX

    Y

    Y

    O

    1 2 3 4-1-2-3-4

    -1

    -2

    -3

    1

    2

    3

    (2,1)

    (-3,-2)

    Ordinate

    Abcissa

    (4,?)

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    8/65

    Coordinates

    XX

    Y

    Y

    O

    1 2 3 4-1-2-3-4

    -1

    -2

    -3

    1

    2

    3

    (2,1)

    (-3,-2)

    Ordinate

    Abcissa

    (4,-2.5)

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    9/65

    Quadrants

    XX O

    Y

    Y

    III

    III IV

    (+,+)(-,+)

    (-,-) (+,-)

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    10/65

    Quadrants

    XX O

    Y

    Y

    III

    III IV

    (+,+)(-,+)

    (-,-) (+,-)Q : (1,0) lies in which Quadrant?

    Ist? IInd?

    A : None. Points which lie on the axes do not lie in anyquadrant.

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    11/65

    Distance Formula

    x1

    XX

    Y

    O

    Y

    x2

    y1

    y2

    N PQN is a right angled .

    PQ2= PN2+ QN2

    2 22 1 2 1PQ x x y y

    y2-y1

    (x2-x1)

    PQ2= (x2-x1)2+(y2-y1)

    2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    12/65

    Distance From Origin

    Distance of P(x, y) from theorigin is

    2 2x 0 y 0

    2 2

    x y

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    13/65

    Applications of Distance Formula

    Parallelogram

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    14/65

    Applications of Distance Formula

    Rhombus

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    15/65

    Applications of Distance Formula

    Rectangle

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    16/65

    Applications of Distance Formula

    Square

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    17/65

    Area of a Triangle

    XX

    Y

    O

    Y A(x1, y1)

    C(x3, y3)

    B(x2,y2

    )

    M L N

    Area of ABC =

    Area of trapezium ABML + Area of trapezium ALNC- Area of trapezium BMNC

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    18/65

    Area of a Triangle

    XX

    Y

    O

    YA(x

    1

    , y1

    )

    C(x3, y3)

    B(x2,y2

    )

    M L N

    Area of trapezium ABML + Area of trapezium ALNC- Area of trapezium BMNC

    1 1 1BM AL ML AL CN LN BM CN MN2 2 2

    2 1 1 2 1 3 3 1 2 3 3 21 1 1

    y y x x y y x x y y x x2 2 2

    1 1

    2 2

    3 3

    x y 11

    x y 12

    x y 1

    Sign of Area : Points anticlockwise +ve

    Points clockwise -ve

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    19/65

    Area of Polygons

    Area of polygon with points Ai(xi, yi)

    where i = 1 to n

    2 21 1 n 1 n 1 n n

    3 32 2 n n 1 1

    x yx y x y x y1. . .

    x yx y x y x y2

    Can be used to calculatearea of Quadrilateral,

    Pentagon, Hexagon etc.

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    20/65

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    21/65

    Collinearity of Three Points

    Method II :

    Use Area of Triangle

    A (x1, y1)

    B (x2, y2)

    C (x3, y3)

    Show that1 1

    2 2

    3 3

    x y 1

    x y 1 0

    x y 1

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    22/65

    Section Formula Internal Division

    XX

    Y

    O

    Y

    L N M

    H

    K

    Clearly AHP ~ PKBAP AH PH

    BP PK BK

    1 1

    2 2

    x x y ym

    n x x y y

    2 1 2 1mx nx my nyP ,m n m n

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    23/65

    Midpoint

    Midpoint of A(x1, y1) and B(x2,y2)

    m:n 1:1

    1 2 1 2x x y yP ,2 2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    24/65

    Section Formula External Division

    XX

    Y

    O

    Y

    L N M

    H

    K

    Clearly PAH ~ PBKAP AH PH

    BP BK PK

    1 1

    2 2

    x x y ym

    n x x y y

    2 1 2 1mx nx my nyP ,m n m n

    P divides AB externally in ratio m:n

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    25/65

    Centroid

    Intersection of medians of atriangle is called the centroid.

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,

    2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    Centroid isalways denotedby G.

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    26/65

    Centroid

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    Consider points L, M, N dividing AD, BEand CF respectively in the ratio 2:1

    2 3 2 31 1

    x x y yx 2 y 2

    2 2L ,1 2 1 2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    27/65

    Centroid

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    Consider points L, M, N dividing AD, BEand CF respectively in the ratio 2:1

    1 3 1 32 2

    x x y yx 2 y 2

    2 2M ,1 2 1 2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    28/65

    Centroid

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    Consider points L, M, N dividing AD, BEand CF respectively in the ratio 2:1

    1 2 1 23 3

    x x y yx 2 y 2

    2 2N ,1 2 1 2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    29/65

    Centroid

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    1 2 3 1 2 3x x x y y yL ,3 3

    1 2 3 1 2 3x x x y y yM ,3 3

    1 2 3 1 2 3x x x y y yN ,3 3

    We see that L M N G

    Medians areconcurrent at thecentroid, centroiddivides medians in

    ratio 2:1

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    30/65

    Centroid

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF G

    2 3 2 3x x y yD ,2 2

    1 3 1 3x x y yE ,2 2

    1 2 1 2x x y yF ,2 2

    1 2 3 1 2 3x x x y y yL ,3 3

    1 2 3 1 2 3x x x y y yM ,3 3

    1 2 3 1 2 3x x x y y yN ,3 3

    We see that L M N G

    Centroid

    1 2 3 1 2 3x x x y y y

    G ,3 3

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    31/65

    Incentre

    Intersection of angle bisectors of atriangle is called the incentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF I

    Incentre isthe centre ofthe incircle

    Let BC = a, AC = b, AB = c

    AD, BE and CF are the angle

    bisectors of A, B and Crespectively.

    BD AB b

    DC AC c

    2 3 2 3bx cx by cyD ,b c b c

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    32/65

    Incentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF I

    BD AB b

    DC AC c

    2 3 2 3bx cx by cyD ,

    b c b c

    AI AB AC AB AC c bNow,

    ID BD DC BD DC a

    2 3 2 31 1

    bx cx by cyax b c ay b c

    b c b cI ,

    a b c a b c

    1 2 3ax bx cxIa b c

    Similarly I can be derivedusing E and F also

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    33/65

    Incentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF I

    BD AB b

    DC AC c

    2 3 2 3bx cx by cyD ,

    b c b c

    AI AB AC AB AC c bNow,

    ID BD DC BD DC a

    2 3 2 31 1

    bx cx by cyax b c ay b c

    b c b cI ,

    a b c a b c

    1 2 3ax bx cxIa b c

    Angle bisectors areconcurrent at the incentre

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    34/65

    Excentre

    Intersection of external anglebisectors of a triangle is calledthe excentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF

    E

    Excentre isthe centre ofthe excircleEA= Excentre opposite A

    1 2 3 1 2 3A

    ax bx cx ay by cyE ,

    a b c a b c

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    35/65

    Excentre

    Intersection of external anglebisectors of a triangle is calledthe excentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF

    E

    Excentre isthe centre ofthe excircleEB= Excentre opposite B

    1 2 3 1 2 3B

    ax bx cx ay by cyE ,

    a b c a b c

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    36/65

    Excentre

    Intersection of external anglebisectors of a triangle is calledthe excentre

    A(x1, y1)

    B(x2, y2) C(x3, y3)D

    EF

    E

    Excentre isthe centre ofthe excircleEC= Excentre opposite C

    1 2 3 1 2 3C

    ax bx cx ay by cyE ,

    a b c a b c

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    37/65

    Cirumcentre

    Intersection of perpendicularbisectors of the sides of a triangleis called the circumcentre.

    OA = OB = OC

    = circumradius

    A

    B

    C

    O

    The above relation gives twosimultaneous linear equations. Theirsolution gives the coordinates of O.

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    38/65

    Orthocentre

    Intersection of altitudes of a triangleis called the orthocentre.

    A

    B C

    H

    Orthocentreis always

    denoted by H

    We will learn to findcoordinates of Orthocentre

    after we learn straight linesand their equations

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    39/65

    Cirumcentre, Centroid andOrthocentre

    The circumcentre O, Centroid G and

    Orthocentre H of a triangle arecollinear.

    O

    H

    G

    G divides OH in the

    ratio 1:2

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    40/65

    Locus a Definition

    The curve described by a point

    which moves under a given conditionor conditions is called its locus

    e.g. locus of a point having a

    constant distance from a fixed point:

    Circle!!

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    41/65

    Locus a Definition

    The curve described by a point

    which moves under a given conditionor conditions is called its locus

    e.g. locus of a point equidistant from

    two fixed points :

    Perpendicular bisector!!

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    42/65

    Equation to a Locus

    The equation to the locus of a point

    is that relation which is satisfied bythe coordinates of every point on thelocus of that point

    Important :A Locus is NOTanequation. But it isassociated with an

    equation

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    43/65

    Equation to a Locus

    Algorithm to find the equation to a

    locus :

    Step I : Assume the coordinatesof the point whose locus is to befound to be (h,k)

    Step II : Write the given conditions in mathematicalform using h, k

    Step III : Eliminate the variables, if any

    Step IV : Replace h by x and k by y in Step III. Theequation thus obtained is the required equation to locus

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    44/65

    Illustrative Example

    Find the equation to the locus of

    the point equidistant fromA(1, 3) and B(-2, 1)

    Let the point be P(h,k)

    PA = PB (given)

    PA2= PB2

    (h-1)2+(k-3)2= (h+2)2+(k-1)2

    6h+4k = 5equation of locus of (h,k) is 6x+4y = 5

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    45/65

    Illustrative Example

    A rod of length l slides with its

    ends on perpendicular lines. Findthe locus of its midpoint.

    Let the point be P(h,k)

    Let the

    lines be the axesLet the rod meet the axes at

    A(a,0) and B(0,b)

    h = a/2, k = b/2

    Also, a2+b2= l2

    4h2+4k2= l2

    equation of locus of (h,k) is 4x2+4y2= l2

    B(0,b)

    A(a,0)O

    P(h,k)

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    46/65

    Shift of Origin

    XX

    Y

    O

    Y

    O(h,k)

    P(x,y)

    x

    yX Y

    Consider a point P(x, y)

    Let the origin be shifted toO with coordinates (h, k)relative to old axes

    Let new P (X, Y)x = X + h, y = Y + k

    X = x - h, Y = y - kO (-h, -k) with reference to new axes

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    47/65

    Illustrative Problem

    Show that the distance between two

    points is invariant undertranslation of the axes

    Let the points have vertices

    A(x1, y1), B(x2, y2)

    Let the origin be shifted to (h, k)

    new coordinates : A(x1-h, y1-k), B(x2-h, y2-k)

    2 21 2 1 2Old dist. (x x ) (y y )

    2 21 2 1 2& New dist. (x h x h) (y h y h)

    = Old dist.

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    48/65

    Rotation of Axes

    XX

    Y

    O

    YP(x,y)

    x

    y

    Consider a point P(x, y)

    Let the axes be rotatedthrough an angle .

    Let new P (X, Y) make

    an angle with the newx-axis

    xcos ,R

    ysin ,R

    Y

    sin ,R

    X

    cosR

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    49/65

    Rotation of Axes

    xcos ,R

    ysin ,R

    Y

    sin ,R

    X

    cosR

    xcos cos sin sin

    R

    ysin cos cos sin

    R

    X Y x

    cos sinR R R

    X Y ysin cos

    R R R

    x X cos Y sin

    y X sin Y cos

    X x cos y sin

    Y y cos x sin

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    50/65

    Class Exercise

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    51/65

    Class Exercise - 1

    If the segments joining the points

    A(a,b) and B(c,d) subtend an angle

    at the origin, prove that

    2 2 2 2ac bd

    cosa b c d

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    52/65

    Solution

    On simplifying,

    2 2 2 2ac bd

    cos a b c d

    Let O be the origin.

    OA2= a2+b2, OB2= c2+d2, AB2= (c-a)2+(d-b)2

    Using Cosine formula in OAB, we have

    AB2= OA2+OB2-2OA.OBcos

    2 2 2 2 2 2 2 2 2 2c a d b a b c d 2 a b c d cos

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    53/65

    Class Exercise - 2

    Four points A(6,3), B(-3,5), C(4,-2)and D(x,3x) are given such that

    Find x.DBC 1

    ABC 2

    Given that ABC = 2DBC

    6 3 1 x 3x 1

    3 5 1 2 3 5 1

    4 2 1 4 2 1

    6 5 2 3 4 3 1 6 20 2 x 5 2 3x 4 3 1 6 20 2 28x 14 49

    4928x 14

    2

    11 3x or x

    8 8

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    54/65

    Class Exercise - 3

    If a b c, prove that (a,a2), (b,b2)and (c,c2) can never be collinear.

    Let, if possible, the three points becollinear.

    2

    2

    2

    a a 11b b 1 0

    2c c 1

    R2R2-R1, R3R3- R22

    2 2

    2 2

    a a 1

    b a b a 0 0

    c b c b 0

    2a a 1

    b a c b 1 b a 0 0

    1 c b 0

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    55/65

    Solution Cont.R2R2-R3

    2a a 1

    b a c b 0 a c 0 0

    1 c b 0

    b a c b c a 0

    This is possible only if a = b or b = c or c = a.

    But a b c. Thus the points can never be collinear.

    Q.E.D.

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    56/65

    Class Exercise - 4

    Three vertices of a parallelogramtaken in order are (a+b,a-b),(2a+b,2a-b) and (a-b,a+b). Find thefourth vertex.

    Let the fourth vertex be (x,y).

    Diagonals bisect each other.

    a b a b 2a b x a b a b 2a b y

    and2 2 2 2

    the required vertex is (-b,b)

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    57/65

    Class Exercise - 5

    If G be the centroid of ABC and Pbe any point in the plane, prove that

    PA2+PB2+PC2=GA2+GB2+GC2+3GP2.

    Let A (x1,y1), B (x2,y2), C (x3,y3), P (p,0)

    LHS = (x1-p)2+y1

    2+(x2-p)2+y2

    2+(x3-p)2+y3

    2

    = (x12+y12)+(x22+y22)+(x32+y32)+3p2-2p(x1+x2+x3)

    =GA2+GB2+GC2+3GP2

    =RHS

    Choose a coordinate system such that G isthe origin and P lies along the X-axis.

    Q.E.D.

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    58/65

    Class Exercise - 6

    The locus of the midpoint of the portionintercepted between the axes by the

    line xcos+ysin= p, where p is aconstant, is

    2 2 2

    2 2 2

    2 2

    2 2 2 2

    1 1 4(a) x y 4p (b)

    x y p

    4 1 1 2(c) x y (d)p x y p

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    59/65

    Solution

    Let the line intercept at theaxes at A and B. Let R(h,k) bethe midpoint of AB.

    p pR h,k ,2 cos 2 sin

    p psin , cos

    2k 2h

    2 2

    2 2

    p p1

    4k 4h 2 2 2

    1 1 4Locus

    x y p

    Ans : (b)

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    60/65

    Class Exercise - 7

    A point moves so that the ratio of itsdistance from (-a,0) to (a,0) is 2:3.Find the equation of its locus.

    Let the point be P(h,k). Given that

    2 2

    2 2

    h a k 2

    3h a k

    2 2

    2 2

    h a k 4

    9h a k

    2 2 2

    2 2 2

    h 2ah a k 4

    9h 2ah a k

    2 2 25h 26ah 5k 5a 0

    2 2 2

    the required locus is

    5x 26ax 5y 5a 0

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    61/65

    Class Exercise - 8

    Find the locus of the point such thatthe line segments having end points

    (2,0) and (-2,0) subtend a right angleat that point.

    Let A (2,0), B (-2,0)Let the point be P(h,k). Given that

    2 2 2PA PB AB

    2 2 22 2h 2 k h 2 k 2 2 2 22h 2k 8 16

    2 2

    the required locus is

    x y 4

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    62/65

    Class Exercise - 9

    Find the coordinates of a point where theorigin should be shifted so that the equation

    x2+y2-6x+8y-9 = 0 will not contain terms inx and y. Find the transformed equation.

    Let the origin be shifted to (h,k). The given equation becomes(X+h)2+(Y+k)2-6(X+h)+8(Y+k)-9 = 0

    Or, X2+Y2+(2h-6)X+(2k+8)Y+(h2+k2-6h+8k-9) = 0

    2h-6 = 0; 2k+8 = 0 h = 3, k = -4.

    Thus the origin is shifted to (3,-4).

    Transformed equation is X2+Y2+(9+16-18-32-9) = 0

    Or, X2+Y2= 34

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    63/65

    Class Exercise - 10

    Through what angle should the axesbe rotated so that the equation11x2+4xy+14y2= 5 will not haveterms in xy?

    Let the axes be rotated through anangle . Thus equation becomes

    2

    2

    11 X cos Y sin 4 X cos Y sin X sin Y cos

    14 X sin Y cos 5

    Solution :

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    64/65

    Solution Cont.

    Therefore, the required angle is

    cos 2 sin 2 cos sin 0 1

    tan or tan 22

    1 11tan or tan 22

    2 2

    2 2

    2 2

    Or, 11cos 4 sin cos 14 sin X

    4 cos 6 sin cos 4 sin XY

    11sin 4 sin cos 14 cos 5

    2 22 cos 3 sin cos 2 sin 0

  • 8/13/2019 12. Cartesian Coordinate Geometry and Straight Lines-1

    65/65

    Thank you