22
Cytoskeltal Motors

14965_L 9 Myosin (1)

Embed Size (px)

Citation preview

Page 1: 14965_L 9 Myosin (1)

Cytoskeltal Motors

Page 2: 14965_L 9 Myosin (1)

Network of long protein strands located in the cytosol not surrounded by membranes

Consist of microtubules and microfilaments

Microfilaments protein threads of actincell movement and muscle contraction

Microtubules : help in movement of organelle around made up of tubulin

longest strands of cytoskeletonmake up spindle fibers (role in mitosis and meiosis)

 

Page 3: 14965_L 9 Myosin (1)

Cytoskeletal motors

Motor  proteins  utilizing  the cytoskeleton for movement  fall  into  two  categories  based  on their substrates: •Actin motors such  as  myosin  move long microfilaments through  interaction with actin.•Microtubule motors  such  as  dynein  and kinesin  move  along microtubules  through interaction with tubulin.

Page 4: 14965_L 9 Myosin (1)

Cytoskeletal motors

– Myosin is responsible for muscle contraction

– Kinesin moves cargo inside cells away from the nucleus along microtubules track.

– Dynein transports cargo along microtubules towards the cell nucleus.

Page 5: 14965_L 9 Myosin (1)

MYOSIN MOTORS

Page 6: 14965_L 9 Myosin (1)

Structure of a Muscle Cell• Vertebrate muscle that is under voluntary control 

has  a  banded  (striated)  appearance  when examined under a microscope.

• It  consists  of  multinucleated  cells  that  are bounded by plasma membrane.

• A  muscle  cell  contains  many  parallel  myofibrils, each about 1 mm in diameter.

• The functional unit, called a sarcomere, typically repeats every 2.3 mm (23,000 Å) along  the fibril axis in relaxed muscle

Page 7: 14965_L 9 Myosin (1)

Structure of Muscle Cell

Page 8: 14965_L 9 Myosin (1)

Structure of a Muscle Cell

Page 9: 14965_L 9 Myosin (1)

Skeletal muscle myofibril showing asingle sarcomere

• A dark A band and a light I band alternate regularly. The central region of the A band, termed the H zone, is less dense that the rest of the band. The I band  is bisected by a very dense, narrow Z line.

Page 10: 14965_L 9 Myosin (1)

Sarcomere

• A  sarcomere  of  a  myofibril  consists  of  two kinds of interacting protein filaments. 

• The  thick filaments have diameters of about 15 nm (150 Å) and consist primarily of myosin.

• The  thin filaments have diameters of approximately 9 nm (90 Å) and consist of actin as well as  tropomyosin and the troponin complex.

Page 11: 14965_L 9 Myosin (1)

Skeletal muscle myofibril showing asingle sarcomere

Page 12: 14965_L 9 Myosin (1)

Sliding-Filament Model

• Muscle  contraction  is  achieved  through  the sliding  of  the  thin  filaments  along  the  length of the thick filaments, driven by the hydrolysis of ATP . 

Page 13: 14965_L 9 Myosin (1)

Sliding-Filament Model• Tropomyosin and the  troponin complex regulate 

this sliding in response to nerve impulses. • Under resting conditions, tropomyosin blocks the 

intimate interaction between mysosin and actin.• A nerve  impulse  leads  to  an  increase  in  calcium 

ion concentration within the muscle cell. • A component of the troponin complex senses the 

increase in calcium and, in response, relieves the inhibition  of  myosin  -  actin  interactions  by tropomyosin.

Page 14: 14965_L 9 Myosin (1)
Page 15: 14965_L 9 Myosin (1)

Thick Filament: Myosin head domains at each end and a relatively narrow central region

Interaction of thick and thin filaments in skeletal-muscle contraction

Page 16: 14965_L 9 Myosin (1)

Actin Is a Polar, Dynamic Polymer

• Actin  monomers  (often called  G-actin for globular) come together to form actin filaments (F-actin filament).

• The  structure  is  polar,  with discernibly  different  ends. One end is called the barbed (plus)  end,  and  the  other  is called  the  pointed  (minus) end.

Page 17: 14965_L 9 Myosin (1)
Page 18: 14965_L 9 Myosin (1)

Myosin Power Stroke

• Individual  myosin  heads  bind  the  actin  filament and undergo a conformational change (the power stroke) that pulls the actin filament. 

• After a period of time,  the myosin head  releases the actin, which then snaps back into place.

• The complete cycle of ATP-binding, hydrolysis, and phosphate release is called the "power stroke" cycle

Page 19: 14965_L 9 Myosin (1)

• All myosins are composed of a globular catalytic head domain, a converter and a lever arm.

• Conformational changes in the catalytic head are amplified  by  the  lever  arm  during  the  ATPase cycle through an ~ 70° rotation of the lever arm.

Page 20: 14965_L 9 Myosin (1)

The 'powerstroke' cycle of (+)-end-directed myosins. (Myosin II, Myosin V motor)

Myosin motors are plus end motors

Page 21: 14965_L 9 Myosin (1)

Step 1: At the end of the previous round of movement and the start of the next cycle, the myosin head lacks a bound ATP and it is attached to the actin filament in  a  very  short-lived  conformation  known  as  the  'rigor  conformation'.

Step 2: ATP-binding to the myosin head domain  induces a small conformational shift  in  the  actin-binding  site  that  reduces  its  affinity  for  actin  and  causes  the myosin  head  to  release  the  actin  filament.  

Step 3: ATP-binding also causes a large conformational shift in the 'lever arm' of myosin  that  'cocks'  the  head  into  a  position  further  along  the  filament.  ATP  is then hydrolysed, but the inorganic phosphate and ADP remain bound to myosin.

Step 4: The myosin head makes weak contact with the actin filament and a slight conformational change occurs on myosin that promotes the release of inorganic phosphate.

Step 5: The  release  of  inorganic  phosphate  reinforces  the  binding  interaction between myosin and actin and subsequently triggers the 'power stroke'. 

Step 6: As myosin regains its original conformation, the ADP is released, but the 

myosin head remains tightly bound to the filament at a new position from where it started, thereby bringing the cycle back to the beginning.

           The complete cycle of ATP-binding, hydrolysis, and phosphate release is called

the "power stroke" cycle

Page 22: 14965_L 9 Myosin (1)

Refer to following link for animation:

http://highered.mcgraw-hill.com/sites/0072495855/student_view0/

chapter10/animation__breakdown_of_atp_and

_cross-bridge_movement_during_muscle_c

ontraction.html