1504 Pr Electrondevices

Embed Size (px)

Citation preview

  • 8/9/2019 1504 Pr Electrondevices

    1/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 1

    Electron Devices Simulation with

    CST STUDIO SUITE™  Richard Cousin, CST

  • 8/9/2019 1504 Pr Electrondevices

    2/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 2

    Brief History, principles of Vacuum Tubes

    Electron Guns (Generation of electron beam sources)

    Amplifiers (TWT)

    Oscillators (Magnetron)

    Relativistic devices

    High Power Microwave tubes

    VIRCATOR

    MILO

    Overview

  • 8/9/2019 1504 Pr Electrondevices

    3/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 3

    Brief History of Vacuum Devices

    1883 Thermo-electronicemission (T. A. EDISON) Light emissio

    1895X-Rays (W. ROENTGEN) Radiology

    1896First Wireless Telegraph (G. MARCONI)

    1907TRIODE (Lee DE FOREST)

    1939KLYSTRON (VARIAN Brothers)

    1940

    MAGNETRON (BOOT, RANDALL, WILLSHAW

    1942TWT (R. KOMPFNER)

    1970HPM (VIRCATORS-BWO

    90s-00MILO-RKO-RELRelativistic Devices

    ConventionalDevices

  • 8/9/2019 1504 Pr Electrondevices

    4/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 4

    MESFET

    10-1

    10 

    105

    10-2

    104

    107

    106

    103

    102

    .1  1  10  100  1,000  10,000 

    Frequency (GHz)

       A  v  e  r  a  g  e   P  o  w  e  r   (   W   )

    Klystron

    Helix TWT

    Gridded Tubes

    CFA Gyrotron

    BWOFEL

    TWT

    Vacuum Devic

    BJT

    SIT

    Power Device Technology

    FET

    HEMT

    Solid State Devices

  • 8/9/2019 1504 Pr Electrondevices

    5/42 

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 5

    Classification of Electron Devices

    Conventional Devices(Amplifiers – Oscillators) Relativistic Devic(HPM)

    Emission process Thermionic Explosive

    Pulse duration• Continuous•

     Pulse > 100 µs

    • Transient•

     100s of ns

    Output Power < 100 MW 100 MW < P < 10 G

    ApplicationsIndustrial, Medical, Space

    (embedded devices)Military

    Research activiti

  • 8/9/2019 1504 Pr Electrondevices

    6/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 6

    Principle of Vacuum Tubes

    • A vacuum tube is an electron device in which an electron beam isinteracting with an electromagnetic wave

    • The energy is transferred from the e-beam to the EM-wave

    Power Source

    E-beam creation

    Interaction Process

    RF in

    (Amplifiers)

    RF out

    (Amplifiers - Oscillator

    DissipatedPower

  • 8/9/2019 1504 Pr Electrondevices

    7/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 7

    Electron Gun: Generation of e-beams

    Pierce Gun Magnetron Injection Gun(MIG)

    Cold emissiongenerating inten

    hollow beams

  • 8/9/2019 1504 Pr Electrondevices

    8/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 8

    Electron Gun: PIERCE

    • Thermionic emission (I = µV3/2)• Space charge and Temperature limited• Solid beam formation• Focusing electrodes• Low current emission (< 1A)

    Space charge iterations

  • 8/9/2019 1504 Pr Electrondevices

    9/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 9

    Electron Gun: Cold emission

    • Space charge limited emission•

     Hollow beam formation• Focusing electrodes• High current emission (several kA)

    Space charge iterations

  • 8/9/2019 1504 Pr Electrondevices

    10/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 10

    Amplifiers(Traveling Wave Tubes – TWT)

  • 8/9/2019 1504 Pr Electrondevices

    11/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 11

    Amplifiers: Principles

     B

    • Longitudinal static magnetic field applied (e-beam focusing)•

     Interaction into Slow Wave Structures (SWS)• The electron velocity modulation creates bunches• The electron kinetic energy is converted into RF-Energy• The Static B-Field doesn’t contribute to the interaction process 

  • 8/9/2019 1504 Pr Electrondevices

    12/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 12

    Slow Wave Structure geometry

    • Helical structure of 40 turns

    • The first and 4 last turns are embedded in resistive couplers

    • Turns 4-36 constitutes the linear gain region

    • The RF signal is introduced at turn 4 and analyzed through thedifferent voltage probes

    50 mm

  • 8/9/2019 1504 Pr Electrondevices

    13/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 13

    Eigenmode solver @ 5 GHz

    • Two different algorithm (AKS, JDM)

    • Display the 3D-EM field inside the structu

    • Take into account the lossies

    • Perform Q-factor calculations

  • 8/9/2019 1504 Pr Electrondevices

    14/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 14

    Study of 1 period of the SWS

  • 8/9/2019 1504 Pr Electrondevices

    15/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 15

    Dispersion Diagram

    TW

    BW

  • 8/9/2019 1504 Pr Electrondevices

    16/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 17

    Synchronism conditions in the SWS

    Evidence of e-beam modulation

    • If electron velocity = phase vno global energy transfer occurbecause the energy transferredEM wave amplified is equal thetransferred to the electron beathe EM slow wave.

    • If the electron velocity is sligover the phase velocity of the some EM power is transferred m

    from the e-beam to the RF-stru

    Ve > V 

    Evidence of the Travelling Wave

  • 8/9/2019 1504 Pr Electrondevices

    17/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 18

    Evidence of the Travelling WaveAmplification process at 5 GHz

  • 8/9/2019 1504 Pr Electrondevices

    18/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 19

    RF In RF OutSlow Wave Structure

    Particle Beam

    More complex TWT geometry

    50 period folded waveguide for broadbandtravelling wave tube application

  • 8/9/2019 1504 Pr Electrondevices

    19/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 21

    Particle Trajectory (hot test)

    • Simulation performed with the self-consistent particle incell (PIC) solver of CST PARTICLE STUDIO®

    • Interaction of wave and particle beam becomes evidentdue to velocity modulation towards TWT end

  • 8/9/2019 1504 Pr Electrondevices

    20/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 22

    Output signals (hot test)

    RF In RF Out

    GAIN

    Simulated 20.24 dB

    Pierce small signal theory 20.9 dB

  • 8/9/2019 1504 Pr Electrondevices

    21/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 24

    Oscillators(Magnetrons)

  • 8/9/2019 1504 Pr Electrondevices

    22/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 25

    Oscillators: Principles

    RF Window

     B

    • Crossed-Field Devices• The External Static B-Field is perpendicuthe E-Field components• The synchronism condition is defined by geometry which fixes the single operatingfrequency• The electron drift velocity (E/B) equals tphase velocity of the slow EM-wave• The static B-field participates to the inteprocess• The interaction is leading to so-called “sformation

  • 8/9/2019 1504 Pr Electrondevices

    23/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 26

    Magnetron Structure

    Dimensions:rc=0.57 cm ra=1.92 cm rv=3.42 ch = 7.2 cm

    Angle = 20°Number of Vanes = 6

    Modified Version of the MIT A6Magnetron Small aspect ratio rc/(ra-rc) =  ∏- Mode favourable

    [1] J. Benford, J. A. Swegle, E. Schmiloglu, „High Power Microwaves“, 2nd Edition, Taylor & Franc[2] A. Palevsky and G. Bekefi, „Microwave Emission from Pulsed Relativistic Beam Diodes. II. The

    multiresonator magnetron.“, Phys. Fluids, 22, 986, 1979.[3] H.W. Chen, C. Chen, „Numerical Studies of Relativistic Magnetrons“, PFC/JA-92-34, 1992.

  • 8/9/2019 1504 Pr Electrondevices

    24/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 27

    Eigenmode Simulation

    Cold Test: Interaction prediction

    ∏-Mode 2∏-Mode

  • 8/9/2019 1504 Pr Electrondevices

    25/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 28

    Applied Voltage & Resulting E-Field

    Applied Voltage Potential

    E-Static Field

    • Voltages are applied as CST EM STUDIO®sources

    • Corresponding routines are calledautomatically internally by PIC solver

  • 8/9/2019 1504 Pr Electrondevices

    26/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 29

    • The Static B-Field is calculated to allow magnetic insulation andsynchronism condition in the magnetron structure

    • There exists a cutoff condition to allow magnetron oscillation

    Predefined B-Field

    T r 

    e

    m B

    a

    c

    a

     H   17.01

    22

    1

    2

    2

     

      

     

     H  B B  leads to the magnetronoscillation

    l f l d

  • 8/9/2019 1504 Pr Electrondevices

    27/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 30

    PIC Simulation of Closed Structure

    Stabilized Signal

    One distinct peak @ ∏–Mode

    f hot

     = 3.7 GHz

    Field recorded with field probe in one position

    PIC Si l i f Cl d S

  • 8/9/2019 1504 Pr Electrondevices

    28/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 31

    Particle Trajectory

    Spoke Formation according to ∏-Mode Interaction

    PIC Simulation of Closed Structure

    M t S l L Fil

  • 8/9/2019 1504 Pr Electrondevices

    29/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 32

    Magnetron: Solver LogFile

    Number of Meshcells 2

    Number of Particlesmax

    Number of Particlessteady state

    Time CPU 2h 5

    Time GPU 4

    Speed Up Factor

    New Feature V.2012GPU acceleration with PIC solve

  • 8/9/2019 1504 Pr Electrondevices

    30/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 33

    Relativistic Devices(Vircator & MILO)

    Relativistic Devices for HPM applications

  • 8/9/2019 1504 Pr Electrondevices

    31/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 34

    Relativistic Devices for HPM applications

    • Technologies based on Classical devices with higher output power (range

    of GW output power)

    • Usually driven by high voltage generator (hundreds of kVs)

    • Explosive emission cathode (velvet-like coating)

    • Limited microwave pulse (hundreds of ns)

    • Operating frequency in GHz frequency range

    Vircator structure

  • 8/9/2019 1504 Pr Electrondevices

    32/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 35

    wavegfor

    mon

    elefp

    emission surfaces

    Particle Trajectory

    Vircator structure

    Vircator results

  • 8/9/2019 1504 Pr Electrondevices

    33/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 36

       E  -   f   i

      e   l   d  s  p  e  c

       t  r  u  m

       /   [   k   V   /  c  m

       ]

    f/GHz

    [email protected]

       O  u

       t  p  u

       t  p  o  w  e  r   /

       G   W

     

    t/ns

    Power>1GW

    A. Santos, B.S. Araújo Filho, J. J. Barroso, H. S.Maciel, „Microwave Generation by a VirtualCathode Enclosed in a Circular Cavity PlacedTransversally in a Cylindrical Waveguide“,Proceedings of the 9th IEEE International VaccumElectronics Conference (IVEC), Monterey, USA, 2008

    Vircator results

       E  -   f

       i  e   l   d

      a   t

      p  r  o

       b  e

       /   [   k   V

       /  c  m

       ]

    t/ns

    Magnetically Insulated Line Oscillator (MILO)

  • 8/9/2019 1504 Pr Electrondevices

    34/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 37

    Collector

    Anode SWS(4 coupled cavi

    Cathode

    Magnetically Insulated Line Oscillator (MILO)

    Similar to a linearrelativistic magnetron

    [1] R. Cousin et al, „Gigawatt Emission from a 2.4 GHz compact Magnetically InsulatOscillator (MILO)“, IEEE Transactions on Plasma Science, Vol. 35, No. 5, Oct. 20

    Slow Wave Structure Eigenmodes

  • 8/9/2019 1504 Pr Electrondevices

    35/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 38

    Er 

    Ez 

    Pi-mode configuration at 2.45 GHz

    Transverse Magnetic mode (TM01)

    Possible interaction with an e-beam propagating along thecathode structure

    Slow Wave Structure Eigenmodes

    Slow Wave Structure Eigenmodes

  • 8/9/2019 1504 Pr Electrondevices

    36/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 39

    Er 

    Ez 

    Pi-mode configuration at 2.68 GHz

    Hybrid Electro-Magnetic mode (HEM11)

    Possible interaction with an e-beam propagating along thecathode structure in Pi-mode

    Slow Wave Structure Eigenmodes

    Dispersion Diagram

  • 8/9/2019 1504 Pr Electrondevices

    37/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 40

    Dispersion Diagram

    TM01 

    TM02 

    HEM11 

    HEM21 

       F  r  e  q  u  e  n  c  y

    Phase

    • Phase velocity depends only on the geometry parameters.

    In an oscillator particles have to be in exact synchronism. The main Mointeraction depends on the geometry

    Diagnostics and Sources

  • 8/9/2019 1504 Pr Electrondevices

    38/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 41

    Diagnostics and Sources

    Voltage sourceexcites a ramped

    voltage

    Excitation function

    Field probesCurrent monitorVoltage

    monitor

    Waveguidfor abso

    MILO Operating Frequency

  • 8/9/2019 1504 Pr Electrondevices

    39/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 42

    MILO Operating Frequency

    Signals recordedwith field probes

    50 ns needed for stable RF oscillations

    2 compeeting modes as predicted inCousin et al

    Main interaction in PI-mode of theTM01 mode

    Smaller peak belongs to PI-mode

    configuration of HEM11 mode

    MILO oscillating regime

  • 8/9/2019 1504 Pr Electrondevices

    40/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 44

    MILO oscillating regime

    MILO oscillation at 2.48 GHzon first TM mode 

    First TM mode cutoff at 1.68 GHz

    TM extraction through the outputwaveguide

    2.6 GW peak output power

    Particle Trajectory

  • 8/9/2019 1504 Pr Electrondevices

    41/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 45

    Particle Trajectory

    Spoke formationaccording to PI-Mode

    Summary/Conclusions

  • 8/9/2019 1504 Pr Electrondevices

    42/42

     

    www.cst.com | CST EuMW 2011 Presentations| October 2011 | 46

    Summary/Conclusions

    CST STUDIO SUITE™ can handle 

    Electron Devices simulation Amplifiers/Oscillators

    Cold and hot test facilities

    GPU acceleration with PIC solver (New in V.2012)

    Only one model necessary which can be exchanged CST EM STUDIO® for analysis of static EM fields

    CST PARTICLE STUDIO® for any kind of particle tracking

    CST MICROWAVE STUDIO® for dispersion analysis and S-

    parameter simulations of couplers and tubes