157883-000-CG-VT-0001

Embed Size (px)

Citation preview

  • 8/13/2019 157883-000-CG-VT-0001

    1/214

    E&C Cry og en i cs Standard P lan ts

    Nitrogen Generation Unit APSA L1)Training documentation

    Peru LNG

    157883-000-CG-VT-0001

  • 8/13/2019 157883-000-CG-VT-0001

    2/214

    Generic part1

    stDay

    Welcoming introduction

    Process introduction

    Summary and training program philosophy

    Nitrogen Generation Unit systemic presentation

    PFD & PID

    Compression modulePurification module

    2sd

    Day

    Heat Exchange module

    Distillation module

    Cold Production module

    Mass balance

    Safety : CnHm risks, safely operation

    Operation training3rd Day

    Process control overview

    Start-up and shutdowns

    Deriming / Drying & exceptional regeneration

    Main control loops

    Alarms and trips

    Operating manual

    R01/R02 timing

    Supervision in steady conditions

    Trouble shooting

    quiz Operators questions and answers

    Taining - PERU LNGNitrogen Generation Uni t

  • 8/13/2019 157883-000-CG-VT-0001

    3/214

    1PERU LNG 2009

    PRESENTATIONPRESENTATIONPRESENTATION

  • 8/13/2019 157883-000-CG-VT-0001

    4/2142PERU LNG 2009

    1. Generalities

    1.1. Nitrogen On-Site Supply System

    N2 Production (Nm3/h)

    Bulk SupplyBulk Supply

    10100 1000 10000

    100%

    99.9%

    95%

    SPISPISmall MembranesSmall Membranes

    AMSAAMSALarge MembranesLarge Membranes

    APSA LAPSA L

    APSA LEAPSA LELargeLarge CryoCryo..

    High PurityHigh Purity

    LINLIN

    APSAAPSASmallSmall CryoCryo..

    N2 purity

  • 8/13/2019 157883-000-CG-VT-0001

    5/2143PERU LNG 2009

    1. Generalities

    1.2. APSA L /LE : Process and Markets

    ChemicalsChemicals

    RefineriesRefineriesGlassGlass

    APSAAPSA--LL

    GlassGlassAPSAAPSA--LCLC

    APSAAPSA--LELE ElectronicsElectronics

    Classic

    7-10 barA N2

    Claude Cycle

    2-3 barA N2

    Booster Re-cycle

    Ultra High Purity

  • 8/13/2019 157883-000-CG-VT-0001

    6/2144PERU LNG 2009

    1. Generalities

    1.3. Air Separation Unit (ASU) Inlet & Outlet

    Air

    SeparationUnit

    PRODUCTS:

    O2, N2, Ar(gas or liquid)

    SOURCE :

    Atmospheric Air

    WASTE NITROGEN

  • 8/13/2019 157883-000-CG-VT-0001

    7/2145PERU LNG 2009

    1. Generalities

    1.4. Raw material composition

    OXYGENNITROGENARGON

    HELIUMNEON

    KRYPTONXENON

    HYDROGENSTEAM

    CARBON DIOXIDE

    HYDROCARBONS {

    O2N2Ar

    HeNeKrXeH2

    H2O

    CO2CH4

    20,9 %78,1 %0,93 %

    5,24 ppm18,18 ppm1,139 ppm0,086 ppm0,5 ppm

    variable300 700 ppm

    3 5 ppm

    ELEMENTS SYMBOLCOMPOSITION

    IN VOLUME

    < 0.5 ppmC2+

    Principal

    Rare gas

    Impurities

  • 8/13/2019 157883-000-CG-VT-0001

    8/2146PERU LNG 2009

    1. Generalities

    1.5. Cryogenic production stages ?

    DISTILLATIONCOMPRESSION

    PURIFICATION

    HEAT

    EXCHANGE

    COLD

    PRODUCTION

  • 8/13/2019 157883-000-CG-VT-0001

    9/2147PERU LNG 2009

    1. Generalities

    1.6. Cryogenic production modular approach

    COMPRESSION

    PURIFICATION

    HEAT

    EXCHANGE

    DISTILLATION

    COLD

    PRODUCTIONResidual Gas

    GASEOUS

    PRODUCTS

    LIQUID

    PRODUCTS

    Air

  • 8/13/2019 157883-000-CG-VT-0001

    10/214

    8PERU LNG 2009

    1. Generalities

    1.7. Plants Modules Overview

    COMPRESSION

    PURIFICATION

    COLD PRODUCTION

    HEAT

    EXCHANGE

    DISTILLATION

  • 8/13/2019 157883-000-CG-VT-0001

    11/214

    9PERU LNG 2009

    1. Generalities

    1.8. APSA L : Global Scheme

    Nitrogen recoveryNitrogen recovery 40%40%

    APSA LAPSA L

    GANGAN

    Residual GasResidual Gas

    AIRAIR

    LINLIN

  • 8/13/2019 157883-000-CG-VT-0001

    12/214

    10PERU LNG 2009

    1. Generalities

    1.9. APSA L : Process Cycle

    Gaseous N2to customer

    Liquid N2to backup

    Residual Enriched Gas (>35% O2)

    Cooling WaterPower Civil Works

    R01 R02

    D01

    Compression Purification Cold Production Heat Exchange Distil lation

    Air

    inlet

    C01

    K01

  • 8/13/2019 157883-000-CG-VT-0001

    13/214

    1PERU LNG - 2009

    AIR PURIFICATIONAIR PURIFICATIONAIR PURIFICATION

  • 8/13/2019 157883-000-CG-VT-0001

    14/214

    2PERU LNG - 2009

    TO REMOVE THE VARIOUS AIR CONTAMINANTS IN ORDER TOPREVENT TROUBLES IN APSA UNITS:

    TEMPERATURE ~ -180C

    TO REMOVE THE VARIOUS AIR CONTAMINANTS IN ORDER TOPREVENT TROUBLES IN APSA UNITS:

    TEMPERATURE ~ -180C

    WATER (air moisture)WATER (air moisture)

    Carbon Dioxide CO2Carbon Dioxide CO2

    Hydrocarbons CnHmHydrocarbons CnHm

    Nitrous oxide (N2O)Nitrous oxide (N2O)

    Air Purification OBJECTIVESOBJECTIVESOBJECTIVES

    Ai P ifi i

  • 8/13/2019 157883-000-CG-VT-0001

    15/214

    3PERU LNG - 2009

    Purification requirementsPurificationPurification requirementsrequirements

    - unit corrosion

    - plugging (pipes, exchangers, column) by solidification

    due to cryogenic temperature (0C / ice)

    - unit corrosion

    - plugging (pipes, exchangers, column) by solidification

    due to cryogenic temperature (0C / ice)

    WATER

    - plugging (pipes, exchangers, column) by solidif ication

    due to cryogenic temperature (-130C / solid CO2)

    - plugging (pipes, exchangers, column) by solidification

    due to cryogenic temperature (-130C / solid CO2)

    O

    - explosion r isk in the vaporizers with oxygen enrichedatmosphere (Rich Liquid, Oxygen)

    - explosion risk in the vaporizers with oxygen enrichedatmosphere (Rich Liquid, Oxygen)

    nHm

    - explosion risk with CnHm- explosion risk with CnHm O

    Air Purification

    Ai P ifi ti

  • 8/13/2019 157883-000-CG-VT-0001

    16/214

    4PERU LNG - 2009

    Air CompositionAir Composition Inlet Comp.Inlet Comp. Inlet Comp.Inlet Comp. PurifPurif. Outlet. Outlet

    NormalNormal PeakPeak MaxMax allowaballowab

    N2 Nitrogen 78.11 %O2 Oxygen 20.96 %

    Ar Argon 0.93 %

    H2O Water saturation

    CO2 Carbon Dioxide 350 450 ppm 600 ppm 0.1 ppmCnHm Hydrocarbons < 0.1 ppm 0.5 ppm

    Ne Neon 18 ppm

    He Helium 5.2 ppm

    CH4 Methane 1 6 ppm 15 ppm 8 ppmKr Krypton 1.139 ppm

    H2 Hydrogen 0.5 ppm

    Xe Xenon 0.086 ppm

    + other natural or industr ial impurities : hydrocarbons,CO, H+ other natural or industrial impurities : hydrocarbons,CO, H22S, NOS, NO22 ..........

    Air Composition / Air ContaminantsAir Composition / Air ContaminantsAir Composition / Air Contaminants

    Air Purification

    Ai P ifi ti

  • 8/13/2019 157883-000-CG-VT-0001

    17/214

    5PERU LNG - 2009

    Contaminant-free

    Air

    Air with

    contaminants:

    H2O, CO2,CnHm

    OBJECTIVES:

    ELIMINATION OF WATER IN VAPOUR FORM

    ELIMINATION OF CARBON DIOXIDE CO2

    ELIMINATION OF HYDROCARBONS EXCEPTMETHANE CH4 and some other CnHm

    OBJECTIVES:

    ELIMINATION OF WATER IN VAPOUR FORM

    ELIMINATION OF CARBON DIOXIDE CO2

    ELIMINATION OF HYDROCARBONS EXCEPTMETHANE CH4 and some other CnHm

    Air passes through upward a vesselequipped with two specific materials:

    -ALUMINA: to trap water molecules

    - MOLECULAR SIEVE: to trap CO2 and

    Hydrocarbon molecules

    Air passes through upward a vessel

    equipped with two specific materials:

    -ALUMINA: to trap water molecules

    - MOLECULAR SIEVE: to trap CO2 and

    Hydrocarbon molecules

    ALUMINA:

    WATER

    MOLECULAR

    SIEVE:

    CO2, CnHm

    Process presentationProcessProcess presentationpresentationAir Purification

    Ai P ifi ti

  • 8/13/2019 157883-000-CG-VT-0001

    18/214

    6PERU LNG - 2009

    TheADSORPTION process occurs

    in 2 steps:

    - first, an attraction of the

    molecules to the adsorbent

    - then, a diffusion of the

    molecules into the pores where

    they are fixed (or trapped).

    TheADSORPTION process occurs

    in 2 steps:

    - first , an attraction of the

    molecules to the adsorbent

    - then, a diffusion of the

    molecules into the pores where

    they are fixed (or trapped).Adsorbent

    Pores

    ATTRACTION

    DIFFUSION/

    FIXATION

    Molecules

    ALUMINA and MOLECULAR SIEVE

    are solid materials in the form ofporous particles of 2 to 5 mm

    diameter: they are called

    ADSORBENTS.

    ALUMINA and MOLECULAR SIEVE

    are solid materials in the form of

    porous particles of 2 to 5 mm

    diameter: they are called

    ADSORBENTS.

    Adsorption ProcessAdsorptionAdsorption ProcessProcessAir Purification

    Air Purification

  • 8/13/2019 157883-000-CG-VT-0001

    19/214

    7PERU LNG - 2009

    Reversible Process : Adsorption & Desorption

    Adsorption increases (the amount of

    adsorbed molecules increases) when:

    the pressure increases

    the temperature decreases

    Adsorption increases (the amount of

    adsorbed molecules increases) when:

    the pressure increases

    the temperature decreases

    ADSORPTION IS A REVERSIBLE PROCESS:

    if the pressure decreases or if the temperature increases, theadsorbed molecules will be able to leave the pores of the adsorbentparticles: this is the Desorption of the adsorbent.

    (also called Regeneration)

    ADSORPTION IS A REVERSIBLE PROCESS:

    if the pressure decreases or if the temperature increases, theadsorbed molecules will be able to leave the pores of the adsorbentparticles: this is the Desorption of the adsorbent.

    (also called Regeneration)

    Thus, for a fixed adsorbent quantity, we design a cyclic processwith alternating phases: adsorption/desorption.

    we can play with the temperature: TSA cycle (TemperatureSwing Adsorption)

    we can play with the pressure: PSA cycle (Pressure SwingAdsorption).

    Thus, for a fixed adsorbent quantity, we design a cyclic processwith alternating phases: adsorption/desorption.

    we can play with the temperature: TSA cycle (TemperatureSwing Adsorption)

    we can play with the pressure: PSA cycle (Pressure SwingAdsorption).

    AdsorbedAdsorbedphasephase

    GaseousGaseousphasephase

    SolidSolid

    Adsorption ProcessAdsorptionAdsorption ProcessProcessAir Purification

    Air Purification

  • 8/13/2019 157883-000-CG-VT-0001

    20/214

    8PERU LNG - 2009

    The name of Adsorbents designates porous solid materials.

    Their main characteristic is a maximum surface (active zone for the adsorptionprocess) in a small

    volume: we define the specific area.

    Adsorbents come in different forms:- spherical balls- cylindrical pellets- irregular crushed particles

    Chimical

    formula

    Specific

    area

    m2/g

    Pore diameter

    Angstrm

    (10-10

    m)

    ACTIVATEDCARBON

    C 800 to 1500 40 to 5000

    ALUMINA AL2O3 300 to 350 10 to 40

    MOLECULAR

    SIEVE:

    Type A, Type X

    SiO2, Na2OCaO, K2O

    900 3 to 10

    Each gram of product

    particle has a surface

    equivalent to a tennis

    court

    Adsorbent characteristicsAdsorbentAdsorbent characteristicscharacteristicsAir Purification

    S fAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    21/214

    10PERU LNG - 2009

    Affinity (Adsorbent / Molecule) depends on :

    The type of adsorbent: presence of attraction field diameter of the pores

    The type of adsorbent:presence of attraction fielddiameter of the pores

    The type of molecule: their physical and chemical characteristics determine the intensity of the

    adsorbent attraction: so, we designate

    molecules strongly attracted (with electrical moment)and molecules weakly attracted (neutral molecules) the size of the molecules must be smaller than the diameter of the pores:

    thus, nitrogen molecule is able to pass into a 4 pore, but not into a 3 pore.

    The type of molecule:their physical and chemical characteristics determine the intensity of the

    adsorbent attraction: so, we designatemolecules strongly attracted (with electrical moment)and molecules weakly attracted (neutral molecules)

    the size of the molecules must be smaller than the diameter of the pores:thus, nitrogen molecule is able to pass into a 4 pore, but not into a 3 pore.

    Adsorbed molecules

    ACTIVATED CARBONOil vapour:

    Hydrocarbons C2 and C3 typesALUMINA H2O

    MOLECULAR

    SIEVE

    C2H2, NO2, CO2, H20

    Selectivity of the processSelectivitySelectivity of theof the processprocessAir Purification

    Ch iCh i ff d bd b tAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    22/214

    11PERU LNG - 2009

    The function of the adsorption process for an APSA unit is to trap in vapour form

    the air contaminants such as water, carbon dioxide CO2 and hydrocarbons, beforefeeding the cold box.

    To trap water, knowing that air is always saturated after compression process, thechoice indifferently could be molecular sieve or alumina.

    We prefer alumina for the following reasons:

    - alumina is less sensitive to the possible presence of liquid water particles- the temperature of regeneration process for alumina is colder:

    around 40C for alumina, 250C for molecular sieve

    To trap CO2, the only choice is molecular sieve.

    The same for hydrocarbons, mainly made up of acetylene C2H2:it is not possible to trap methane CH4 by the adsorption process.

    MOLECULAR SIEVECO2, C2H2

    MOLECULAR SIEVECO2, C2H2

    ALUMINAH2O

    ALUMINAH2O

    Choice of adsorbentsChoiceChoice ofof adsorbentsadsorbentsAir Purification

    Ad ti W tAd ti W t llAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    23/214

    12PERU LNG - 2009

    Saturated zone front Clean zone

    ADSORPTION

    DESORPTION (REGENERATION)

    END OF DESORPTION (REGENERATION)

    Dry gas

    Saturated Gas

    Saturated Gas Dry gas

    Adsorption: Water analogyAdsorption: WaterAdsorption: Water analogyanalogyAir Purification

    I t ll ti d iI t ll ti d iI t ll ti d iAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    24/214

    13PERU LNG - 2009

    The design of the installation is a combination with two types of adsorbents:

    first , compressed air passes through a bed of alumina in order to trap water

    then, compressed air passes through a bed of molecular sieve intended to trapCO2 and Hydrocarbons

    Thus, we keep molecular sieve free of moisture contamination.

    The design of the installation is a combination with two types of adsorbents:

    first, compressed air passes through a bed of alumina in order to trap water

    then, compressed air passes through a bed of molecular sieve intended to trapCO2 and Hydrocarbons

    Thus, we keep molecular sieve free of moisture contamination.

    AIR

    MOLECULAR SIEVECO2, C2H2

    ALUMINAH2O

    AIR

    Adsorber

    V-6701 A/BALUMINA

    MOLECULAR

    SIEVE

    Installation designInstallation designInstallation designAir Purification

    Ad ti / R ti C lAdsorption / Regeneration CycleAdsorption / Regeneration CycleAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    25/214

    14PERU LNG - 2009

    Using a fixed amount of adsorbent, we know that the duration of adsorption process will be limited:

    after a certain duration of air circulation, the pores of the adsorbent become saturated:- with water molecules for alumina- with CO2 and Hydrocarbon molecules for molecular sieve

    We obtain the saturation of the adsorbents: the adsorption process is

    over.

    Using a fixed amount of adsorbent, we know that the duration of adsorption process will be limited:

    after a certain duration of air circulation, the pores of the adsorbent become saturated:- with water molecules for alumina- with CO2 and Hydrocarbon molecules for molecular sieve

    We obtain the saturation of the adsorbents: the adsorption process is

    over.

    To achieve a continuous air purification

    compatible with the non-stop distillationprocess of APSA unit, we need an

    operating cycle with two adsorbers.

    An arrangement with two adsorbers in parallelallows to purify compressed air with one adsorber

    (ADSORPTION phase), while the second one is indesorption process (REGENERATION phase).

    When the first adsorber is close to the limit ofadsorption capacity, we perform a reverse

    operation in order to feed with compressed air the

    second adsorber, which is contaminant-free thanksto the previous regeneration process.

    To achieve a continuous air purif ication

    compatible with the non-stop disti llationprocess of APSA unit, we need an

    operating cycle with two adsorbers.

    An arrangement with two adsorbers in parallelallows to purify compressed air with one adsorber

    (ADSORPTION phase), while the second one is indesorption process (REGENERATION phase).

    When the first adsorber is close to the limit ofadsorption capacity, we perform a reverse

    operation in order to feed with compressed air the

    second adsorber, which is contaminant-free thanksto the previous regeneration process.

    Contaminant-free

    air

    Air with

    contaminants

    ADSORPTION

    Adsorption / Regeneration CycleAdsorption / Regeneration CycleAdsorption / Regeneration CycleAir Purification

    REGENERATION

    Ad ti f t i th b dAdsorption front in the bedAdsorption front in the bedAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    26/214

    15PERU LNG - 2009

    0100200300400500

    0

    0 1 2 3 4 5

    CO2 (ppm) Adsorbed quantity

    Bed

    Height

    t = 100 min

    t = 20 min

    Adsorbed

    quantity

    Adsorption front in the bedAdsorption front in the bedAdsorption front in the bedAir Purification

    Air wi th contaminants

    Contaminant-free

    air

    Regeneration front in the bedRegeneration front in the bedRegeneration front in the bedAir Purification

  • 8/13/2019 157883-000-CG-VT-0001

    27/214

    16PERU LNG - 2009

    CO2 (ppm) Desorbed quantity

    Bed

    He

    ight

    Saturated Vaporized

    Rich Liquid

    Vaporized

    Rich Liquid

    0100200300400500

    0

    0 1 2 3 4 5

    Desorbed

    quantity

    Regeneration front in the bedRegeneration front in the bedRegeneration front in the bedAir Purification

    Regeneration fluid : Vaporized Rich Liquid (VRL)

  • 8/13/2019 157883-000-CG-VT-0001

    28/214

    Air Purification TechnologyTechnologyTechnology

  • 8/13/2019 157883-000-CG-VT-0001

    29/214

    18PERU LNG - 2009

    Horizontal beds

    Adsorption phase :

    Cycle time : 150 min

    Air pressure : 8.1 bar g Air temperature : 40C

    Regeneration phase :

    Regeneration temperature : 90C

    (heater outlet) Air pressure : 0.1 bar g

    Heating duration : ~20 min

    Cooling duration : ~100 min

    Horizontal beds

    Adsorption phase :

    Cycle time : 150 min

    Air pressure : 8.1 bar g Air temperature : 40C

    Regeneration phase :

    Regeneration temperature : 90C

    (heater outlet) Air pressure : 0.1 bar g

    Heating duration : ~20 min

    Cooling duration : ~100 min

    Mole Sieve bed

    Alumina bed

    Air

    VaporizedRich Liquid

    Air

    TechnologyTechnologyTechnology

    Vaporized

    Rich Liquid

    Regeneration fluid : Vaporized Rich Liquid (VRL)Regeneration fluid : Vaporized Rich Liquid (VRL)

    Air Purification V01 / V02 InstallationV01 / V02 InstallationV01 / V02 Installation

  • 8/13/2019 157883-000-CG-VT-0001

    30/214

    19PERU LNG - 2009

    VRL Air to Cold Box

    Event

    Air

    V-6701A

    V-6701B

    Electr ic heater EH-6701

    AdsorptionPhase

    RegenerationPhase

    CVAG06B

    KV 530

    CVAG06A

    CVWO009BCVWO009A

    KV 525KV 515

    KV 520KV 510

    KV 516 KV 526

    V01 / V02 InstallationV01 / V02 InstallationV01 / V02 Installation

    VRL

    Air Purification Purification cyclePurification cyclePurification cycle

  • 8/13/2019 157883-000-CG-VT-0001

    31/214

    20PERU LNG - 2009

    Purification steps

    HP Isolation

    Depressurization

    Blow-Off

    Heating

    Cooling

    LP Isolation

    Pressurization

    Parallel position

    Adsorption

    Purification cyclePurification cyclePurification cycle

    Air

    VRL

    Air

    Bottle in

    Adsorption

    phase

    VRL

    Bottle in

    Regeneration

    phase

    Air Purification Pressure cyclePressure cyclePressure cycle

  • 8/13/2019 157883-000-CG-VT-0001

    32/214

    21PERU LNG - 2009

    Pressure cyclePressure cyclePressure cycle

    Air

    VRL

    Air

    Bottle in

    Adsorption

    phase

    VRL

    Bottle in

    Regeneration

    phase

    Bott le 1

    Bott le 2

    time

    press

    ure

    time

    Heating Cooling

    Heating Cooling

    pres

    sure

    Adsorption

    Adsorption

    Regeneration

    Regeneration

    Air Purification Automatic sequenceAutomatic sequenceAutomatic sequence

  • 8/13/2019 157883-000-CG-VT-0001

    33/214

    22PERU LNG - 2009

    On line V6701 B

    HP Isolation V6701 A

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    Depressurization V6701 A

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    Automatic sequenceAutomatic sequenceAutomatic sequence

    Air Purification Automatic sequenceAutomatic sequenceAutomatic sequence

  • 8/13/2019 157883-000-CG-VT-0001

    34/214

    23PERU LNG - 2009

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    Heating V6701 ABlow-Off V6701 A

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    Automatic sequenceAutomatic sequenceq

    Air Purification Automatic sequenceAutomatic sequenceAutomatic sequence

  • 8/13/2019 157883-000-CG-VT-0001

    35/214

    24PERU LNG - 2009

    Air

    VRL Cold Box

    Event

    V6701

    A

    V6701

    B

    LP Isolation V6701 ACooling V6701 A

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    Automatic sequenceqq

    Air Purification Automatic sequenceAutomatic sequenceAutomatic sequence

  • 8/13/2019 157883-000-CG-VT-0001

    36/214

    25PERU LNG - 2009

    Parallel PositionPressurization V6701 A

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    VRL Cold Box

    Event

    Air

    V6701

    A

    V6701

    B

    uto at c seque ceqq

    Air Purification Temperature profileTemperature profileTemperature profile

  • 8/13/2019 157883-000-CG-VT-0001

    37/214

    26PERU LNG - 2009

    GoodRegeneration

    indicator

    Time

    Temperature

    Heating Cooling

    Inlettemperature

    Outlet

    temperatureCold Desorption Hot Desorpt ion

    Heat Peak

    Heating temperature

    VRL temperature

    at cold box outlet

    p pp pp p

    Air Purification

  • 8/13/2019 157883-000-CG-VT-0001

    38/214

    27PERU LNG - 2009

    What does the purif ication process look like ?

    Air Purification

  • 8/13/2019 157883-000-CG-VT-0001

    39/214

    28PERU LNG - 2009

    What does the purif ication process look like ?

  • 8/13/2019 157883-000-CG-VT-0001

    40/214

    1PERU LNG - 2009

    EXCHANGERSEXCHANGERSEXCHANGERS

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    41/214

    2PERU LNG - 2009

    4.1. Why exchange the heat ?

    Gaseous N2to customer

    Liquid N2to backup

    Residual Enriched Gas (>35% O2

    )

    R01 R02

    D01

    Compression Purification Cold Production Heat Exchange

    Distillation

    Air

    inlet

    C01 K01

    CRYOGENICCRYOGENICNONNON--CRYOGENICCRYOGENIC

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    42/214

    3PERU LNG - 2009

    4.2. Principles of Heat Exchange

    GOAL

    To get air at good conditions for the distillation

    To warm up gaseous product from the cryogenictemperature to the ambient one

    PRINCIPLESHeat flux from the Hot fluid to cold fluid

    Driving force = temperature difference

    Counter flow arrangement

    Heat exchange in an aluminium brazed Heat Exchanger

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    43/214

    4PERU LNG - 2009

    4.3. Heat exchange formula

    where

    H = Duty or Heat exchanged (kcal/h)K = Heat exchange coeff

    = f(fluids, material, flow) (kcal/h.m2.C)

    S = Surface (m2)

    T = Average temperature difference between hot

    and cold f luids (C)

    H = K . S

    . Ln(T)

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    44/214

    5PERU LNG - 2009

    4.4. Heat exchange formula

    H = Q . Cp

    . T

    where

    H = Duty or Heat exchanged (kcal/h)Q = Flowrate

    (Nm3/h)

    Cp = Specific heat (kcal/Nm3/C)

    T = Temperature difference for the same fluid (C)

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    45/214

    6PERU LNG - 2009

    4.5.Three types of heat exchanger

    Cross currentCross current

    ++

    ++

    CounterCounter--currentcurrent CoCo--currentcurrent

    ++

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    46/214

    7PERU LNG - 2009

    4.6. Co-current exchanger

    Insulation

    -100C

    0C

    -100C

    -50C

    -50C

    -50C

    Cold Nitrogen

    Cold Nitrogen

    Hot Nitrogen

    Same number of hot passages and cold passages

    Temperature of Hot Nitrogen at the end of the exchanger ?

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    47/214

    8PERU LNG - 2009

    4.7. Counter-current exchanger

    Cold Nitrogen

    Cold Nitrogen

    Hot Nitrogen

    -100C

    0C

    -5C -100C

    -95C

    -5C -10C

    -5C

    -10C

    Same number of hot passages and cold passages

    Temperature of Hot Nitrogen at the end of the exchanger ?

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    48/214

    9PERU LNG - 2009

    4.8. T Warm End definition

    Brazed aluminium HX

    T cold = 0C

    AirWN2

    GAN

    T cold

    T warm

    end

    T warm end ~ 2C

    Loss of cold capacity to beproduced by the turbine

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    49/214

    10PERU LNG - 2009

    4.9. Basis about heat exchange diagram

    Temperature (C)

    Exchan

    gedheat(k

    cal/h)

    Coldcom

    posite

    Hotc

    ompo

    site

    -100C

    0C

    -5C -100C

    -95C

    N2

    N2

    Air

    -5C -50C

    -45C

    -50C

    0-95 -5-100

    T Warm End ?

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    50/214

    11PERU LNG - 2009

    4.10. Real heat balance diagram for APSA L

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    1400000

    -200 -150 -100 -50 0 50

    Temperature (C)

    H Heat flow (kcal/h)

    Hot composite

    Cold composite

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    51/214

    12PERU LNG - 2009

    4.11. Heat balance

    T

    HT1

    T2T3

    T4T1

    T2T3

    T4Warm end

    Cold end

    QC

    QF

    Heat Balance :Heat Balance :

    H = HC

    = QC

    . CpC

    . ( T2

    T1

    )

    = -

    HF = -

    QF . CpF . ( T4 T3 )

    H = Q . Cp . T

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    52/214

    13PERU LNG - 2009

    4.12. Heat exchange exercise

    25C

    T=?-100C

    20C

    Warm end

    Cold end

    8 Nm3/h

    5 Nm3/h

    AIR

    NITROG

    EN

    We consider a counter flow

    exchanger

    We want to warm up 5 Nm3/h ofN2 from - 100 to 20C at 1 bar abs

    A 8 Nm3/h flowrate of Air is

    available at 25C and 5 bar abs

    Cp(Air) = 0.31 kcal/Nm3/C

    Cp(N2) = 0.31 kcal/Nm3/C

    Air temperature at cold end ?

    4. Heat Exchange

  • 8/13/2019 157883-000-CG-VT-0001

    53/214

    14PERU LNG - 2009

    4.13. Heat exchange exercise result

    25C

    T= -50C-100C

    20C

    Warm end

    Cold end

    8 Nm3/h

    5 Nm3/h

    AIR

    NITROG

    EN

    Heat exchanged by Nitrogen

    HN2

    = 5x0.31x[20-(-100)] = 186 kcal/h

    Heat exchanged by air

    HAIR

    = 8x0.31x[T-25]

    But HN2 = - HAIR = 186 kcal/h Then 8x0.31x[T-25] = -186 kcal/h

    Finally T = -186/(8x0.31)+25 = -50C

    4. Heat Exchange

    4 14 I fl f f l t h t h

  • 8/13/2019 157883-000-CG-VT-0001

    54/214

    15PERU LNG - 2009

    4.14. Influence of f lowrate on heat exchange

    Flow evolution T warm end T cold end

    Hot fluid

    Cold f luid

  • 8/13/2019 157883-000-CG-VT-0001

    55/214

    4. Heat Exchange

    4 16 C t fl t

  • 8/13/2019 157883-000-CG-VT-0001

    56/214

    17PERU LNG - 2009

    4.16. Counter flow arrangement

    Parting sheetParting sheet

    Parting sheetParting sheet

    Spacer barSpacer bar

    Exchange finExchange fin

    FlowrateFlowrate

    Spacer barSpacer bar

    Perforated finsPerforated fins

    HeringboneHeringbonefinsfins

    SerratedSerratedfinsfins

  • 8/13/2019 157883-000-CG-VT-0001

    57/214

    4. Heat Exchange

    4 18 Different type of distributors

  • 8/13/2019 157883-000-CG-VT-0001

    58/214

    19PERU LNG - 2009

    4.18. Different type of distributors

    4. Heat Exchange

    4 19 Different type of fins

  • 8/13/2019 157883-000-CG-VT-0001

    59/214

    20PERU LNG - 2009

    4.19. Different type of fins

    Straight fins

    Perforated fins

    Serrated fins

    Heringbone

    fins

    4. Heat Exchange

    4 20 General view of the heat exchanger

  • 8/13/2019 157883-000-CG-VT-0001

    60/214

    21PERU LNG - 2009

    4.20. General view of the heat exchanger

    --

    AssemblyAssembly

    --

    Outlet fluidOutlet fluid

    --

    CoreCore

    --

    HeaderHeader

    --

    NozzleNozzle

    --

    WidthWidth

    --

    StackStack

    --

    LengthLength

    --

    PassesPasses

    --

    Side plateSide plate

    --

    Parting sheetParting sheet

    --

    Heat transfer finsHeat transfer fins

    --

    Distributor finsDistributor fins

    --

    Spacer barSpacer bar

    --

    End barEnd bar

    6611

    22

    33

    44

    55

    77

    88

    99

    1010

    1111

    1212

    1313

    1414

    1515

    33

    55

    11

    22

    44

    66

    77

    88

    99

    1010

    1111

    1212

    11

    331414 1515

    4. Heat Exchange

    4 21 General view of the heat exchanger

  • 8/13/2019 157883-000-CG-VT-0001

    61/214

    22PERU LNG - 2009

    4.21. General view of the heat exchanger

    4. Heat Exchange

    4 22 Warm end Embrittlement hazard

  • 8/13/2019 157883-000-CG-VT-0001

    62/214

    23PERU LNG - 2009

    4.22. Warm end Embrittlement hazard

    Nitrogen piping at warm end of the Heat Exchanger is not

    designed for cryogenic temperature

    Occasionally, there can be cold f luid ingress at the warm end :

    During process deviation

    During stop of the plant

    Precautions must be taken to prevent cold embritt lement

  • 8/13/2019 157883-000-CG-VT-0001

    63/214

    1PERU LNG 2009

    COLD PRODUCTIONCOLD PRODUCTIONCOLD PRODUCTION

    6. Cold Production

    6.1. Energy balance principle

  • 8/13/2019 157883-000-CG-VT-0001

    64/214

    2PERU LNG 2009

    6.1. Energy balance principle

    Heat inlet

    or

    Cold losses

    Heat losses

    or

    Cold inlet

    APSA-L

    )()( outletheatinletheat =

    6. Energy Balance & Cold Production

    6.2. Cold balance application

  • 8/13/2019 157883-000-CG-VT-0001

    65/214

    3PERU LNG 2009

    6 C pp

    GAN LIN

    R01 R02

    D01Air

    inlet

    C01 K01

    {

    8 bar g

    40C

    0.1 bar g

    35C

    7 bar g

    -171CWarmend T

    Liquid

    production

    Insulation

    losses

    Turbine

    work

    6.3. Energy balance

    6. Cold Production

  • 8/13/2019 157883-000-CG-VT-0001

    66/214

    4PERU LNG 2009

    gy

    Cold losses or heat inlets

    Heat exchanger warm end temperature difference

    Liquid production

    Heat entrance due to non perfect insulation

    Cold inlets or heat losses

    Turbine work

    Isotherm expansion of products

    Liquid assist

    6. Cold Production

    6.4. Cold balance comparison

  • 8/13/2019 157883-000-CG-VT-0001

    67/214

    5PERU LNG 2009

    p

    Small units Large plants

    Insulation

    Warm end T

    Liquid production

    GAS LIQUID GAS LIQUID

    70% 7% 20% 1%

    30% 2% 80% 3%

    0% 91% 0% 96%

    6. Cold Production

    6.5. Why a Cold Production is required ?

  • 8/13/2019 157883-000-CG-VT-0001

    68/214

    6PERU LNG 2009

    y q

    AIM

    START-UP: COOL DOWN

    To ensure a decrease of the temperature in the cold box

    NORMAL RUN: ENERGY BALANCE

    To maintain the cold balance of the plant

    HOW

    By withdrawing some heat out of the cryogenic system

    By expansion of air

    6. Cold Production

    6.6. Turbine principle

  • 8/13/2019 157883-000-CG-VT-0001

    69/214

    7PERU LNG 2009

    Symmetric work to the one of a centrifugal compressorSymmetric work to the one of a centrifugal compressor

    Compresseur Turbine

    6. Cold Production

    6.7. Turbine thermo-dynamical Principle

  • 8/13/2019 157883-000-CG-VT-0001

    70/214

    8PERU LNG 2009

    Compressor / Pump Turbine

    Theorem of Bernoulli : csteE2

    VP=+

    Static pressure Dynamic pressure

    6. Cold Production

    6.8. Turbine thermodynamical Principle

  • 8/13/2019 157883-000-CG-VT-0001

    71/214

    9PERU LNG 2009

    Increase in the gas speed without energywithout energy

    extractionextraction in the inlet vanes (1)

    static pressure diminishesstatic pressure diminishes

    Decrease in the gas speed with energywith energy

    extractionextraction in the relaxation wheel (2)

    dynamic pressure diminishesdynamic pressure diminishes

    Decrease in the gas speed without energywithout energyextractionextraction in the diffuser (3)

    dynamic pressure is transformed into staticdynamic pressure is transformed into static

    pressurepressure

    1

    2 3

    6. Cold Production

    6.9. Turbine overview Entrance gas process

  • 8/13/2019 157883-000-CG-VT-0001

    72/214

    10PERU LNG 2009

    Outinggasprocess

    Turbine

    body

    6. Cold Production

    6.10. Turbine wheels

  • 8/13/2019 157883-000-CG-VT-0001

    73/214

    11PERU LNG 2009

    Gas

    entrance

    Gas outing

    6. Cold Production

    6.11. Turbine wheels

  • 8/13/2019 157883-000-CG-VT-0001

    74/214

    12PERU LNG 2009

    Adjustable diffuser(IGV)

    Wheel of the turbine

    Arrival of thefluid by the

    volute

    Discharge

    6. Cold Production

    6.11. Speed tr iangle

  • 8/13/2019 157883-000-CG-VT-0001

    75/214

    13PERU LNG 2009

    0

    1

    2

    0

    1

    2

    Fixed part : Distributor

    Mobile guide

    vanes

    Wheel

    3

    1U

    r

    1Vr

    1Wr

    2Ur

    2Vr

    2W

    r

    6. Cold Production

    6.12. How braking cryogenic turbines ?

  • 8/13/2019 157883-000-CG-VT-0001

    76/214

    14PERU LNG 2009

    BrakingBraking of the turbine

    Energetic stability

    ConsumptionConsumption of this energy

    Oil spin-dry

    pump

    Electrical

    generator

    Air

    brake

    Booster

    brake

    Oil

    brake

    Production of mechanical energyProduction of mechanical energy with the expansion wheel

    6. Cold Production

    6.13. APSA-L Oil brake turbine principle

  • 8/13/2019 157883-000-CG-VT-0001

    77/214

    15PERU LNG 2009

    - Figure of an oil brake -

    Turbine wheel

    Oiled contact surface

    6. Cold Production

    6.14. APSA-L cold production equipment

  • 8/13/2019 157883-000-CG-VT-0001

    78/214

    16PERU LNG 2009

    Air

    Oil Tank

    Water

    Air

    6. Cold Production

    6.15. APSA-L PERU LNG : LIN Production Case

  • 8/13/2019 157883-000-CG-VT-0001

    79/214

    17PERU LNG 2009

    LRV

    Turbine -19kW

    19kW

    S = 43000 rpm

    F = 1650 Nm3/h

    P = 0.2 bar g

    T = -184C

    F = 1650 Nm3/h

    P = 4.3 bar g

    T = -148C

    6. Cold Production

    6.16. Cryostar ECO turbine

  • 8/13/2019 157883-000-CG-VT-0001

    80/214

    18PERU LNG 2009

    Oil tank

    Oil brake valve

    6. Cold Production

    6.17. Cryostar ECO turbine

  • 8/13/2019 157883-000-CG-VT-0001

    81/214

    19PERU LNG 2009

    Oil cooler

    Oil pump

    Oil tank

    6. Cold Production

    6.18. Turbine elements

  • 8/13/2019 157883-000-CG-VT-0001

    82/214

    20PERU LNG 2009

    Expander stage Oil brake sleeve in bearing housing

    6. Cold Production

    6.19. Expansion turbine behaviour

  • 8/13/2019 157883-000-CG-VT-0001

    83/214

    21PERU LNG 2009

    2 choices to increase the cold production of the plant:

    increase the turbine inlet pressure of 100 mbar

    decrease the turbine outlet pressure of 100 mbar

    What is the best choice ?EXPANSION POWER VARIATION VS P VARIATION EITHER ON MP SIDE OR BP SIDE

    15

    15.1

    15.2

    15.3

    15.4

    15.5

    15.6

    15.7

    15.8

    15.9

    16

    16.1

    0 10 20 30 40 50 60 70 80 90 100

    DP (mbar)

    Power(kW)

    POWER BP VAR (KW)

    POWER MP VAR (kW)

    GAIN MP

    GAIN BP

    ConclusionBe careful withthe pressure on

    the BP side of

    the turbine.

    Quick loss of cold

    production

    6. Cold Production

    6.20. P&ID : Expansion turbine

  • 8/13/2019 157883-000-CG-VT-0001

    84/214

    22PERU LNG 2009

  • 8/13/2019 157883-000-CG-VT-0001

    85/214

    1PERU LNG -2009

    AIR DISTILLATION

    PRINCIPLE

    AIR DISTILLATIONAIR DISTILLATION

    PRINCIPLEPRINCIPLE

    Distillation

    Goal and principle

  • 8/13/2019 157883-000-CG-VT-0001

    86/214

    2PERU LNG -2009

    GOAL

    To separate Nitrogen and Oxygen from atmospheric Air

    PRINCIPLE

    Separation by Distillation : Content difference between

    liquid and vapour phases

    KEY PARAMETERS

    Boiling Point

    Liquid vapour equilibrium

    Fractional distillation

    Reflux

    WATER + ALCOHOL MIXTURE:

    ALCOHOL t l til t

    PRINCIPLEPRINCIPLEPRINCIPLEDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    87/214

    3PERU LNG -2009

    LIQUID:

    enriched in leastvolatil

    component::

    WATER

    VAPOUR:

    enriched in most

    volatilcomponent::

    ALCOHOL

    BOILING

    ALCOHOL: most volatil component

    WATER: least volatil component

    LIQUID Mixture

    Two components:

    WATER +ALCOHOL

    APSA03/Distill1/VA#1

    AIR = MIXTURE NITROGEN (79 %) + OXYGEN (21 %)

    t l til t NITROGEN

    PRINCIPLEPRINCIPLEPRINCIPLEDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    88/214

    4PERU LNG -2009APSA03/Distill1/VA#2

    most volatil component : NITROGENleast volatil component : OXYGEN

    LIQUID:enriched in least

    volatil

    component::

    OXYGEN

    VAPOUR:

    enriched in mostvolatil

    component::

    NITROGEN

    BOILING

    LIQUID AIR

    -200C, 1 b abs

    At the boilling point, there are two phases:

    At the boilling point, there are two phases:

    Boiling Point dfinitionBoilingBoiling Point dPoint dfinitionfinitionDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    89/214

    5PERU LNG -2009

    VAPOUR

    LIQUID

    P, T

    - a boil ing LIQUID

    - a release of VAPOUR

    - a boil ing LIQUID

    - a release of VAPOUR

    Thus we define a

    LIQUID-VAPOUR EQUILIBRIUM

    Thus we define a

    LIQUID-VAPOUR EQUILIBRIUM

    A boiling point is defined with:

    - a TEMPERATURE T

    - a PRESSURE P

    A boiling point is defined with:

    - a TEMPERATURE T

    - a PRESSURE P

    Boiling point values and volatility scale

    Boiling PointsBoilingBoiling PointsPointsDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    90/214

    6PERU LNG -2009

    Boiling point values and volatility scale

    Name SymbolMolecular

    Weight (g)

    Boiling Temperature @

    1,013 bar abs.

    Helium He 2 -269 C

    Hydrogen H2 2 -253C

    Neon Ne 20 -246C

    Nitrogen N2 28 -196C

    Air Air 29 -191C

    Argon Ar 40 -186C

    Oxygen O2 32 -183C

    Kripton Kr 84 -153C

    Xenon Xe 131 -108C

    At the boiling point, if one parameter changes (Pressure or Temperature), the other

    parameter has to change too:

    Boiling PointsBoilingBoiling PointsPointsDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    91/214

    7PERU LNG -2009

    VAPOUR

    LIQUID

    11 b abs

    - 168 C

    VAPOUR

    LIQUID

    1 b abs- 196 C

    VAPOUR

    LIQUID

    3.6 b abs

    - 183 C

    VAPOUR

    LIQUID

    1 b abs- 183 C

    VAPOUR

    LIQUID

    3.6 b abs

    - 168 C

    VAPOUR

    LIQUID

    11 b abs

    - 152 C

    NITROGEN OXYGEN

    If the Pressure increases the Temperature has to increase too

    PRESSURE AND TEMPERATURE RELATIONSHIP:

    Boiling Points CurvesBoilingBoiling PointsPoints CurvesCurvesDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    92/214

    8PERU LNG -2009

    If the Pressure increases, the Temperature has to increase tooOR

    If the Temperature increases, the Pressure has to increase too

    AND inversely.

    Do les courbes des points dbullition:4

    Pressure = f (Temperature) Temperature = f (Pressure)

    Curves: Liquid state and Gaseous state separation

    P

    T

    T

    P

    LiquidState

    Gaseous

    State

    LiquidState

    Consequence: the boiling point curves

    APSA03/Distill1/VA#6

    GaseousState

    Nitrogen versus Oxygen

    Distillation Boiling PointsBoilingBoiling PointsPoints

  • 8/13/2019 157883-000-CG-VT-0001

    93/214

    9PERU LNG -2009

    ISOBARICISOBARICISOBARIC

    NITROGENNITROGEN OXYGENOXYGEN

    - 196 C

    - 183 C

    1 b abs

    VAPOUR

    LIQUID

    VAPOUR

    LIQUID

    4.5 b abs 1.3 b abs

    OXYGENOXYGENOXYGENNITROGENNITROGENNITROGEN

    ISOTHERMALISOTHERMALISOTHERMAL

    - 180 C

    Nitrogen is more volatil than Oxygen:

    -NITROGEN = most volatile component

    -OXYGEN = least volatile component

    Nitrogen is more volatil than Oxygen:

    -NITROGEN = most volatile component

    -OXYGEN = least volatile component

    For an OXYGEN-NITROGEN MIXTURE at the LIQUID-VAPOUR

    EQUILIBRIUM

    For an OXYGEN-NITROGEN MIXTURE at the LIQUID-VAPOUR

    EQUILIBRIUM

    Distillation Nitrogen - Oxygen mixtureNitrogenNitrogen -- Oxygen mixtureOxygen mixture

  • 8/13/2019 157883-000-CG-VT-0001

    94/214

    10PERU LNG -2009

    EQUILIBRIUM,

    NITROGEN being the most volatile component:

    EQUILIBRIUM,

    NITROGEN being the most volatile component:

    OO22++NN22

    OO22++NN22

    P, T

    (the Vapour phase and the Liquid phase are called CONCOMITANT PHASES)(the Vapour phase and the Liquid phase are called CONCOMITANT PHASES)

    - the liquid phase BECOMES LESS

    CONCENTRATED IN NITROGEN:

    CONSEQUENTLY, IT BECOMESENRICHED IN OXYGEN

    - the liquid phase BECOMES LESS

    CONCENTRATED IN NITROGEN:

    CONSEQUENTLY, IT BECOMES

    ENRICHED IN OXYGEN

    - the vapour phase BECOMES ENRICHEDIN NITROGEN

    - the vapour phase BECOMES ENRICHEDIN NITROGEN

    VAPOUReven more

    Distillation Fractional DistillationFractional DistillationFractional Distillation

  • 8/13/2019 157883-000-CG-VT-0001

    95/214

    11PERU LNG -2009

    VAPOUReven more

    enriched in

    NITROGENNITROGEN

    CONDENSER

    1st BOILING

    2d BOILING

    VAPOUR:

    enriched in

    NITROGENNITROGEN

    LIQUID:

    enriched in

    OXYGEN

    Liquefaction:Liquid enriched in

    NITROGENNITROGEN

    VAPOUR:

    "PURE" NITROGEN

    N

    Distillation Fractional DistillationFractional DistillationFractional Distillation

  • 8/13/2019 157883-000-CG-VT-0001

    96/214

    12PERU LNG -2009

    LIQUID:

    "PURE" OXYGEN

    VAPOUR

    MORE

    ANDM

    OREENRIC

    HEDI

    NNITR

    OGEN

    LIQUID

    MOREAN

    DMOR

    EENR

    ICHED

    INOX

    YGEN

    (liquid

    flowsdown

    bygravi

    ty)

    Successive Boilings and

    Liquefactions

    APSA03/Distill1/VA#10

    ISOBARIC SYSTEM:

    pressure is the same in each vessel

    ISOBARIC SYSTEM:

    pressure is the same in each vessel

    -- 196196 CC"PURE" NITROGEN

    Distillation Fractional DistillationFractional DistillationFractional Distillation

  • 8/13/2019 157883-000-CG-VT-0001

    97/214

    13PERU LNG -2009

    -- 183183 CC"PURE" OXYGEN

    pressure is the same in each vessele.g.: 1 b abs

    pressure is the same in each vessele.g.: 1 b abs

    CONSEQUENCE:

    TEMPERATURE

    GRADIENT

    CONSEQUENCE:

    TEMPERATURE

    GRADIENT

    -- 196196 CCPURE NITROGEN

    APSA03/Distill1/VA#11

    SUPPRESSION OF THE BOILERS AND CONDENSERS

    For that, we achieve a LIQUID-VAPOUR CONTACT:

    Vapour:

    HOTTER

    Distillation LIQUID VAPOUR CONTACTLIQUIDLIQUID VAPOUR CONTACTVAPOUR CONTACT

  • 8/13/2019 157883-000-CG-VT-0001

    98/214

    14PERU LNG -2009

    LIQUID

    (colder)

    VAPOUR

    (hotter)

    Boil ing of the LIQUID =

    VAPOUR

    Liquefaction of

    the VAPOUR =

    LIQUID

    LIQUID VAPOUR CONTACT

    Heat Transfer

    (calories)

    ,the Vapour passes through the Liquid in the vessel

    - the vapour HOTTER, makes the liquid boiling

    - the liquid COLDER, condenses the vapour

    APSA03/Distill1/VA#12

    Liquid:

    COLDER

    LIQUID-VAPOUR

    Contact

    SUPPRESSION OF THE BOILERS AND CONDENSERS

    Distillation LIQUID VAPOUR CONTACTLIQUIDLIQUID VAPOUR CONTACTVAPOUR CONTACT

  • 8/13/2019 157883-000-CG-VT-0001

    99/214

    15PERU LNG -2009

    TEMP

    ERATU

    REGR

    ADIEN

    T:

    Vapouri

    shott

    er

    Liquid

    iscolde

    r

    We only need:

    One boiler at the bottom

    One condenser at the top

    We only need:

    One boiler at the bottomOne condenser at the top

    BOILER

    CONDENSER

    CONDENSER

    MOST VOLATILE

    Distillation Fractional Distillation : ColumnsFractional Distillation : ColumnsFractional Distillation : Columns

  • 8/13/2019 157883-000-CG-VT-0001

    100/214

    16PERU LNG -2009

    BOILER:

    Vaporizer

    VAP

    OUR

    BECOMESR

    ICHER

    IN

    MOSTV

    OLATILE

    COM

    PONENT

    L

    IQUID

    BECOMESR

    ICHER

    IN

    LEAST

    OLATILE

    CO

    MPONENT

    LIQUID-VAP

    OUR

    CONTAC

    T

    LIQUID-VAP

    OUR

    CONTAC

    T

    DISTILLATION

    COLUMNS:

    DISTILLATION

    COLUMNS:

    TRAYSTRAYS

    PACKINGPACKING

    COMPONENT

    LEAST VOLATILECOMPONENT

    LABORATORY

    Device

    LABORATORY

    Device

    CONDENSER

    Distillation Regular ColumnRegular ColumnRegular Column

    GAN

    Condenser

  • 8/13/2019 157883-000-CG-VT-0001

    101/214

    17PERU LNG -2009

    VAPORIZER

    GOX DRAW-OFF

    LOX DRAW-OFF

    LIN DRAW-OFFGAN DRAW-OFF

    AIR FEED

    VAPOUR

    LIQ

    UID

    =REFLUX

    PACKING

    SECTIONS

    AIR

    LIN

    GOX

    Vaporizer

    LOX

  • 8/13/2019 157883-000-CG-VT-0001

    102/214

    FOR A GAS NITROGEN PRODUCTION, ONLY THE UPPER

    SECTION OF THE COLUMN IS NECESSARY:we do not need the lower section

    From the regular column to the APSAFromFrom thethe regularregular columncolumn to the APSAto the APSADistillation

  • 8/13/2019 157883-000-CG-VT-0001

    103/214

    19PERU LNG -2009

    CONDENSER

    VAPORIZER

    GOX DRAW-OFF

    LOX DRAW-OFF

    LIN DRAW-OFFGAN DRAW-OFF

    AIR FEED

    VAPOUR

    LIQ

    UID

    we do not need the lower section

    CONDENSER

    AIR FEED

    LIN DRAW-OFFGAN DRAW-OFF

    From the regular column to the APSAFromFrom thethe regularregular columncolumn to the APSAto the APSADistillation

    EQUIPMENTS NEEDED

    CONDENSER

  • 8/13/2019 157883-000-CG-VT-0001

    104/214

    20PERU LNG -2009

    EQUIPMENTS NEEDED:

    - PACKING SECTION

    - CONDENSER AT THE TOP

    - AIR FEED IN GASEOUS STATE

    - GAN DRAW-OFF

    - LIQUID WASTE OUTLET

    AIR FEED

    GAN DRAW-OFF

    PACKING

    SECTION

    Air feed must be in gaseous state,in order to build-up the

    up-coming vapour:so that the vaporizer is

    no longer necessary

    LIQUID WASTE

    OUTLET

    INCOMING MATERIAL QUANTITY= OUTGOING MATERIAL QUANTITY

    INCOMING MATERIAL QUANTITY= OUTGOING MATERIAL QUANTITY

    Distillation Material BalanceMaterial BalanceMaterial Balance

  • 8/13/2019 157883-000-CG-VT-0001

    105/214

    21PERU LNG -2009

    400 Nm3/h THE LIQUID WASTE IS THE

    CONSEQUENCE OF THE MATERIAL

    BALANCE:

    Flowrate, O2 content

    ITS O2 CONTENT IS ALWAYS HIGHER

    THAN THE ONE OF AIR;

    For that, this liquid is called:

    RICH LIQUID

    THE LIQUID WASTE IS THE

    CONSEQUENCE OF THE MATERIAL

    BALANCE:Flowrate, O2 content

    ITS O2 CONTENT IS ALWAYS HIGHER

    THAN THE ONE OF AIR;For that, this liquid is called:

    RICH LIQUID

    Flowrate = 1000 - 400 = 600 Nm3/h

    O2 = = 35 %600

    1000 x 21 %

    1000 Nm3/h

    O2 = 21 %

  • 8/13/2019 157883-000-CG-VT-0001

    106/214

    DEFINITION: Heat quantity necessary to vaporize totally

    1 kg of liquid

    DEFINITION: Heat quantity necessary to vaporize totally

    1 kg of liquid

    Distillation LATENT HEAT OF VAPORIZATIONLATENT HEAT OF VAPORIZATIONLATENT HEAT OF VAPORIZATION

  • 8/13/2019 157883-000-CG-VT-0001

    107/214

    23PERU LNG -2009

    1 kg

    Liquid

    1 kg

    Vapour

    Heat quantity: kcal

    OXYGEN: 51 kcal (-183 C, 1 b abs)

    NITROGEN: 47.6 kcal (-196 C, 1 b abs)

    OXYGEN: 51 kcal (-183 C, 1 b abs)

    NITROGEN: 47.6 kcal (-196 C, 1 b abs)

    APSA03/Distill2/VA#5

    OBJECTIVES:

    To liquefy gas nitrogen at the topof the column in order to achieve

    CONDENSER

    Distillation Vaporizer - Condenser systemVaporizerVaporizer -- Condenser systemCondenser system

  • 8/13/2019 157883-000-CG-VT-0001

    108/214

    24PERU LNG -2009

    PRINCIPLE:

    We need a specific device to draw-off the connecting heatquantity from gas nitrogen.

    GAN LIN

    Heat quantity

    DRAWN-OFF

    of the column in order to achieve

    the Reflux.LINGAN

  • 8/13/2019 157883-000-CG-VT-0001

    109/214

    Vaporized

    RICH LIQUID

    VaporizedRL RLHeat

    TRANSFER

    Upper part

    Distillation Vaporizer - Condenser systemVaporizerVaporizer -- Condenser systemCondenser system

  • 8/13/2019 157883-000-CG-VT-0001

    110/214

    26PERU LNG -2009

    LIN

    GAN

    EXCHANGER

    GAN LINTRANSFER

    APSA column

    RICH LIQUID

    bath

    AN EXCHANGER IS LOCATED AT THE TOP OF THE COLUMN

    IN ORDER TO ACHIEVE THE HEAT TRANSFER BETWEEN

    RICH LIQUID AND GAN

    VAPORIZER CONDENSER

    VAPORIZED RICH LIQUIDRICH LIQUID

    VALVE

    Distillation APSA column : final constructionAPSA column : final constructionAPSA column : final construction

  • 8/13/2019 157883-000-CG-VT-0001

    111/214

    27PERU LNG -2009

    VAPORIZER - CONDENSER

    GAN DRAW-OFF

    GASEOUS AIR

    RICH LIQUID BATH

    BOTTOM RICH LIQUID

    E02

    K01

    RICH LIQUIDPIPE

    Distillation Reflux Ratio R : definit ionReflux Ratio R : definitionReflux Ratio R : definit ion

    L

  • 8/13/2019 157883-000-CG-VT-0001

    112/214

    28PERU LNG -2009

    AIR

    GAN

    RL

    V

    L

    Where:

    V = Vapor Flowrate (Nm3/h)

    L = Liquid Flowrate (Nm3/h)

    R =L

    V

    R = LV

    Distillation Reflux Ratio R : definit ionReflux Ratio R : definitionReflux Ratio R : definit ion

  • 8/13/2019 157883-000-CG-VT-0001

    113/214

    29PERU LNG -2009

    V L

    AIR

    GAN

    LR

    GAN

    AIR

    V

    Where:

    L = V GANand

    V = Air

    Consequently, R = f (GAN & Air flow rates) :

    R =Air GAN

    Air

    Incomming

    N2 amount

    Outgoing

    N2 amountL/V

    Air GAN RL Total

    Distillation Reflux Ratio R variationReflux Ratio R variationReflux Ratio R variation

  • 8/13/2019 157883-000-CG-VT-0001

    114/214

    30PERU LNG -2009

    1000x79% =

    790

    400x100% =

    400

    600x65% =

    390 790390/790=

    0.49

    1000x79% =

    790450x100% =

    450390 840

    340/790=

    0.43

    The column becomes less concentrated inNitrogen :

    Consequently, the column becomes enriched in

    Oxygen

    The GAN purity decreases (O2 content

    increase)

    The GAN purity decreases (O2 content

    increase)

    AIR

    GAN

    LR

    Distillation Conclusion : Reflux Ratio impactConclusion : Reflux Ratio impactConclusion : Reflux Ratio impact

  • 8/13/2019 157883-000-CG-VT-0001

    115/214

    31PERU LNG -2009

    AIR

    GAN

    RL

    V

    L GAN

    R = L/V

    % N2 GAN(GAN Purity)

    TECHNOLOGY : Packing elementTECHNOLOGY : Packing elementTECHNOLOGY : Packing elementDistillation

  • 8/13/2019 157883-000-CG-VT-0001

    116/214

    32PERU LNG -2009

    AST (Advanced Sieve Trays)

    Benefits :

    Very efficient liquid vapour contact

    Low pressure drop (liquid film distribution)

    High operating flexibility (minimal / maximal gas load)

    High capacity (maximal gas load)

    Low inertia

    Distillation TECHNOLOGY : Packing elementTECHNOLOGY : Packing elementTECHNOLOGY : Packing element

  • 8/13/2019 157883-000-CG-VT-0001

    117/214

    33PERU LNG -2009

    Structure: assembly of corrugated metallic sheets (aluminium).

    The Liquid-Vapour contact is obtained bythe division of the liquid on the

    corrugated-crossed sheets: the liquid f ilm

    Distillation TECHNOLOGY : Packing elementTECHNOLOGY : Packing elementTECHNOLOGY : Packing element

  • 8/13/2019 157883-000-CG-VT-0001

    118/214

    34PERU LNG -2009

    Corrugated-

    crossed aluminium

    sheets

    Perforations

    corrugated crossed sheets: the liquid f ilm

    is drawn downwards by gravity while the

    gas (vapour) flows upwards through the

    perforations and the void spaces between

    the sheets.

    Distillation VaporizerVaporizerVaporizer

    GOAL

    to condense gas at the top of the disti llation column in

    Vaporizer - Condenser

    VaporizerVaporizer -- CondenserCondenser

  • 8/13/2019 157883-000-CG-VT-0001

    119/214

    35PERU LNG -2009

    PRINCIPLES

    Heat exchange in an aluminium brazed Heat ExchangerCounter flow arrangement

    Heat flux from the Hot fluid to cold fluid

    Driving force = temperature difference

    AIR

    GAN

    LR

    to condense gas at the top of the disti llation column in

    order to ensure a liquid reflux in the column

    to vaporise Rich liquid fluid at a lower pressure in order to

    feed the turbine (APSA L/LE) or the booster (APSA LE)

    E02 Vaporizer

    VaporizedRICH LIQUID

    TECHNOLOGY : Bath type vaporiser

    KEY COMPONENT FOR THE PRESSUREMAP AND FOR THE COLD PRODUCTION

    Distillation VaporizerVaporizerVaporizer

  • 8/13/2019 157883-000-CG-VT-0001

    120/214

    36PERU LNG -2009

    -172C

    4.8b

    -170C

    9.7b

    Incondensable

    gases

    APSA column

    RICHLIQUID

    bath

    SAFETY : in all cases the vaporiser must

    be completely submerged

    LIN

    GAN

    EXCHANGER

    T= 2C

    RL

    RL + VRL

    GAN

    GAN

    LIN

    LIN

    AIR downstream the Air Purification still Contents some contaminants:

    Distillation Vaporizer deconcentration purgeVaporizerVaporizer deconcentrationdeconcentration purgepurge

  • 8/13/2019 157883-000-CG-VT-0001

    121/214

    37PERU LNG -2009

    HYDROCARBONS

    N2O

    A PART OF THESE COMPONENTS ARE STOPPED IN THE

    PURIFICATION UNIT

    THE OTHER PART ENTER IN THE COLD BOX

    The light components go up (ex: H2

    ,)

    The heavy component go within the vaporiser bath (RL)

    AMONG THESE HEAVY COMPONENTS, SOME ARE NOT VAPORISED

    Distillation Vaporizer deconcentration purgeVaporizerVaporizer deconcentrationdeconcentration purgepurge

  • 8/13/2019 157883-000-CG-VT-0001

    122/214

    38PERU LNG -2009

    CONCLUSION : WITHOUT ANY PURGE IT COULD HAPPEN AN

    ACCUMULATION OF HYDROCARBONS WHICH CAN FORM

    EXPLOSIVE COMPLEXES WITH RICH LIQUID BATH

    TO AVOID ACCUMULATION, THE BATH MUST BE PURGED

    PERMANENTLY

    DECONCENTRATION PURGE :

    DIRECTLY LINKED TO THE SAFETY OF THE PLANT

  • 8/13/2019 157883-000-CG-VT-0001

    123/214

    1PERU LNG 2009

    MASS BALANCEMASS BALANCEMASS BALANCE

    )()( outletinlet =

    7. Mass balance

    7.1. Mass balance formula

  • 8/13/2019 157883-000-CG-VT-0001

    124/214

    2PERU LNG 2009

    )()( outletinlet

    GLOBAL MASS BALANCE

    inlet flowrate = outlet flowratePARTIAL MASS BALANCE

    inlet flowrate,i = outlet flowrate,i inlet N2 flowrate = outlet N2 flowrate

    APSA LAPSA L

    GANGAN

    Residual GasResidual Gas

    AIRAIR

    7. Mass balance

    7.2. Mass balance application

    Residual GasResidual GasGLOBAL MASS BALANCE

  • 8/13/2019 157883-000-CG-VT-0001

    125/214

    3PERU LNG 2009

    APSA LAPSA L

    GANGAN

    Residual GasResidual Gas

    AIRAIR

    QAir = QRes + QGAN

    whereQAir = inlet air flowrate

    xAir = inlet air Nitrogen composition

    PARTIAL MASS BALANCE

    QN2,Air = QN2,Res + QN2,GAN

    xAir.QAir = xRes.QRes + xGAN.QGAN

    7. Mass balance

    7.3. Mass balance exercise

    Residual GasResidual Gas

    A customer want to produce N2 ata purity of 1ppm O2.

  • 8/13/2019 157883-000-CG-VT-0001

    126/214

    4PERU LNG 2009

    APSA LAPSA L

    GANGAN

    Residual GasResidual Gas

    AIRAIR

    He wants to use his air network

    producing 4000 Nm3/h.

    A classical O2 content in the

    Residual gas is 30 % for such a

    plant.

    Argon is not considered in the

    calculation

    Air composition :78.11 % N2, 0.93% Ar, 20.96% O2

    How much Nitrogen he will produce in these conditions ?

  • 8/13/2019 157883-000-CG-VT-0001

    127/214

    1PERU LNG 2009

    OVERVIEW OF APSA L

    CONTROL

    OVERVIEW OF APSA LOVERVIEW OF APSA L

    CONTROLCONTROL

    9. Process Flow Diagram : Warm Skid

  • 8/13/2019 157883-000-CG-VT-0001

    128/214

    2PERU LNG 2009

    9. Process Flow Diagram : Cold Box

  • 8/13/2019 157883-000-CG-VT-0001

    129/214

    3PERU LNG 2009

    9. Process Flow Diagram : LIN Storage

  • 8/13/2019 157883-000-CG-VT-0001

    130/214

    4PERU LNG 2009

  • 8/13/2019 157883-000-CG-VT-0001

    131/214

    1PERU LNG - 2009

    GENERAL SAFETYGENERAL SAFETYGENERAL SAFETY

    Safety issues on APSA-L

    General Safety Issues

    General hazards in industrial environment

  • 8/13/2019 157883-000-CG-VT-0001

    132/214

    2PERU LNG - 2009

    Hazards specific to ASU

    CnHm related hazards

    Identification

    Prevention

    General Safety Rules

    What kind of risks ?

    Running machines

    Electricity

  • 8/13/2019 157883-000-CG-VT-0001

    133/214

    3PERU LNG - 2009

    Pressure

    Noise

    Under-oxygenation (Anoxia)

    Over-oxygenation

    Cryogenic temperaturesHigh temperatures

    Burning

  • 8/13/2019 157883-000-CG-VT-0001

    134/214

    Example: Pressure hazard (continued)

    PIPING AND

    CONTAINERS COMPLIANT

    WITH CURRENT REGULATIONS

    ALWAYS MAKE SURE

    THERE IS ZERO PRESSURE

    BEFORE SERVICE OPERATIONS

  • 8/13/2019 157883-000-CG-VT-0001

    135/214

    5PERU LNG - 2009

    SAFETY DEVICES

    OBSERVE SERVICE OPERATION

    PROCEDURES

    REPORT ANY DEFECT

    OBSERVED ON A DEVICE,

    A PIPE

    OR SAFETY PART

    IMMEDIATELY

    SAFETY

    MEASURES

    -> Design codes

    -> Scheduled inspections

    -> Tests

    32

    General Safety Rules

    Usual Hazardous works :

  • 8/13/2019 157883-000-CG-VT-0001

    136/214

    6PERU LNG - 2009

    Work at high levels

    Digging work

    Hoisting and handling equipments

    Traffic

    Electricity

    Machines

    Work on piping or vessel

    WeldingSources of radioactivity

    General Safety Rules

    Safety Management

    Defining clearly responsibilities

    Approvals and qualifications

  • 8/13/2019 157883-000-CG-VT-0001

    137/214

    7PERU LNG - 2009

    Qualified and trained workers

    Qualified subcontractors

    Procedures

    Work permit

    Electrical / Mechanical isolation

    Equipments

    PPE

    Certified tools / machinery

    EIS Management?

    General Safety Rules

    Usual Personal Safety equipment

  • 8/13/2019 157883-000-CG-VT-0001

    138/214

    8PERU LNG - 2009

    Helmet

    Safety glasses and adequate face shields for specific

    hazards (chipping, acid work, welding, molten metals )

    Ear plugs and noise-proof head sets

    Safety shoesClean and Fire-proof clothing

    Safety mittens or gloves

    Protective masks with suitable filterSafety belt or harness if necessary

    ASU Related Safety

    Gas Hazards

    Processed gases of ASU involve 2 main specific hazards

    1) Inflammation or explosion

  • 8/13/2019 157883-000-CG-VT-0001

    139/214

    9PERU LNG - 2009

    Inflammation or explosion

    Causes

    Presence of flammable gas in air

    Oxygen enriched atmosphere (more than 21% oxygen)

    Concerned zones

    liquid oxygen filling station oxygen expansion valve station

    oxygen metering station

    liquid or gaseous oxygen vent

    ) p

    2) Anoxia

    O2 gas hazardPROPERTIES .GAS ENABLES AND MAINTAINS COMBUSTION.

    SAFETY MEASURES

  • 8/13/2019 157883-000-CG-VT-0001

    140/214

    10PERU LNG - 2009

    WITH AIR

    After

    analysis

    if O = 21%2

    DETECTION

    No

    leaks

    O %O %22

    O %O %22

    IDENTIFICATION

    of pipes andstorage locations.

    NAMECOLOUR

    Purge venting

    to the outside

    O2 gas hazard (continued)OXYGEN O 22

    PERCEPTION

    DENSITY/AIR

    Colourless, odourless, tasteless.

    d = 1.1AIR SPECIAL

    PRECAUTIONS

  • 8/13/2019 157883-000-CG-VT-0001

    141/214

    11PERU LNG - 2009

    EFFECT OF OXYGEN ENRICHMENT

    ON COMBUSTION

    Fuels ignite more easily.

    Flames much hotterand spread more quickly

    NORMAL PROPORTION IN AIR 21%

    PRECAUTIONS

    Detection with alarm if %

    O in air exceeds 25%.

    No grease, no oil.

    No particles.

    Clean clothing made from

    fire resistant textiles-

    Controlled speed

    with slow manoeuvres.

    Floors clean and made from

    non combustible materials.

    % O in air2

    Effect on combustion

    25%25%

    30%30%

    50%50%

    FASTER COMBUSTION

    QUICK COMBUSTION

    INSTANTANEOUS COMBUSTIONEXPLOSIONEXPLOSION

    2

  • 8/13/2019 157883-000-CG-VT-0001

    142/214

    N2 gas hazard

    PROPERTIES

    18% O

    21% ONormal breathing

    Vertigo,

    headaches

    Asphyxia

    GAS DOES NOT SUPPORT LIFE.

    WHEN THESE GASES ARE PRESENT:THE QUANTITY OF O DECREASES,

    ATMOSPHERE UNDER OXYGENATED,2

    2

    2

  • 8/13/2019 157883-000-CG-VT-0001

    143/214

    13PERU LNG - 2009

    WITH AIR

    SAFETY MEASURES0% O

    ,

    ASPHYXIA.

    2

    orAfter

    analysisif O = 21%2

    If O < 18%2

    DETECTION

    Alarm

    if O

  • 8/13/2019 157883-000-CG-VT-0001

    144/214

    14PERU LNG - 2009

    Effects

    Every touch with liquefied gas causes frostbite similar to burnSkin and lungs can be damaged by cold atmosphere

    Lower the temperature, longer the touch, more serious effects are

    Hypothermia can cause death Safety rules

    Do not touch cold material

    Do not stay in a cold atmosphere

    Do not walk in a zone where cryogenic liquid has flown

    Do not purge voluntarily cryogenic liquids on the ground

    Take care of wet clothes

    ASU Related Safety

    Operating in Heat Insulated Area

    Perlite Insulation (cold box, exchanger box)Perlite : hydrated silicate pre-submitted to an expansion

    Highly irritant material to be handled with gloves, glasses

  • 8/13/2019 157883-000-CG-VT-0001

    145/214

    15PERU LNG - 2009

    Highly irritant material to be handled with gloves, glasses

    and maskExtremely light and fluid (a fall in perlite lead to death)

    Rock-wool insulation (cold tank, exchanger box)

    Highly itching material

    Work in a tunnel highly dangerous (risk of collapsing)

    Nearly all heat insulated area are considered CONFINED

    SPACE specific entry rules apply

  • 8/13/2019 157883-000-CG-VT-0001

    146/214

    1PERU LNG 2009

    HYDROCARBONS SAFETYHYDROCARBONS SAFETYHYDROCARBONS SAFETY

    Hydrocarbons Safety

    1. CnHm Hazards: Explanations1. Risks related to the impurities in the bath type vaporizers

    2. Right/wrong operation of the E02 vaporizer

  • 8/13/2019 157883-000-CG-VT-0001

    147/214

    2PERU LNG 2009

    g g p p

    3. Right/wrong operation of the front end purification (FEP)

    2. Hazards Controls:The 8 Golden Rules

  • 8/13/2019 157883-000-CG-VT-0001

    148/214

    Hydrocarbons Safety

    Bath type vaporizer operation (APSA-L)

    InternalInternal type (main vaporiser E02)type (main vaporiser E02)

    LP

  • 8/13/2019 157883-000-CG-VT-0001

    149/214

    4PERU LNG 2009

    Important RECIRCULATION of l iquid(thermosiphon effect):

    - around 1 Nm3 vaporised *

    - for 50 Nm3 of non-vaporised LR *

    * figures corresponding to an exchanger

    completely immersed

    Rare gases purge

    Ne, He, H2

    LP

    HP

    LR Purge

    GAN & LIN Prod.

    LRV

    Hydrocarbons Safety

    Proper and Wrong operation of a bath type vaporizer

    Liq = 25 Nm3/h

    N2O = 160 ppm

    Gas = 100 Nm3/h

    N20 =100 ppb

    Reduced feedNormal operation

    Gas = 100 Nm3/h

    +

    Liq = 5000 Nm3/h

  • 8/13/2019 157883-000-CG-VT-0001

    150/214

    5PERU LNG 2009

    Heat to vaporise 100

    Liq = 5100 Nm3/h

    N20 = 40 ppm

    q

    N20 = 41 ppm

    Liq = 125 Nm3/h

    N20 = 40 ppm *

    * considering CO2 in that case, only 1 ppm in

    the feed would lead to deposit

    Heat to vaporise 100

    DEPOSIT N2O

    Hydrocarbons Safety

    Proper and Wrong operation of a bath type vaporizer

    CORRECT VAPORISATION DRY VAPORISATION

    GAS LIFT

    STOPPED

  • 8/13/2019 157883-000-CG-VT-0001

    151/214

    6PERU LNG 2009

    Gas lif t in

    normal

    operation.Recycling

    = up to

    50 times

    the vaporised

    flowrate

    Solubility limit is

    reached. Deposits of

    CnHm, CO2 or N2O

    are

    building up

    Concentration is

    increasing

    TOO LOWLEVEL

    Hydrocarbons Safety

    Proper and Wrong operation of a bath type vaporizer

    DISTILLATION after plugingof a channel in the vaporiser

    Pluging by solid :

    - suspended sol ids

  • 8/13/2019 157883-000-CG-VT-0001

    152/214

    7PERU LNG 2009

    p

    (aerosol of oi l - dust of

    adsorbent)

    - dissolved impurities

    CO2, N2O after

    reaching the solubility

    limit.

    Then concentration

    in liquid impur ities

    (CH4 - C3H8 - C2H6)

    Hydrocarbons Safety

    Proper and Wrong operation of a bath type vaporizer

    Normal Operation:

    Excess liquid flowing out

    No concentration

    Dry Boiling:

    No liquid out

    Concentration build up

    Deposit starts if liquid

    gets saturated and

    Contaminants cannot be

    eliminated wi th the gasNormal level

  • 8/13/2019 157883-000-CG-VT-0001

    153/214

    8PERU LNG 2009

    phaseNormal level

    Low level Low level

    Hydrocarbons Safety Application: APSA-L E02 Vaporizer

    LRV

    CnHm enter CnHm exit

    VAPO

    E02ININ Q

    LRVLRV Q

    LRLR Q

  • 8/13/2019 157883-000-CG-VT-0001

    154/214

    9PERU LNG 2009

    LR

    LR

    AIRAIR

    LRLRV

    AIRAIRLR

    Q

    Q

    QQK

    Q =

    +

    Q

    Purge Rate = 0.2% of AIR FLOW

    Concentration factor = 500Air content LOX content

    CH4 = 5 ppm CH4 = 2500 ppm

    C2H6 = 0.2 ppm C2H6 = 100 ppm

    C2H2 = 0.5 ppm C2H2 = 250 ppm

    Purge Rate = 0.2% of AIR FLOW

    Concentration factor = 500Air content LOX contentCH4 = 5 ppm CH4 = 2500 ppm

    C2H6 = 0.2 ppm C2H6 = 100 ppm

    C2H2 = 0.5 ppm C2H2 = 250 ppm

    PI4.2 barg

    Hydrocarbons SafetyAdsorption Principles

    The Front End Purif ication (FEP)is designed to stop completely :

    H2O

    CO2

    H2O and CO2free air

  • 8/13/2019 157883-000-CG-VT-0001

    155/214

    10PERU LNG 2009

    CO2

    But other impurities

    from the air pass through

    the adsorber before CO2 :

    CH4 Methane

    C2H6 Ethane

    C3H8 Propane

    N2O Nitrous Oxide

    C2H4 Ethylene

    Air with all

    contaminantsREACTIVATION

    ADSORPTIO

    N

    And may enter into the Cold BoxAnd may enter into the Cold Box

    Hydrocarbons SafetyAdsorption capacity of Front End Purification

    aton

    aton

    totalH2O, CO2,

    nC4H10, C2H2, O3.

  • 8/13/2019 157883-000-CG-VT-0001

    156/214

    11PERU LNG 2009

    Frontend

    Frontendpurific

    a

    purifica

    partial

    none

    N2O, NO2,

    C2H4

    ADSORPTIONADSORPTIONLEVELSLEVELS

    C3H8,

    NO

    H2, CO,H2, CO,

    CH4, C2H6CH4, C2H6

    Hydrocarbons Safety Contaminants dangerous for the purif ication

    Some CONTAMINANTS can badly damageSome CONTAMINANTS can badly damage

  • 8/13/2019 157883-000-CG-VT-0001

    157/214

    12PERU LNG 2009

    They are mainly:They are mainly:

    -- the acid gases : CI2, SO2, H2S etc., NH3the acid gases : CI2, SO2, H2S etc., NH3

    -- miscellaneous organic moleculesmiscellaneous organic molecules

    the molecular sievesthe molecular sieves

    Hydrocarbons Safety Potential hazards in the Front End Purification

    Abrasion of a part of the adsorbent (velocity too high)

    Risk of channeling = by pass flow

    Risk of lower adsorption capacity

    Risk of introducing adsorbent dust in the cold box

  • 8/13/2019 157883-000-CG-VT-0001

    158/214

    13PERU LNG 2009

    Internal bypass of the beds, by leakage Liquid water carry-over (separation problem) :

    CO2 adsorption capacity is reduced if water vapor reaches the molecular

    sieve

    A part of the adsorbent can be destroyed Presence of some aerosols which go through the FEP

    Presence of dangerous contaminants in the mole sieve

    Too long adsorption phase :

    break-trough of CO2 or H2O

    Example of CO2 entering an APSA L4 :

    -10 ppb of CO2 entering continuously : 2 kg per year

    -2 ppm of CO2 during 15 minutes : 15 grams of deposit

  • 8/13/2019 157883-000-CG-VT-0001

    159/214

    Hydrocarbons Safety Event sequence to explosion

    Spontaneous ignition of reactive

    material on Aluminum platefin

    main vaporizer in cold box

    Explosive rupture of

    cryogenic distillation

    column

  • 8/13/2019 157883-000-CG-VT-0001

    160/214

    15PERU LNG 2009

    Presence of airborne fuel

    - aerosols light hydrocarbons -

    concentration/accumulation in

    LOX & on Aluminum surfaces -

    with N2O or CO2 ice & dry-boiling

    Combust ion of accumulated

    hydrocarbon contaminants

    on Aluminum vaporizer cores

    Massive runaway combustion

    of Aluminum exchangers inoxygen (exothermic reaction)

    Flash vaporization

    of cryogenic liquid

    Uncontrolled escalation

    to explosion

    Hydrocarbons Safety Risks related to the impurities in the vaporizers

    During the operation of the ASU, the concentration of impurities in the bath ofthe vaporiser may lead to strong explosions :

    - Hydrocarbons, such as Ethane, Propane, Ethylene, Acetylene, or aerosols, can

  • 8/13/2019 157883-000-CG-VT-0001

    161/214

    16PERU LNG 2009

    concentrate and/or deposit. The Lower Inflamability Limit is reached in LOX- Ozone is a strong ignition agent

    These explosion hazards exist when there is a lack of LOX (LR) feed into the

    passages, caused by :- Too low level of the bath of the vaporiser

    - Plugging of passages by solid deposits: CO2* , N2O*, dust...

    * Risk of accidental deposit of CO2 or N2O, due to their low solubility in LOX,5 ppm and 160 ppm respectively.

    Hydrocarbons Safety Possible Damage Overview

  • 8/13/2019 157883-000-CG-VT-0001

    162/214

    17PERU LNG 2009

    Hydrocarbons Safety How to control the CnHm hazards

    The 8 GOLDEN RULES1. Environmental Survey

    2. Operation of FEP

  • 8/13/2019 157883-000-CG-VT-0001

    163/214

    18PERU LNG 2009

    3. Operation of Vaporizer4. Deconcentration purge

    5. Periodical Deriming

    6. Control of the transient phases

    7. Control of other sources of pollution

    8. EIS management

    Hydrocarbons Safety

    1. Environmental Survey

    1. Surrounding industries and distances

    2. Atmospheric conditions

    3. Air analysis

    4. Communication with surrounding industries

  • 8/13/2019 157883-000-CG-VT-0001

    164/214

    19PERU LNG 2009

    g

    The plant operator shall maintain an environment

    file including following information :

    Nearby industries liable to release gases

    Distances between those potentials sources and theair intake of the ASU (+ height of sources)

    Presence of haze (organic aerosols)

    Polluted site or Not ?

    Hydrocarbons Safety

    2. Operation of FEP

    Complete retention of CO22 in FEP is of vital importance forthe unit (low solubility in RL : 5 ppm at 181C)

    Air conditions evolutions have an impact on :

  • 8/13/2019 157883-000-CG-VT-0001

    165/214

    20PERU LNG 2009

    Mass Flow RatePressure

    Temperature

    Duration of the adsorption

    Air Cleanliness

    Regeneration conditions act on :

    Regeneration gas flow rate

    Duration of heating

    Heating temperature

    Hydrocarbons Safety

    2. Operation of FEP

    FEP performance control : CO22 content analysis at outlet1 ppm Alarm

    3 ppm Shutdown of the unit after 15 minutes

  • 8/13/2019 157883-000-CG-VT-0001

    166/214

    21PERU LNG 2009

    Control of the desorption effectiveness : temperature peak

    Alarm in case of no heat peak

    Recommended REGEX operation after CO2 breakthrough

    test (3 years)

    Hydrocarbons Safety

    3. Control of the level of bath vaporizer

    Upper level tap (100%of the transmitter scale)

    Level sample

    100% immersion (Level Set Point)LT2

  • 8/13/2019 157883-000-CG-VT-0001

    167/214

    22PERU LNG 2009

    Lower level tap for LT1

    90% immersion (Low Level Threshold)80% immersion (Very Low Level Threshold)

    0% immersion

    (0% of LT1)

    LT170% Lower tap of LT2

    Calibration using the heights and the density of the liquid

    Check with level sample gaugeTransmitters:

    22ndnd

    transmittertransmitter= improvement= improvement

    Height,m

    Plant Shutdown after 1 hour

    Hydrocarbons Safety 4. Deconcentration Purge

    Deconcentration line: 1/2.LR.04

    Deconcentration type: intermittent purge (but permanently

    in service)

    Deconcentration volume: at least 0.2% of the air flow

  • 8/13/2019 157883-000-CG-VT-0001

    168/214

    23PERU LNG 2009

    Deconcentration control: sequence linked to the level of

    vaporizer E02

    Time of purge is constant

    Level drop is monitoredAlarm is raised in case of low level drop

    Hydrocarbons Safety 5. Periodical Deriming

    The objective is to vaporize any contaminants which may

    have entered in the equipment of the cold box

    Every 3 years

    Applied to cold box equipment only (compressor and FEP

  • 8/13/2019 157883-000-CG-VT-0001

    169/214

    24PERU LNG 2009

    are running independently)Deriming operation

    Low pressure

    High flow

    Deriming mean

    Dry air

    Usually ambient temperature

    Exceptionally hot temperature (65C is the limit for thealuminum heat exchanger)

    Refer to PFD

    Hydrocarbons Safety 6. Transient Phases

    Start-up

    As much liquid production as possible

    Minimum air input

    Liquid assist after first liquid production (LIN only)

    S

  • 8/13/2019 157883-000-CG-VT-0001

    170/214

    25PERU LNG 2009

    Shut-down

    Drain ALL liquid after 48h shut-down

    Drain if E02 level is below 80% immersion

    Change of run-typeMaintain vaporizers level

    Normal run

    Control of frosted pipes and dead-ends

    Hydrocarbons Safety 7. Other sources of pollution

    Machine: Turbine

    Lubricated machine

    Seal gas pressure

    Instrument air

    U ll d i

  • 8/13/2019 157883-000-CG-VT-0001

    171/214

    26PERU LNG 2009

    Usually: dry air

    Back-up ?

    Air intake

    Car parking, Truck unloading

    Hot works, fires...

    Exchanger water leak...

    Hydrocarbons Safety 8. E.I.S Management

    E.I.S = Element Important for Safety

    Safety Protection Loops

    Alarm and Shutdowns parameters

    Set-points

    D l

  • 8/13/2019 157883-000-CG-VT-0001

    172/214

    27PERU LNG 2009

    Delay Hysteresis

    Qualified personnel

    Management of Change

    Hydrocarbons Safety Conclusions

    Hazard is a combination of

    A polluted atmosphere

    A not proper operation of the vaporizer

    Hazard is a combination of

    A polluted atmosphere

    A not proper operation of the vaporizer

    C l d t id t

    C l d t id t

  • 8/13/2019 157883-000-CG-VT-0001

    173/214

    28PERU LNG 2009

    THE GOLDEN RULES

    1. Environmental Survey2. Operation of FEP

    3. Operation of Vaporizer

    4. Deconcentration purge

    5. Periodical Deriming

    6. Control of the transient phases

    7. Control of other sources of pollution

    8. EIS management

    THE GOLDEN RULES

    1. Environmental Survey

    2. Operation of FEP

    3. Operation of Vaporizer

    4. Deconcentration purge

    5. Periodical Deriming6. Control of the transient phases

    7. Control of other sources of pollution

    8. EIS management

    Can lead to severe accidentsCan lead to severe accidents

    DERIMINGDERIMINGDERIMING

  • 8/13/2019 157883-000-CG-VT-0001

    174/214

    1PERU LNG 2009

    DERIMINGAND

    EXCEPTIONAL REGENERATION

    DERIMINGDERIMINGANDAND

    EXCEPTIONAL REGENERATIONEXCEPTIONAL REGENERATION

    1. Deriming Procedure1. Deriming Procedure Deriming and Drying Procedure

    PurposeRemove contaminants in every locations they are subject to

    accumulate

    Accelerate to warm up of the plant after a shutdown

  • 8/13/2019 157883-000-CG-VT-0001

    175/214

    2PERU LNG 2009

    Main recommendations

    All liquids should be completely purged before starting deriming

    Start deriming with all valves closed

    6 phases in order to defrost progressively the plant

    Proceed from a clean circuit towards a dirty circuit

    Use the lowest pressure possible

    Keep the deriming outlets wide open

    Control the deriming flow rate in order to avoid high velocities

    1. Deriming Procedure1. Deriming Procedure

  • 8/13/2019 157883-000-CG-VT-0001

    176/214

    3PERU LNG 2009

    1. Deriming Procedure1. Deriming Procedure

  • 8/13/2019 157883-000-CG-VT-0001

    177/214

    4PERU LNG 2009

    2. Exceptional Regeneration2. Exceptional Regeneration

    Purpose

    Remove impurities not desorbed during regular reactivation

    Exceptional procedure to avoid any damage

    Carry out :

  • 8/13/2019 157883-000-CG-VT-0001

    178/214

    5PERU LNG 2009

    Carry out :

    At initial start-up

    To clean from contaminants accumulated during transportation

    To control adsorption capacity respect to design capacityAfter an pollution accident

    Late reversal

    Liquid water from R02

    Unusual temperature at the inlet of the dryers

    After repetitive CO2 break-through

    2. Exceptional Regeneration2. Exceptional Regeneration

    Highlights

    Passing dry gas at low pressure and increased temperature

    Long period of time through the bottle (24 hours at least)

    Temperature in the bottles may range from 230 to 290C

    Temperature increase : two steps to avoid damage of

  • 8/13/2019 157883-000-CG-VT-0001

    179/214

    6PERU LNG 2009

    Temperature increase : two steps to avoid damage ofadsorbents

    Outlet electrical heater

    Bottle bottom

    145C

    ~120C

    ~ 240C

    290C

    Phase 1 Time

    Temperature

    Phase 2 Phase 3 Phase 4

    Effective part of

    exceptional regeneration

    Effective part of

    exceptional regeneration

    2. Exceptional Regeneration2. Exceptional Regeneration

    ATM

    EH-6701

    Instrument Air

    PV 561

    KV 540Deriming Air

    From Exchangers

    TI

    580

    Q(WN2) = 121 Nm3/h

    P (V-6701 A) = 1.033 bar absTI 513 outlet = 240C

    Q(WN2) = 121 Nm3/h

    P (V-6701 A) = 1.033 bar absTI 513 outlet = 240C

  • 8/13/2019 157883-000-CG-VT-0001

    180/214

    7PERU LNG 2009

    C01

    V-6701 A V-6701 B

    Outlet Water

    Inlet Water

    To Exchangers

    KV 515

    ATM

    ATM

    TI

    513

    AIR

    PERU LNGPERU LNGPERU LNG

  • 8/13/2019 157883-000-CG-VT-0001

    181/214

    1PERU LNG 2009

    PERU LNGNITROGEN GENERATOR SYSTEM

    TRAINING

    PERU LNGPERU LNGNITROGEN GENERATOR SYSTEMNITROGEN GENERATOR SYSTEM

    TRAININGTRAINING

    1. Process description APSA LProcess description APSA L

    2. Air Purification Unit2. Air Purification Unit2. 1 Exceptional Regeneration2. 1 Exceptional Regeneration

    3. Turbine Expanders3. Turbine Expanders

    4. Cold box4. Cold box warm standstillwarm standstill

    NITROGEN GENERATOR TRAININGNITROGEN GENERATOR TRAINING

  • 8/13/2019 157883-000-CG-VT-0001

    182/214

    2PERU LNG 2009

    5. Production5. Production

    6. Trip and shutdown6. Trip and shutdown

    7. Start up cold standstill7. Start up cold standstill

    8. Control loop description8. Control loop description

    9. Stutdown9. Stutdown

    1. Process description APSA LProcess description APSA L

  • 8/13/2019 157883-000-CG-VT-0001

    183/214

    3PERU LNG 2009

    PurificationCompression Heat exchange Cold production Distillation

    2. Air Purification Unit2. Air Purification UnitTo start it we should do a Initialization; for this the inlet valve should be close and

    the inlet pressure PT_502 at 0 bar. You choose the bottle which be in regeneration

    and press initialization button. The Bottles will place in HP isolation step.

    You open inlet valve FV_580 to pressurize the bottle on line and the HP cold box

    Open it to have enough flow for regeneration.

    You should open the KV_540 to send air in regeneration bottle and put the PV_561

    in auto mode with SP at 160 mbar. When flow from cold box is enough you closeKV 540

  • 8/13/2019 157883-000-CG-VT-0001

    184/214

    4PERU LNG 2009

    AIR

    g yKV_540.

    When the timer step is done and you have all condition, a indication Next step

    appear you can move manually the sequence by Next step button

    If you need to move all the sequence you have a Bypass button to bypass the

    heating and cooling timer. But this dont bypass other step.

    If all is correct you should put the sequence in auto mode in order to avoid CO2

    breakthrough. You can open air production valve FV561 and put in auto SP 750

    Nm3/h

    In case of problem you must put the sequence in manual mode and check the

    problem.

    2. Air Purification Unit2. Air Purification Unit1. High Pressure Isolation

    Isolation of the bottle in adsorption

    Timer step 360s

    2. Depressurization

    The bottle is slowly depressurized in opposite direction to the adsorption

    flow. Drop pressure of bottle should be done during step timer else we

    have Depressurization to long and stop the sequence. Timer step 300s

    heater

    Cold Box

    N2cold boxKV_540

    Cold Box

    N2cold box

    heater

    KV_540

  • 8/13/2019 157883-000-CG-VT-0001

    185/214

    5PERU LNG 2009

    KV_520KV_510

    KV_526KV_516

    KV_525KV_515

    KV_530

    venting

    V-6701A V-6701B

    Hp isolationIn service

    Ai r

    KV_520KV_510

    KV_526KV_516

    KV_525KV_515

    KV_530

    venting

    V-6701A V-6701B

    Hp isolationIn service

    Ai r

    2. Air Purification Unit2. Air Purification Unit3.Blow-off

    Start to send flow thought the bottle. We should have

    minimum 8 mbar of DP on heater else Alarm EH-6701

    Heater low flow. Timer step 60s

    4.Heating

    The heater starts to increase temperature at around 150C

    In case of the outlet temperature is always < 135c after 15 min Alarm Heater

    start fault Timer step 45mn

    Cold Box

    N2cold box

    heater

    KV_540