48
16.360 Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center A a A ^ A A a ^

16.360 Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center

Embed Size (px)

Citation preview

16.360 Lecture 13

Basic Laws of Vector Algebra

Scalars:

e.g. 2 gallons, $1,000, 35ºC

Vectors:

e.g. velocity: 35mph heading south 3N force toward center

AaA^

A

Aa ^

16.360 Lecture 13

• Cartesian coordinate system

x

y

z

A

xA

yA

zA^^^

zAyAxAA zyx

222zyx AAAA

)cos(AAz

)cos()sin( AAx

)sin()sin( AAz

16.360 Lecture 13

• Vector addition and subtraction

C = B+A = A +B,

|C| = |B+A| = |A| +|B|,

A

B

C

A

B

C

head-to-tail rule parallelogram

rule

A

B

D

D = A - B = -(B –A),

A

B

D’ = (B-A)

)()()()()(^^^^^^^^^

zzxyxxzyxzyx BAzBAyBAxBzByBxAzAyAx

)()()()()(^^^^^^^^^

zzxyxxzyxzyx BAzBAyBAxBzByBxAzAyAx

16.360 Lecture 13

• position and distance

x

y

z

A

xA

yA

zA

B

D = A - B = -(B –A),

)()()()()(^^^^^^^^^

zzxyxxzyxzyx BAzBAyBAxBzByBxAzAyAx

222 )()()(|| zzxyxx BABABAD

16.360 Lecture 13

• Vector multiplication

1. simple product

2. scalar product (dot product)

)()()(^^^

zyx AzAyAxA

)()()(^^^

zyx kAzkAykAxAkB

ABBAAB cos

ABAB )()()(

^^^

zyx AzAyAxA )()()(

^^^

zyx BzByBxB

)]()()([

)]()()([)]()()([^^^

^^^^^^

zzyyxx

zyxzyx

ABzAByABx

AzAyAxBzByBxAB

16.360 Lecture 13

Properties of scalar product (dot product)

CBABCAB

)(

BAAB

a) commutative property

b) Distributitve property

2AAA

16.360 Lecture 13

3. vector product (cross product)

ABABnBA sin^

A

B

ABABnBA sin^

^

n

AB

ABBA

a) anticommutative property

b) Distributitve property

CABACBA

)(

c) 0AA

,^^^

zyx ,^^^

xzy

,^^^

yxz

16.360 Lecture 13

3. vector product (cross product)

)()()(

)()(^^^

^^^^^^

xyyxzxxzyzzy

zyxzyx

BABAzBABAyBABAx

BzByBxAzAyAxBA

zyx

zyx

BBB

AAA

zyx

BA

^^^

16.360 Lecture 13

Example vectors and angles

In Cartesian coordinate, vector A is directed from origin to point P1(2,3,3), and vector B is directed from P1 to pint P2(1,-2,2). Find: (a) Vector A, its magnitude |A|, and unit vector a(b) the angle that A makes with the y-axis(c) Vector B(d) the angle between A and B(e) perpendicular distance from origin to vector B

B

A

332^^^

zyxA

222 332 A

22/)332(^^^^

zyxA

Aa

)cos(^^

AyyAyA

)32()32()21(^^^

12 zyxPPB

)cos( ABBABA

)180sin( 0ABAd

16.360 Lecture 13

4. Scalar and vector triple product

a) scalar triple product

b) vector triple product

)()())()()( BACACB

CCC

BBB

AAA

BACCABCBA

zyx

zyx

zyx

)()()( BACACBCBA

zyx

zyx

zyx

CCC

BBB

AAA

CBA )(

CBACBA

)()(

)()()( BACCABCBA

16.360 Lecture 13

Example vector triple product

2^^^

zyxA ^^

zyB

?)( CBA

?)( CBA

^^^

^^^^^^

223

302

110 zyx

zyx

CCC

BBB

zyx

CB

zyx

zyx

^^^

^^^

062

222

2113)( zyx

zyx

CBA

32^^

zxC

16.360 Lecture 14

• Cartesian coordinate system

x

y

z

dl

xl

yl

zl

^^^^^^

zdzydyxdxzdlydlxdlld zyx

dydzxdldlxsd zyx

^^

dxdzydldlysd zxy

^^

dxdyzdldlzsd yxz

^^

dxdydzdv

16.360 Lecture 14

• Cartesian coordinate system

x

y

z

xs

s

directions of area

16.360 Lecture 14

• Cylindrical coordinate system

z

x

y

),,( 111 zrP

^

r

^

^

z

^^^

zr ^^^

rz ^^^

rz

0^^

rr 1^^

rr

zr AzAArA^^^

222zr AAAA

1R

1

^

1

^

1 zzrrR

16.360 Lecture 14

• the differential areas and volume

^

drdzsd

^

rdzrdsd r

^

zdrrdsd z

z

x

y

dr rd

drdzrddv

16.360 Lecture 14

Example: cylindrical area

z

x

y

5

3

30

60

3/

6/

3

0

60

30

35

ddzrdS

^

rdzrdsd r

16.360 Lecture 14

• Spherical coordinate system

^^^

r^^^

R^^^

R

0^^

rr 1^^

rr

AAARA R

^^^

222 AAAA R

16.360 Lecture 14

• differential volume in Spherical coordinate system

dRRddRR

dldldlRld R

sin^^^

^^^

ddRRdldlRsd R sin2^^

dRdRdldlsd R sin^^

dRdRdldlsd R

^^

ddRdRdldRdldv sin2

16.360 Lecture 14

• Examples

(1) Find the area of the strip

60

30

360

0

2 sin ddRSdS R

(2) A sphere of radius 2cm contains a volume charge density 2cos4v

Find the total charge contained in the sphere

100/2

0

260

0

2180

0

2

100/2

0

2260

0

180

0

2

100/2

0

2260

0

180

0

))(sincos4(

))(sincos4(

)sin(

dddRR

dddRR

RdddRdvQ vv

16.360 Lecture 15

• Cartesian to cylindrical transformation

,22 yxr

),(tan 1

x

y

),cos(rx

),sin(ry

16.360 Lecture 15

• Cartesian to cylindrical transformation),cos(ˆˆ xr ),sin(ˆˆ yr

),sin(ˆˆ x ),cos(ˆˆ y

,cosˆsinˆˆ yx

),cos(ˆ)ˆˆ(ˆˆ axybxaxr

),sin(ˆ)ˆˆ(ˆˆ byybxayr

,sinˆcosˆˆ yxr

,sinˆcosˆˆ rx

,cosˆsinˆˆ ry

16.360 Lecture 15

• Cartesian to cylindrical transformation

),cos(ˆˆ xr ),sin(ˆˆ yr

),sin(ˆˆ x ),cos(ˆˆ y

,sincos yxr AAA

,ˆˆˆ zAyAxAA zyx

,ˆˆˆ zAArAA zr

,cossin yx AAA

,sincos AAA rx

,cossin AAA ry

16.360 Lecture 15

• Cartesian to Spherical transformation

,222 zyxr

),(tan22

1

z

yx

),(tan 1

x

y

,cossin Rx

,sinsin Ry

,cosRz

16.360 Lecture 15

• Cartesian to Spherical transformation

,ˆˆˆ bzarR

,sinˆˆ bzR

,cosˆˆ arR ,sinˆcosˆˆ yxr

,cosˆsinsinˆcossinˆˆ zyxR

,cosˆˆ cr,ˆˆˆ dzcr ,sinˆˆ cr

,sinˆsincosˆcoscosˆˆ zyx

,cosˆsinˆˆ yx

16.360 Lecture 15

• Cartesian to Spherical transformation

,ˆˆˆˆ edcRx

,sinˆˆ bzR

,cossinˆˆ xR

,sinˆcosˆˆ yxr

,sinˆcoscosˆcossinˆˆ Rx

,cosˆˆ cr,ˆˆˆ dzcr ,sinˆˆ cr

,sinˆcosˆˆ Rz

,coscosˆˆ x ,sinˆˆ ex

,cosˆsincosˆsinsinˆˆ Ry

16.360 Lecture 15

• Distance between two points:

,)()()(2/12

122

122

121212 zzyyxxRd

,)()sinsin()coscos(2/12

122

11222

11221212 zzrrrrRd

,)cos(sinsincos[cos2

,)coscos()sinsinsinsin()cossincossin(2/1

121212212

122

2/121122

2111222

21112221212

RRRR

RRRRRRRd

16.360 Lecture 16

Gradient in Cartesian Coordinates

Gradient: differential change of a scalar

,

,)ˆˆˆ(

ˆˆˆ

,),,(

ldT

ldzz

Ty

y

Tx

x

T

ldzz

Tldy

y

Tldx

x

T

dzz

Tdy

y

Tdx

x

TzyxdT

),ˆˆˆ( zz

Ty

y

Tx

x

TT

ldTzyxdTT

),,(

The direction of T is along the maximum increase of T.

16.360 Lecture 16

Example of Gradient in Cartesian Coordinates

Find the directional derivative of ,22 zyxT along the direction 2ˆ3ˆ2ˆ zyx

and evaluate it at (1, -1,2).

),)(ˆˆˆ( 22 zyxz

zy

yx

xT

,ˆlaTdl

dT

16.360 Lecture 16

Gradient operator in cylindrical Coordinates

),sin1

(cos

,

r

T

r

T

x

z

z

T

x

T

x

r

r

T

x

T

,ˆˆˆz

Tz

y

Ty

x

TxT

,sinˆcosˆˆ rx

,cosˆsinˆˆ ry

),cos1

(sin

,

r

T

r

T

y

z

z

T

y

T

y

r

r

T

y

T

z

Tz

T

rr

Tr

r

T

r

T

r

T

r

T

r

T

r

T

r

T

r

Tr

z

Tz

y

Ty

x

TxT

ˆ1ˆˆ

)cossincos1

sin1

cossin(ˆ

)sincos1

sinsincos1

cos(,ˆ

ˆˆˆ

22

22

16.360 Lecture 16

Gradient operator in cylindrical Coordinates

z

x

y

dr rd

zr l

Tz

l

T

l

TrT

ˆˆˆ

z

Tz

T

rr

Tr

l

Tz

l

T

l

TrT

zr

ˆ1ˆˆ

ˆˆˆ

,drlr , rdl ,dzlz

16.360 Lecture 16

Gradient operator in Spherical Coordinates

,ˆˆˆ

l

T

l

T

l

TRT

R

T

R

T

RR

TR

l

T

l

T

l

TRT

R

sin

1ˆ1ˆˆ

ˆˆˆ

,dRlR , Rdl ,sin dRl

16.360 Lecture 16

Properties of the Gradient operator

,)( VUVU

,)( UVVUUV

,)( 1 VnVV nn

16.360 Lecture 17

Flux in Cartesian Coordinates

,sdEfluxTotal

16.360 Lecture 17

Flux in Cartesian Coordinates

,)1(

)ˆ()ˆˆˆ(

,

1

111

zyE

dydzxEzEyEx

dsnEF

x

zyface x

face

,)2(

)ˆ()ˆˆˆ(

,

2

222

zyE

dydzxEzEyEx

dsnEF

x

zyface x

face

,

)]1()2([

)]1()2([21

zyxx

E

zyxx

EE

zyEEFF

x

xx

xx

16.360 Lecture 17

Definition of divergence in Cartesian Coordinates

,

)]1()2([

)]1()2([21

zyxx

E

zyxx

EE

zyEEFF

x

xx

xx

,43 zyxy

EFF y

,65 zyxz

EFF z

,)( zyxz

E

y

E

z

EsdE zyx

S

),(z

E

y

E

x

EEEdiv zyx

16.360 Lecture 17

Properties of divergence

,)( 2121 EEEE

,01 E

If No net flux on any closed surface.

Divergence theorem

,

)(

dxdydzE

zyxz

E

y

E

z

EsdE

v

zyx

S

16.360 Lecture 17

Divergence in Cylindrical Coordinates

z

x

y

dr rd

,)1(

)ˆ()ˆˆˆ(

,

1

11

zrE

zrrEzEEr

dsnEF

r

zface r

rrface

,)2(

)ˆ()ˆˆˆ(

,

1

22

zrE

zrrEzEEr

dsnEF

r

zface r

rrface

,)(

)]1()2([

)]1()2([21

zrrEr

zrr

rErE

zrEEFF

r

rr

rr

16.360 Lecture 17

Divergence in Cylindrical Coordinates

z

x

y

dr rd

,)(

)]1()2([

)]1()2([21

zrrEr

zrr

rErE

zrEEFF

r

rr

rr

,)(

)]1()2([

)]1()2([43

zrE

zrEE

zrEEFF

,)(

)]1()2([

)]1()2([65

zrrEz

zrrz

EE

rrEEFF

z

zz

zz

,

))(

(

vE

zrrz

E

r

E

rr

rEsdE zr

S

16.360 Lecture 17

Divergence in Spherical Coordinates

,sin)(

sin)]1()2([

sin)]1()2([

2

22

221

RERR

RR

ERER

REEFF

R

RR

RR

,sin)1(

sin)ˆ()ˆˆˆ(

,

2

1

11

RE

RRREEER

dsnEF

R

face R

RRface

,sin)2(

sin)ˆ()ˆˆˆ(

,

2

2

22

RE

RRREEER

dsnEF

R

face R

RRface

16.360 Lecture 17

Divergence in Spherical Coordinates

,)(sin

)]1(sin)2([sin

sin)]1()2([43

RRE

RREE

RREEFF

R

,sin)(

sin)]1()2([

sin)]1()2([

2

22

221

RERR

RR

ERER

REEFF

R

RR

RR

,)(

)]1()2([

)]1()2([65

RE

RREE

RREEFF

16.360 Lecture 17

Divergence in Spherical Coordinates

,)(sin43

RREFF R,sin)( 221

RERR

FF R

,)(65

RREFF

vE

RRER

ER

ERRR

RERERERR

sdE

R

R

S

sin)](sin

1)(sin

sin

1)(

1[

,)]()(sin)([

222

2

16.360 Lecture 18

Circulation of a Vector

,ldBnCirculatio

,0

ˆˆˆˆ

ˆˆˆˆ

00

00

dyyBxdxxBx

dyyBxdxxBxnCirculatio

a

d

d

c

c

b

b

a

16.360 Lecture 18

Circulation of a Vector

,2

ˆ 0

r

IB

,

,ˆ2

ˆ

0

2

0

0

I

dr

IldBnCirculatio

16.360 Lecture 18

Curl in Cartesian Coordinates

sBn

sdz

B

z

Bz

x

B

z

By

z

B

y

Bx

xyz

B

z

Bzzxzy

z

B

y

BxldBn

zxzxyz

zxyz

c

)(ˆ

)](ˆ)(ˆ)(ˆ[

)(ˆ)(ˆ

,)(ˆ

)(ˆ

,

2

,2 2

zyz

B

y

Bx

yByBzBzBx

ldBn

yz

zzzyface yy

zyface

)(ˆ)(ˆ)(ˆz

B

z

Bz

x

B

z

By

z

B

y

BxB zxzxyz

16.360 Lecture 18

Vector identities involving the curl

BABA

)(

0)( A

0)( V

Stokes’s theorem

sdBldBnc

)(

16.360 Lecture 18

Curls in Rectangular, Cylindrical and Spherical Coordinates

zyx BBBzyx

zyx

B

ˆˆˆ

zr ArAAzr

zrr

rB

ˆˆˆ1

ARRAA

R

RRR

RB

R sin

ˆsinˆˆ

sin

12

16.360 Lecture 18

Laplacian Operator of a scalar

zyx AzAyAxz

Vz

y

Vy

x

VxV ˆˆˆˆˆˆ

2

2

2

2

2

2

)(

z

V

y

V

x

V

Az

Ay

Ax

V zyx

2

2

2

2

2

22 )(

z

V

y

V

x

VVV

16.360 Lecture 18

Laplacian Operator of a vector

zyx EzEyExE ˆˆˆ

2

2

2

2

2

2

2

2

2

2

2

22 ˆˆˆ)(

z

Ez

y

Ey

x

ExE

zyxE zyx

)()(2 EEE