45
© Ned Mohan, 2005 3- 1 Chapter 3 Switch-Mode DC-DC Converters: Switching Analysis, Topology Selection and Design 3-1 DC-DC Converters 3-2 Switching Power-Pole in DC Steady State 3-3 Simplifying Assumptions 3-4 Common Operating Principles 3-5 Buck Converter Switching Analysis in DC Steady State 3-6 Boost Converter Switching Analysis in DC Steady State 3-7 Buck-Boost Converter Switching Analysis in DC Steady State 3-8 Topology Selection 3-9 Worst-Case Design 3-10 Synchronous-Rectified Buck Converter for Very Low Output Voltages 3-11 Interleaving of Converters 3-12 Regulation of DC-DC Converters by PWM 3-13 Dynamic Average Representation of Converters in CCM 3-14 Bi-Directional Switching Power-Pole 3-15 Discontinuous-Conduction Mode (DCM) References Problems

19673885-Slides-PECh3-July05

Embed Size (px)

DESCRIPTION

ASSIGNMENT data

Citation preview

Page 1: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 1

Chapter 3 Switch-Mode DC-DC Converters: Switching Analysis, Topology Selection and Design

3-1 DC-DC Converters

3-2 Switching Power-Pole in DC Steady State

3-3 Simplifying Assumptions

3-4 Common Operating Principles

3-5 Buck Converter Switching Analysis in DC Steady State

3-6 Boost Converter Switching Analysis in DC Steady State

3-7 Buck-Boost Converter Switching Analysis in DC Steady State

3-8 Topology Selection

3-9 Worst-Case Design

3-10 Synchronous-Rectified Buck Converter for Very Low Output Voltages

3-11 Interleaving of Converters

3-12 Regulation of DC-DC Converters by PWM

3-13 Dynamic Average Representation of Converters in CCM

3-14 Bi-Directional Switching Power-Pole

3-15 Discontinuous-Conduction Mode (DCM) References

Problems

Page 2: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 2

Regulated switch-mode dc power supplies

Figure 3-1 Regulated switch-mode dc power supplies.

inV oV

,o refVcontroller

dc-dcconvertertopology

,in oV V

,in oI I

(a) (b)

inV oV

,o refVcontroller

dc-dcconvertertopology

,in oV V

,in oI I

(a) (b)

Page 3: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 3

Switching power-pole as the building block of dc-dc converters

( ) ( )L L si t i t T= −

0

area area

1 0s s

s

DT T

L L Ls DT

A B

V v d v dT

τ τ

= ⋅ + ⋅ =

∫ ∫

( ) ( )C C sv t v t T= −

Figure 3-2 Switching power-pole as the building block of dc-dc converters.

inVLv

Li

q

ALv

Li

t

t

B

0

0

sDTsT

( )b( )a

inVLv

Li

q

inVLv

Li

q

ALv

Li

t

t

B

0

0

sDTsT

Lv

Li

t

t

B

0

0

sDTsT

( )b( )a

Page 4: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 4

Example 3-1 If the current waveform in steady state in an inductor of 50 Hµ is as

shown in Fig. 3-3a, calculate the inductor voltage waveform ( )Lv t .

Solution During the current rise-time, (4 3) 13 3

di Adt sµ µ

−= =

. Therefore,

150 16.673L

div L Vdt

µµ

= = × = .

During the current fall-time, (3 4) 12 2

di Adt sµ µ

−= = −

. Therefore,

150 ( ) 252L

div L Vdt

µµ

= = × − = − .

Therefore, the inductor voltage waveform is as shown in Fig. 3-3b.

Figure 3-3 Example 3-1.

Li

0

3A4A

3 sµ

5 sµ

16.67V

t

Lv

0 t

25V−

( )a

( )b

Li

0

3A4A

3 sµ

5 sµ

16.67V

t

Lv

0 t

25V−

( )a

( )b

Page 5: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 5

Figure 3-4 Example 3-2.

Ci

0

0.5A−

0.5A

t

,C ripplev

0t

( )a

( )b

3 sµ 2 sµ

2.5 sµ

1t 2t

p pV −∆

Q

Ci

0

0.5A−

0.5A

t

,C ripplev

0t

( )a

( )b

3 sµ 2 sµ

2.5 sµ

1t 2t

p pV −∆

Q

Example 3-2 The capacitor current Ci , shown in Fig. 3-4a, is flowing through a

capacitor of 100 Fµ . Calculate the peak-peak ripple in the capacitor

voltage waveform due to this ripple current.

Solution For the given capacitor current waveform, the capacitor voltage waveform, asshown in Fig. 3-4b, is at its minimum at time 1t , prior to which the capacitor current has

been negative. This voltage waveform reaches its peak at time 2t , beyond which the

current becomes negative.

The hatched area in Fig. 3-4a equals the charge Q

2

1

1 0.5 2.5 0.6252

t

Ct

Q i dt Cµ µ= ⋅ = × × =∫

Using Eq. 3-6, the peak-peak ripple in the capacitor voltage is 6.25p pQV mVC−∆ = = .

Page 6: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 6

• Simplifying Assumptions

• Two-Step Process

• Common Operating Principles

Page 7: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 7

BUCK CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

o A inV V DV= =

(1 )in o oL s s

V V Vi DT D TL L−

∆ = = −

oL o

VI IR

= =

,( ) ( )C L ripplei t i t

in L oI DI DI= =in in o oV I V I=

Figure 3-5 Buck dc-dc converter.

inVLi

Av

L in ov V V= −

LvoV

1q =

inV

LiAv

L ov V= −

oV

0q = 0Av =

inV

ini

Li

Av LvoV

q

CioI

(a)

(b)

q

Av

Lv

,L ripplei

Li

ini

inV A oV V=

( )in oV V−

( )oV−

Li∆

L oI I=

inI

A

B

t

t

t

t

t

t0

0

0

0

0

0

1

(c) (d)

inVLi

Av

L in ov V V= −

LvoV

1q =

Li

Av

L in ov V V= −

LvoV

1q =

inV

LiAv

L ov V= −

oV

0q = 0Av =

inV

LiAv

L ov V= −

oV

0q = 0Av =

inV

ini

Li

Av LvoV

q

CioI

(a)

(b)

q

Av

Lv

,L ripplei

Li

ini

inV A oV V=

( )in oV V−

( )oV−

Li∆

L oI I=

inI

A

B

t

t

t

t

t

t0

0

0

0

0

0

1q

Av

Lv

,L ripplei

Li

ini

inV A oV V=

( )in oV V−

( )oV−

Li∆

L oI I=

inI

A

B

t

t

t

t

t

t0

0

0

0

0

0

1

(c) (d)

Page 8: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 8

Example 3-3 In the Buck dc-dc converter of Fig. 3-5a, 24L Hµ= . It is operating in dc

steady state under the following conditions: 20inV V= , 0.6D = , 12oP W= , and

200sf kHz= . Assuming ideal components, calculate and draw the waveforms shown

earlier in Fig. 3-5d.

Solution With 200sf kHz= , 5sT sµ= and 3on sT DT sµ= = . 12o inV DV V= = .

The inductor voltage Lv fluctuates between ( ) 8in oV V V− = and ( ) 12oV V− = − , as shown in

Fig. 3-6.

Therefore, from Eq. 3-13, the ripple in the inductor current is 1Li A∆ = . The average

inductor current is / 1L o o oI I P V A= = = . Therefore, ,L L L ripplei I i= + , as shown in Fig. 3-6.

When the transistor is on, in Li i= , otherwise zero. The average input currents is

0.6in oI DI A= = .

Figure 3-6 Example 3-3.

Li

,L ripplei

Lv

Av

q

ini

t

t

t

t

t

t

20inV = 12A oV V V= =

( ) 8in oV V V− =

12oV V− = −

Li∆

1L oI I A= =

0.6inI A=

3 sµ5 sµ

0

1

0

0

0

0

0

1.5

1.5

0.5

0.5

0.5−

0.5

Li

,L ripplei

Lv

Av

q

ini

t

t

t

t

t

t

20inV = 12A oV V V= =

( ) 8in oV V V− =

12oV V− = −

Li∆

1L oI I A= =

0.6inI A=

3 sµ5 sµ

0

1

0

0

0

0

0

1.5

1.5

0.5

0.5

0.5−

0.5

0.5 A

0.5 A−

1Li A∆ =

1.5 A

1.5 A

Li

,L ripplei

Lv

Av

q

ini

t

t

t

t

t

t

20inV = 12A oV V V= =

( ) 8in oV V V− =

12oV V− = −

Li∆

1L oI I A= =

0.6inI A=

3 sµ5 sµ

0

1

0

0

0

0

0

1.5

1.5

0.5

0.5

0.5−

0.5

Li

,L ripplei

Lv

Av

q

ini

t

t

t

t

t

t

20inV = 12A oV V V= =

( ) 8in oV V V− =

12oV V− = −

Li∆

1L oI I A= =

0.6inI A=

3 sµ5 sµ

0

1

0

0

0

0

0

1.5

1.5

0.5

0.5

0.5−

0.5

0.5 A

0.5 A−

1Li A∆ =

1.5 A

1.5 A

Page 9: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 9PSpice Modeling: C:\FirstCourse_PE_Book03\Buckconv.sch

Page 10: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 10

Simulation Results

Time

450us 455us 460us 465us 470us 475us 480us 485us 490us 495us 500usI(C1) I(L1) V(L1:1,L1:2)

-8

-4

0

4

8

12

16

Page 11: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 11

BOOST CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

Figure 3-7 Boost dc-dc converter.

oV

inV

q p

CLv

Li

inVoV

p

CLv

q

Li

(a) (b)

oV

inV

q p

CLv

Li

oV

inV

q p

CLv

Li

inVoV

p

CLv

q

Li

inVoV

p

CLv

q

Li

(a) (b)

Page 12: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 12

Boost converter: operation and waveforms

11

o

in

VV D

=−

( )o inV V>

(1 )in o inL s s

V V Vi DT D TL L

−∆ = = −

in in o oV I V I=1

1 1o o o

L in oin

V I VI I IV D D R

= = = =− −

,( ) ( )C diode ripple diode oi t i t i I= −

Figure 3-8 Boost converter: operation and waveforms.

inVoV

L inv V=

Li 0Av =

1q =

inV

oVL in ov V V= −

Li

0q =

A ov V=

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

oV A inv V=

A

B( )o inV V− −

Li∆

LI

( )diode oI I=

inV

(a)

(b) (c)0( )I−

inVoV

L inv V=

Li 0Av =

1q =

inVoV

L inv V=

Li 0Av =

1q =

inV

oVL in ov V V= −

Li

0q =

A ov V=

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

oV A inv V=

A

B( )o inV V− −

Li∆

LI

( )diode oI I=

inV

(a)

(b) (c)0( )I−

Page 13: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 13

Example 3-4 In a Boost converter of Fig. 3-8a, the inductor current has 2Li A∆ = . It is

operating in dc steady state under the following conditions: 5inV V= , 12oV V= ,

10oP W= , and 200sf kHz= . (a) Assuming ideal components, calculate L and draw the

waveforms as shown in Fig. 3-8c. Solution From Eq. 3-19, the duty-ratio 0.583D = . With 200sf kHz= , 5sT sµ= and

2.917on sT DT sµ= = . Lv fluctuates between 5inV V= and ( ) 7o inV V V− − = − . Using the

conditions during the transistor on-time, from Eq. 3-21,

7.29ins

L

VL DT Hi

µ= =∆

.

The average inductor current is ( ) / 2L in in o inI I P P V A= = = = , and ,L L L ripplei I i= + . When the

transistor is on, the diode current is zero; otherwise diode Li i= . The average diode current

is equal to the average output current:

(1 ) 0.833diode o inI I D I A= = − = .

The capacitor current is C diode oi i I= − . When the transistor is on, the diode current is zero

and 0.833C oi I A= − = − . The capacitor current jumps to a value of 2.167 A and drops to

1 0.833 0.167 A− = .

Page 14: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 14

Figure 3-9 Example 3-4.

Lv

Av

q

,L ripplei

ini

diodei

Ci

t0

0

0

0

0

0

12oV V= 5A inv V V= =

( ) 7o inV V V− − = − 2Li A∆ =

2LI A=

( ) 0.833diode oI I A= =

5inV V=

3 sµ5 sµ

t

t

t

t

t

t

0

1A−

1A

0.833 A−

2.167 A

0.167 A

3.0 A

1.0 A

3.0 A

1.0 A

Lv

Av

q

,L ripplei

ini

diodei

Ci

t0

0

0

0

0

0

12oV V= 5A inv V V= =

( ) 7o inV V V− − = − 2Li A∆ =

2LI A=

( ) 0.833diode oI I A= =

5inV V=

3 sµ5 sµ

t

t

t

t

t

t

0

1A−

1A

0.833 A−

2.167 A

0.167 A

3.0 A

1.0 A

3.0 A

1.0 A

Page 15: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 15PSpice Modeling: C:\FirstCourse_PE_Book03\Boost.sch

Page 16: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 16

Time

1.950ms 1.955ms 1.960ms 1.965ms 1.970ms 1.975ms 1.980ms 1.985ms 1.990ms 1.995ms 2.000msI(L1) V(L1:1,L1:2)

-15

-10

-5

0

5

10

15

Simulation Results

Page 17: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 17

Boost converter: voltage transfer ratio

Figure 3-10 Boost converter: voltage transfer ratio.

0

11 D−

,L critIDCM CCM

LI

o

in

VV

1

0

11 D−

,L critIDCM CCM

LI

o

in

VV

1

Page 18: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 18

BUCK-BOOST CONVERTER ANALYSIS IN DC STEADY STATE

Figure 3-11 Buck-Boost dc-dc converter.

q

A

AvLv

Li inV

oV

diodei

oILv

Av

oVinV

oI

(a) (b)

Li

q

A

AvLv

Li inV

oV

diodei

oI

q

A

AvLv

Li inV

oV

diodei

oILv

Av

oVinV

oI

(a) (b)

Li

Page 19: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 19

Buck-Boost converter: operation and waveforms

1o

in

V DV D

=−

(1 )in oL s s

V Vi DT D TL L

∆ = = −

L in oI I I= +

in in o oV I V I=

1o

in o oin

V DI I IV D

= =−

1 11 1

oL in o o

VI I I ID D R

= + = =− −

,( ) ( )C diode ripplei t i tFigure 3-12 Buck-Boost converter: operation and waveforms.

ini

L inv V=

A in ov V V= +

oVinV

Li

inVLiL ov V= −

0Av =

oV

(a)

(b)

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

oV−

A

B

( )in oV V+

Li∆

LI

( )diode oI I=

inV

(c)

inioI

oI

sDT

sT

A oV V=

0( )I−

ini

L inv V=

A in ov V V= +

oVinV

Li L inv V=

A in ov V V= +

oVinV

Li

inVLiL ov V= −

0Av =

oV

(a)

(b)

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

oV−

A

B

( )in oV V+

Li∆

LI

( )diode oI I=

inV

(c)

inioI

oI

sDT

sT

A oV V=

0( )I−

Page 20: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 20

Example 3-5 A Buck-Boost converter of 3-11b is operating in dc steady state underthe following conditions: 14inV V= , 42oV V= , 21oP W= , 2Li A∆ = and 200sf kHz= .

Assuming ideal components, calculate L and draw the waveforms as shown in Fig. 3-12c.

Solution From Eq. 3-26, 0.75D = . 1/ 5s sT f sµ= = and 3.75on sT DT sµ= = as shown in

Fig. 3-13. The inductor voltage Lv fluctuates between 14inV V= and 42oV V− = − . Using

Eq. 3-28

26.25ins

L

VL DT Hi

µ= =∆

.

The average input current is ( ) / 1.5in in o inI P P V A= = = . / 0.5o o oI P V A= = . Therefore,

2L in oI I I A= + = . When the transistor is on, the diode current is zero; otherwise diode Li i= .

The average diode current is equal to the average output current: 0.5diode oI I A= = . The

capacitor current is C diode oi i I= − . When the transistor is on, the diode current is zero and

0.5C oi I A= − = − . The capacitor current jumps to a value of 2.5 A and drops to

1 0.5 0.5A− = .

Page 21: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 21

Figure 3-13 Example 3-5.

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

42oV A− = −

( ) 56in oV V V+ =

2Li A∆ =

2LI A=

( ) 0.5diode oI I A= =

14inV V=

3.75 sµ5 sµ

42A oV V V= =

1 A−

1 A

3A

1A

3A1A

2.5A

0.5A−

0.5A

Lv

Av

q

,L ripplei

Li

diodei

Cit

t

t

t

t

t

t0

0

0

0

0

0

0

42oV A− = −

( ) 56in oV V V+ =

2Li A∆ =

2LI A=

( ) 0.5diode oI I A= =

14inV V=

3.75 sµ5 sµ

42A oV V V= =

1 A−

1 A

3A

1A

3A1A

2.5A

0.5A−

0.5A

Page 22: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 22PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching.sch

Page 23: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 23

Simulation Results

Time

2.950ms 2.955ms 2.960ms 2.965ms 2.970ms 2.975ms 2.980ms 2.985ms 2.990ms 2.995ms 3.000msI(L1) V(L1:1,L1:2)

-30

-20

-10

0

10

20

Page 24: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 24

Buck-Boost converter: voltage transfer ratio

Figure 3-14 Buck-Boost converter: voltage transfer ratio.

0

1D

D−

,L critIDCM CCMLI

o

in

VV

1

0

1D

D−

,L critIDCM CCMLI

o

in

VV

1

Page 25: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 25

Other Buck-Boost Topologies• SEPIC Converters (Single-Ended Primary Inductor Converters)

• Cuk Converters

Page 26: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 26

SEPIC Converters (Single-Ended Primary Inductor Converters)

(1 )in oDV D V= −1

o

in

V DV D

=−

Figure 3-15 SEPIC converter.

inV2Li

q

Cv

oV

Li diodei

2Lv(a)

inV

Cv

oV

2L Cv v=1q =

2LvoVinV

0q =

Cv

2Lv

2L ov V= −

(b) (c)

inV2Li

q

Cv

oV

Li diodei

2Lv(a) inV2Li

q

Cv

oV

Li diodei

2LvinV2Li

q

Cv

oV

Li diodei

2Lv(a)

inV

Cv

oV

2L Cv v=1q =

2LvoVinV

0q =

Cv

2Lv

2L ov V= −

(b) (c)inV

Cv

oV

2L Cv v=1q =

2LvinV

Cv

oV

2L Cv v=1q =

2LvoVinV

0q =

Cv

2Lv

2L ov V= −

oVinV

0q =

Cv

2Lv

2L ov V= −

(b) (c)

Page 27: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 27

Cuk Converter

(1 )o inDI D I= −1

in

o

I DI D

=− 1

o

in

V DV D

=−

Figure 3-16 Cuk converter.

inV

q

Cv

oV

Li oi

oI

C1L 2L

(a)

inV

1q =

Cv

oVini oi

inV

0q =

Cv

oVini

oi(b) (c)

inV

q

Cv

oV

Li oi

oI

C1L 2L

(a) inV

q

Cv

oV

Li oi

oI

C1L 2L

inV

q

Cv

oV

Li oi

oI

C1L 2L

(a)

inV

1q =

Cv

oVini oi

inV

0q =

Cv

oVini

oi(b) (c)

Page 28: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 28

TOPOLOGY SELECTION

Criterion Buck Boost Buck-Boost

Transistor V inV oV ( )in oV V+

Transistor I oI inI in oI I+

rmsI Transistor oDI inDI ( )in oD I I+

Transistor oDI inDI ( )in oD I I+ avgI

Diode (1 ) oD I− (1 ) inD I− ( )(1 ) in oD I I− +

LI oI inI in oI I+

Effect of L on C significant little little Pulsating Current input output both

Page 29: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 29

WORST-CASE DESIGN

The worst-case design should consider the ranges in which the input voltage and theoutput load vary. As mentioned earlier, often converters above a few tens of watts aredesigned to operate in CCM. To ensure CCM even under very light load conditionswould require prohibitively large inductance. Hence, the inductance value chosen isoften no larger than three times the critical inductance ( )3 cL L< , where, as discussed in

section 3-15, the critical inductance cL is the value of the inductor that will make the

converter operate at the border of CCM and DCM at full-load.

Page 30: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 30

SYNCHRONOUS-RECTIFIED BUCK CONVERTER FOR VERY LOW OUTPUT VOLTAGES

Figure 3-17 Buck converter: synchronous rectified.

inV

oVAv

T +

T −

q+

q−

Li

( )a

q+ q−

Av

Li

t

t

t

0t =

sDTsT

inV

oV0

0

0

0 LI

( )b

inV

oVAv

T +

T −

q+

q−

Li

( )a

inV

oVAv

T +

T −

q+

q−

Li

( )a

q+ q−

Av

Li

t

t

t

0t =

sDTsT

inV

oV0

0

0

0 LI

( )b

q+ q−

Av

Li

t

t

t

0t =

sDTsT

inV

oV0

0

0

0 LI

( )b

Page 31: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 31

INTERLEAVING OF CONVERTERS

Figure 3-18 Interleaving of converters.

1q2q

1q

2q

0

0

t

t

(a) (b)

inV+

−−

+

oV

1Li

2Li

1q2q

1q

2q

0

0

t

t

(a) (b)

inV+

−−

+

oV

1Li

2Li

Page 32: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 32

REGULATION OF DC-DC CONVERTERS BY PWM

( )( ) ˆc

r

v td tV

=

Figure 3-19 Regulation of output by PWM.

inV oV

,o refVcontroller

dc-dcconvertertopology

(a) (b)

0sd T

sTt

rV( )cv t

t

rv

( )q t0

1

inV oV

,o refVcontroller

dc-dcconvertertopology

(a) (b)

0sd T

sTt

rV( )cv t

t

rv

( )q t0

1

Page 33: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 33

DYNAMIC AVERAGE REPRESENTATION OF CONVERTERS IN CCM

( ) ( ) ( )cp vpv t d t v t=

( ) ( ) ( )vp cpi t d t i t=

cp vpV DV=

vp oI D I=

Figure 3-20 Average dynamic model of a switching power-pole.

( )q t

( )rv t

( )cv t

vpv

cpv

cpi

vpi

vpVcpV

cpIvpI

1: D

cpv

1: ( )d t

( )cv t ^1

rV(c)(a) (b)

vpi

vpv

cpi

( )q t

( )rv t

( )cv t

vpv

cpv

cpi

vpi

vpVcpV

cpIvpI

1: D

cpv

1: ( )d t

( )cv t ^1

rV(c)(a) (b)

vpi

vpv

cpi

Page 34: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 34

Average dynamic models of three converters

Figure 3-21 Average dynamic models: Buck (left), Boost (middle) and Buck-Boost (right).

q

inVovLv

Li

oVinV

q p

AA

qoV

inV

inV

1: ( )d t

inV

1: (1 ( ))d t−p 1: ( )d t

inV

(a)

(b)

Li LiLi

LiLi

ov ov

ov

⇓ ⇓⇓q

inVovLv

Li

oVinV

q p

AA

qoV

inV

inV

1: ( )d t

inV

1: (1 ( ))d t−p 1: ( )d t

inV

(a)

(b)

Li LiLi

LiLi

ov ov

ov

⇓ ⇓⇓

Page 35: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 35PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Avg_CCM.sch

Page 36: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 36

PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching_LoadTransient.sch

Page 37: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 37

Simulation Results

Time

0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0msI(L1) V(L1:1,L1:2)

-40

-20

0

20

40

Page 38: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 38

BI-DIRECTIONAL SWITCHING POWER-POLE

Figure 3-22 Bi-directional power flow through a switching power-pole.

q

inVLi

Buck Boost

(1 )q q− = −

inV

1 0q or=

1q =

0q =

Buck

0q− =

1q− =

1 0q or− =

inV

Boost

(a) (b) iL = positive (c) iL = negative

q

inVLi

Buck Boost

(1 )q q− = −

inV

1 0q or=

1q =

0q =

Buck

0q− =

1q− =

1 0q or− =

inV

Boost

(a) (b) iL = positive(b) iL = positive (c) iL = negative(c) iL = negative

Page 39: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 39

Average dynamic model of the switching power-pole with bi-directional power flow

Figure 3-23 Average dynamic model of the switching power-pole with bi-directional powerflow.

q

inVLi

Buck Boost

(1 )q q− = − 1: d

Li

inV

(a) (b)

q

inVLi

Buck Boost

(1 )q q− = − 1: d

Li

inV

(a) (b)

Page 40: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 40

DISCONTINUOUS-CONDUCTION MODE (DCM)

Figure 3-24 Inductor current at various loads; duty-ratio is kept constant.

1Li

2Li,L crii

1LI2LI,L critI

t

Li

0

1Li

2Li,L crii

1LI2LI,L critI

t

Li

0

Page 41: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 41

, , , , - 2in

L crit Boost L crit Buck Boosts

VI I DLf

= =

, , (1 )2

inL crit Buck

s

VI D DLf

= −

Critical Inductor Currents and Load Resistances

,

, 2

, 2

2(1 )

2(1 )2

(1 )

scrit Buck

scrit Boost

scrit Buck Boost

LfRDLfR

D DLfRD−

=−

=−

=−

Page 42: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 42

Buck converter in DCM

Figure 3-25 Buck converter in DCM.

Liˆ

LI s

tT

AvoVinV

0

0D ,1offD ,2offD

1

o

in

VV

,L critIDCM CCM

LI

(a)

0

D

1

s

tT

(b)

Liˆ

LI s

tT

AvoVinV

0

0D ,1offD ,2offD

1

o

in

VV

,L critIDCM CCM

LI

(a)

0

D

1

s

tT

(b)

Page 43: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 43

Boost Converters in DCM

Figure 3-26 Boost converter in DCM.

LiˆLI

s

tT

AvoV

inV

0

0D ,1offD ,2offD

1(a)

0

11 D−

,L critIDCM CCMLI

o

in

VV

1

(b)

s

tT

LiˆLI

s

tT

AvoV

inV

0

0D ,1offD ,2offD

1(a)

0

11 D−

,L critIDCM CCMLI

o

in

VV

1

(b)

s

tT

Page 44: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 44

Buck-Boost converter in DCM

Figure 3-27 Buck-Boost converter in DCM.

LiˆLI s

tT

Av

oVin oV V+

0

0D ,1offD ,2offD

1(a)

0

1D

D−

,L critIDCM CCM LI

o

in

VV

(b)

1

s

tT

LiˆLI s

tT

Av

oVin oV V+

0

0D ,1offD ,2offD

1(a)

0

1D

D−

,L critIDCM CCM LI

o

in

VV

(b)

1

s

tT

Page 45: 19673885-Slides-PECh3-July05

© Ned Mohan, 2005

3- 45

Table 3-2 kV and kI Converter kV kI

Buck 0

21( )

s L

in o

Lf I VV V D

− −

2

0( )2 in L

s

D V V DILf

− −

Boost ( )0

21 s Lin

in

Lf I V VV D

− −

2

2 in Ls

d V dILf

Buck-Boost 21 s Lo

in

Lf I VV D

2

2 in Ls

D V DILf

Figure 3-28 Average representation of a switching power-pole valid in CCM and DCM. (a) Buck and Buck-Boost

vpv cpv

vpicpikv

ki

1: ( )d t (1 ) :1d−

cpv

cpi kv

ki

vpi

vpv

(b) Boost(a) Buck and Buck-Boost

vpv cpv

vpicpikv

ki

1: ( )d t (1 ) :1d−

cpv

cpi kv

ki

vpi

vpv

(b) Boost