64
ANALYSIS OF CABLE STRUCTURES by NEWTON'S METHOD by RONALD IAN SPENCER MILLER B.A. (1965) B.A.Sc. (1967) The University of British Columbia A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE In the Department of CIVIL ENGINEERING We accept this thesis as conforming to the required standard The University of British Columbia April 1971

1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

Embed Size (px)

DESCRIPTION

Structural analysis of cables

Citation preview

Page 1: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

ANALYSIS OF CABLE STRUCTURES

by

NEWTON'S METHOD

by

RONALD IAN SPENCER MILLER

B.A. (1965)

B.A.Sc. (1967)

The U n i v e r s i t y o f B r i t i s h C o l u m b i a

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

I n t h e D e p a r t m e n t

o f

C I V I L ENGINEERING

We a c c e p t t h i s t h e s i s a s c o n f o r m i n g

t o t h e r e q u i r e d s t a n d a r d

The U n i v e r s i t y o f B r i t i s h C o l u m b i a

A p r i l 1971

Page 2: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e

r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h

C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e

f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r

e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be

g r a n t e d by t h e Head o f my D e p a r t m e n t o r b y h i s r e p r e s e n t a t i v e s .

I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r

f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n .

D e p a r t m e n t o f C I V I L ENGINEERING

The U n i v e r s i t y o f B r i t i s h C o l u m b i a ,

V a n c o u v e r 8, C a n a d a .

Page 3: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

A b s t r a c t

The a n a l y s i s o f s t r u c t u r e s w h i c h c o n t a i n c a t e n a r y c a b l e s

i s made d i f f i c u l t by t h e n o n - l i n e a r f o r c e - d e f o r m a t i o n r e l a t i o n s h i p s

o f t h e c a b l e s . F o r a l l b u t t h e s m a l l e s t d e f l e c t i o n s i t i s n o t

p o s s i b l e t o l i n e a r i z e t h e s e r e l a t i o n s h i p s w i t h o u t c a u s i n g s i g n i f i c ­

a n t i n a c c u r a c i e s .

Newton's Method s o l v e s n o n - l i n e a r e q u a t i o n s by s o l v i n g a

s u c c e s s i o n o f l i n e a r i z e d p r o b l e m s , t h e ' a n s w e r c o n v e r g i n g t o t h e

s o l u t i o n o f t h e n o n - l i n e a r p r o b l e m . Newton's Method so u s e d t o

a n a l y z e c a b l e - c o n t a i n i n g s t r u c t u r e s r e s u l t s i n a s u c c e s s i o n o f l i n e a r

s t i f f n e s s a n a l y s i s p r o b l e m s . As a r e s u l t , c o n v e n t i o n a l s t i f f n e s s

a n a l y s i s computer programs may be m o d i f i e d w i t h o u t g r e a t d i f f i c u l t y

t o s o l v e c a b l e s t r u c t u r e s by Newton's Method.

The use o f Newton's Method t o s o l v e c a b l e s t r u c t u r e s f o r m s

t h e body o f t h i s t h e s i s . The two b a s i c i n n o v a t i o n s n e c e s s a r y , w h i c h

a r e t h e p r o v i s i o n o f methods f o r c a l c u l a t i n g t h e e n d - f o r c e s o f a

c a b l e i n an a r b i t a r y p o s i t i o n , and f o r e v a l u a t i n g t h e s t i f f n e s s

m a t r i x o f a c a b l e , a r e p r e s e n t e d . A l s o d i s c u s s e d a r e t h e c o - o r d i n a t e

t r a n s f o r m a t i o n s n e c e s s a r y t o d e s c r i b e t h e c a b l e s t i f f n e s s m a t r i x and

c a b l e end f o r c e s i n a G l o b a l C o - o r d i n a t e S y s t e m .

The v i r t u e s o f t h e method a r e d e m o n s t r a t e d i n two example

p r o b l e m s , and t h e t h e o r e t i c a l b a s i s f o r Newton's Method i s e x a m i n e d .

F i n a l l y , t h e v a l u e o f t h e method p r e s e n t e d i s b r i e f l y d i s c u s s e d .

Page 4: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

TABLE OF CONTENTS

A b s t r a c t

L i s t o f F i g u r e s

Acknowledgements

Page

1. The P rob l em 1

2. The Method 5

3. C a b l e End F o r c e s 12

4 . The C a b l e S t i f f n e s s M a t r i x 21

5. The C a b l e C o - o r d i n a t e System 26

6 . Advanced T o p i c s

1. N o n - l i n e a r B e h a v i o u r o f Non-Cab le S t r u c t u r a l

Components 31

2. S p e c i f i e d C a b l e Ten s i on s 33

3. M i s c e l l a n e o u s P rob lems 3^

4 . C a b l e Loads 3^

7. Examples

Example 1 36

Example 2 38

8. D i s c u s s i o n 44

B i b l i o g r a p h y 46

Append i x 1 i

Append i x 2 v i i

Append i x 3 x

Page 5: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

LIST OF FIGURES.

Page

Fi g . 2.1 Example Problem 7

F i g . 2.2 Path of Solution to Example 10

F i g . 3.1a The Cable Co-ordinate System 12

F i g . 3.1b Forces i n the Cable Plane 13

F i g . 3«lc Dimensions i n the Cable Plane 13

F i g . 3.2 Element of a Catenary Cable 14

F i g . 4.1 Degrees of Freedom i n the Cable Plane 22

F i g . 4.2 Degrees of Freedom for a General Cable 25

F i g . 5*1 Cable and Global Co-ordinate Systems 30

F i g . 7.1 Guyed Tower 39

F i g . 7.2 A x i a l Force at 750' Level Versus I n i t i a l

Cable Stress 40

Fi g . 7.3 Bending Moment at 750' Level Versus

I n i t i a l Cable Stress 40

Fi g . 7.4 Lateral Deflection at 1,000* Level Versus

I n i t i a l Cable Stress 41

F i g . 7.5 Lateral Deflection at 750' Level Versus

I n i t i a l Cable Stress 41

Fi g . 7.6 Stress i n Higher Windward Cable 42

F i g . 7.7 Stress i n Lower Windward Cable 42

Page 6: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

AC KNOWLEDGEMENTS

I should l i k e to express my a p p r e c i a t i o n f o r the guidance

and h e l p g i v e n by my s u p e r v i s o r , Dr. R.F. Hooley throughout the

w r i t i n g of t h i s t h e s i s . I should a l s o l i k e to thank the N a t i o n a l

Research C o u n c i l of Canada f o r t h e i r f i n a n c i a l support, and the

U n i v e r s i t y o f B r i t i s h Columbia Computing Centre f o r the use of

t h e i r f a c i l i t i e s .

F i n a l l y , I should l i k e to thank Miss Sarah Fenning f o r her

p a i n s t a k i n g e f f o r t s i n t y p i n g t h i s t h e s i s .

A p r i l , 1971 Vancouver, B r i t i s h Columbia.

Page 7: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

C h a p t e r 1. The P r o b l e m .

T h e r e a r e many s t r u c t u r e s w h i c h i n v o l v e c a b l e s - s u s p e n s i o n

b r i d g e s , guyed t o w e r s , t r a n s m i s s i o n l i n e s , a e r i a l tramways,

c a b l e - s u p p o r t e d r o o f s and numerous o t h e r s . F o r some o f t h e s e

p r o b l e m s t h e c a b l e s a r e so t a u t t h a t t h e y may be t r e a t e d a s b a r s :

f o r o t h e r s t h e y a r e so t h i c k t h e y must be t r e a t e d a s beams: f o r

s t i l l o t h e r s , t h e y a r e so c l o s e l y s p a c e d t h e y may be t r e a t e d as

membranes. T h e r e r e m a i n , however, a l a r g e number o f s t r u c t u r e s

w h e r e i n t h e c a b l e s may be a n a l y z e d u n d e r t h e a s s u m p t i o n s o f

c a t e n a r y b e h a v i o u r : t h a t c a b l e s a r e s u b j e c t e d t o a l o a d i n g p e r

u n i t l e n g t h w h i c h i s c o n s t a n t i n i n t e n s i t y and d i r e c t i o n , and

t h a t t h e y a r e c o m p l e t e l y f l e x i b l e i n b e n d i n g .

T h e s e p r o b l e m s a r e d i f f i c u l t t o s o l v e , f o r u n l i k e many o f

t h e p r o b l e m s e n c o u n t e r e d i n s t r u c t u r a l a n a l y s i s , t h e i r l o a d -

d e f o r m a t i o n r e l a t i o n s h i p s a r e m a r k e d l y n o n - l i n e a r . As a c a b l e

i s s t r e t c h e d , i t becomes s t i f f e r , and as i t i s r e l a x e d i t becomes

more f l e x i b l e . M o r e o v e r , t h i s n o n - l i n e a r i t y i s s i g n i f i c a n t f o r

a l l b u t t h e s m a l l e s t d e f l e c t i o n s . The f r i e n d l y a s s u m p t i o n s r e ­

q u i r e d f o r s t i f f n e s s a n a l y s i s c a n n o t be made, f o r e v e n i f we d e t ­

e r m i n e d t h e s t i f f n e s s m a t r i x f o r t h e s t r u c t u r e i n i t s i n i t i a l

c o n f i g u r a t i o n , t h a t s t i f f n e s s w o u l d change so m a r k e d l y as t h e

d e f o r m a t i o n s i n c r e a s e d t h a t t h e answer we f o u n d w o u l d be q u i t e

u n r e l i a b l e .

We may be a b l e t o s i m p l i f y t h e f o r m a t i o n o f t h e s t i f f n e s s

m a t r i x b y m a k i n g f u r t h e r a s s u m p t i o n s : f o r i n s t a n c e , we may

Page 8: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 2 -

assume t h a t t h e c a b l e s a r e i n e x t e n s i b l e a x i a l l y , o r t h a t t h e y

a r e r e a s o n a b l y t a u t ( i n w h i c h c a s e t h e c a b l e s f o l l o w homely

p a r a b o l a s , i n s t e a d o f e s o t e r i c c a t e n a r i e s ) . N e v e r t h e l e s s ,

t h e c e n t r a l p r o b l e m w i l l r e m a i n - t h e c a b l e s a r e n o n - l i n e a r .

T h i s t h e s i s p r e s e n t s a method f o r t h e a n a l y s i s o f s t r u c t u r e s

c o n t a i n i n g c a t e n a r y c a b l e s . The method may be s i m p l i f i e d

(and r e s t r i c t e d ) b y t h e a s s u m p t i o n o f i n e x t e n s i b l e b e h a v i o u r

a n d / o r p a r a b o l i c c a b l e s . As p r e s e n t e d , i t s o l v e s t h o s e

p r o b l e m s where c a b l e s may be t r e a t e d as s u b j e c t e d t o c o n s t a n t

l o a d i n g p e r u n i t l e n g t h , c o m p l e t e l y f l e x i b l e i n b e n d i n g , and

l i n e a r - e l a s t i c a x i a l l y . N o n - c a b l e components o f t h e

s t r u c t u r e a r e a n a l y z e d by c o n v e n t i o n a l s m a l l s t r a i n - s m a l l

r o t a t i o n t h e o r y s t i f f n e s s a n a l y s i s .

I n t h e d e v e l o p m e n t o f t h i s t h e s i s , t h r e e methods f o r

t h e a n a l y s i s o f t h e p r o b l e m s d e s c r i b e d i n t h e p r e v i o u s p a r a ­

g r a p h were i n v e s t i g a t e d . The t h r e e methods a r e d i s c u s s e d

b r i e f l y b e l o w .

The f i r s t method was s i m p l y t o t r e a t e a c h c a b l e as a

s e r i e s o f p i n - e n d e d b a r s . L i v e and d e a d l o a d s were a p p l i e d

a t t h e j o i n t s , and t h e s t r u c t u r e was a n a l y z e d u s i n g l a r g e

d e f l e c t i o n t h e o r y f o r t h e b a r s . R e s u l t s were o f t e n s a t i s ­

f a c t o r y , b u t two d i s a d v a n t a g e s were a p p a r e n t : f o r c a b l e s w i t h

l i t t l e s a g t h e s t i f f n e s s m a t r i x was p o o r l y c o n d i t i o n e d s and

t h e amount o f c o m p u t a t i o n i n v o l v e d i n t h e method was q u i t e

h i g h .

The s e c o n d method was t o t r e a t e a c h c a b l e as one member

and t o a p p l y t h e l o a d i n i n c r e m e n t s , t r e a t i n g t h e c a b l e

s t i f f n e s s as l i n e a r f o r e a c h i n c r e m e n t . T h i s method was a l s o

Page 9: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 3 -

o f t e n s a t i s f a c t o r y , b u t i t , t o o , had a drawback: t h e

a c c u r a c y o f t h e s o l u t i o n depended on t h e s i z e o f t h e l o a d i n c r e ­

ment c h o s e n . The o n l y way t o e n s u r e an a c c u r a t e answer was t o

p e r f o r m a n a l y s e s w i t h s u c c e s s i v e l y s m a l l e r l o a d i n c r e m e n t s i z e s ,

u n t i l t h e s o l u t i o n s c o n v e r g e d . I f o n l y one s o l u t i o n was made,

t h e a c c u r a c y was i n d e t e r m i n a t e . F o r some s t r u c t u r e s , w h i c h

b e h a v e d a l m o s t l i n e a r l y , o n l y a few i n c r e m e n t s were r e q u i r e d ,

whereas f o r h i g h l y n o n - l i n e a r s t r u c t u r e s t h e l o a d had t o be

b u i l t up i n many s m a l l i n c r e m e n t s .

The t h i r d method i n v e s t i g a t e d , w h i c h i s t h e method

d e s c r i b e d i n t h e r e m a i n d e r o f t h i s t h e s i s , had none o f t h e

drawbacks o f t h e f i r s t two methods. Any d e s i r e d d e g r e e o f

a c c u r a c y c o u l d be o b t a i n e d , and t h e amount o f c o m p u t a t i o n

r e q u i r e d was r e l a t i v e l y m o d e s t .

I n t h e i n i t i a l c o n f i g u r a t i o n , t h e ' u n b a l a n c e d f o r c e s '

a c t i n g on t h e s t r u c t u r e were e v a l u a t e d ( t h e u n b a l a n c e d f o r c e s

a r e s i m p l y t h e e x t e r n a l l o a d s minus t h e i n t e r n a l f o r c e s r e s i s t ­

i n g t h e m ) . The l i n e a r b e h a v i o u r o f t h e s t r u c t u r e was t h e n

r e p r e s e n t e d by a s t i f f n e s s m a t r i x ( e a c h c a b l e , l i k e e a c h beam,

b e i n g r e p r e s e n t e d b y a s i n g l e member m a t r i x ) and t h e l i n e a r

d e f l e c t i o n s due t o t h e u n b a l a n c e d f o r c e s were c a l c u l a t e d . I n

t h i s new d e f o r m e d p o s i t i o n a new s e t o f u n b a l a n c e d f o r c e s was

d e t e r m i n e d , and a new s t i f f n e s s m a t r i x was f o u n d ( s i n c e t h e

s t i f f n e s s o f t h e s t r u c t u r e was n o t t h e same i n t h e d e f o r m e d

p o s i t i o n as i t was i n t h e i n i t i a l p o s i t i o n ) . The d e f l e c t i o n s

due t o t h e new s e t o f u n b a l a n c e d f o r c e s were c a l c u l a t e d and

added t o t h e p r e v i o u s d e f l e c t i o n s . T h i s p r o c e d u r e was c a r r i e d

o u t u n t i l t h e u n b a l a n c e d f o r c e s were e f f e c t i v e l y z e r o .

Page 10: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

_ 4 _

M a t h e m a t i c a l l y , t h i s i s Newton's method. A good d e s c r i p ­

t i o n may be found i n L i v e s l e y (Ch. 10.3. p. 241) ( 1 ) . The

procedure w i l l be d i s c u s s e d i n more d e t a i l i n the next chapter,

and the mathematical i m p l i c a t i o n s of Newton's method are r e ­

viewed i n Appendix 3«

Page 11: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 5 -

C h a p t e r 2. The Method.

The method p r o p o s e d has much i n common w i t h s t i f f n e s s

a n a l y s i s as i t c o n s i s t s o f a s e r i e s o f e v e r f i n e r a p p r o x i m ­

a t i o n s t o t h e s o l u t i o n , t h e change f r o m one a p p r o x i m a t i o n t o

t h e n e x t b e i n g f o u n d by s o l v i n g a l i n e a r s t i f f n e s s p r o b l e m .

As i s u s u a l i n s t i f f n e s s a n a l y s i s , t h e p o s i t i o n o f t h e

s t r u c t u r e i s d e f i n e d b y a s e t o f g e n e r a l i z e d c o - o r d i n a t e s ,

one d e g r e e o f f r e e d o m b e i n g a s s i g n e d t o e a c h p o s s i b l e d e f o r m ­

a t i o n d i r e c t i o n o f e a c h j o i n t . W h erever t h e r e i s a p o i n t

l o a d on a c a b l e , o r w h e r e v e r t h e r e i s a change i n t h e d i r e c t i o n

o r i n t e n s i t y o f t h e u n i f o r m l o a d on a c a b l e , a j o i n t must be

d e f i n e d .

As d e s c r i b e d i n C h a p t e r 1, t h e method p r o p o s e d i s an

i t e r a t i v e p r o c e d u r e c o n s i s t i n g o f t h e f o l l o w i n g b a s i c s t e p s :

(0) Choose a d e f l e c t e d shape w h i c h w i l l s e r v e a s t h e

s t a r t i n g p o i n t o f t h e i t e r a t i o n . The most c o n ­

v e n i e n t i n i t i a l p o s i t i o n w i l l be t h a t a t w h i c h a l l t h e

n o n - c a b l e components o f t h e s t r u c t u r e a r e u n s t r e s s e d ,

when s u c h a p o s i t i o n e x i s t s .

(1) I n t h e d e f l e c t e d shape, c a l c u l a t e t h e u n b a l a n c e d

l o a d s (UBL), w h i c h a r e j u s t t h e e x t e r n a l l o a d s minus

(a) t h e c a b l e end f o r c e s , and (b) t h e end f o r c e s

d e v e l o p e d by t h e n o n - c a b l e members, i n c l u d i n g t h e

e f f e c t s o f member l o a d i n g i f p r e s e n t . A l s o c a l c u l a t e

t h e s t i f f n e s s m a t r i x f o r t h e s t r u c t u r e i n t h i s d e f o r m ­

ed p o s i t i o n .

Page 12: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 6 -

(2) S o l v e f o r t h e i n c r e m e n t a l d e f l e c t i o n s due t o t h e

u n b a l a n c e d l o a d s , u s i n g t h e s t i f f n e s s m a t r i x j u s t

f o u n d . Add t h e s e i n c r e m e n t a l d e f l e c t i o n s t o t h e

p r e v i o u s d e f l e c t i o n s .

(3) R e p e a t s t e p s (1) and (2) u s i n g t h e new d e f l e c t e d

shape, u n t i l t h e u n b a l a n c e d l o a d s a r e n e g l i g i b l e .

The u n b a l a n c e d l o a d s r e p r e s e n t t h e amount b y w h i c h t h e

s t r u c t u r e i s o u t o f e q u i l i b r i u m . When we e v a l u a t e t h e un­

b a l a n c e d l o a d s i n s t e p ( 1 ) , we have i n f a c t p e r f o r m e d a n e x a c t

s o l u t i o n o f t h e s t r u c t u r e , b u t u n d e r a d i f f e r e n t l o a d i n g f r o m

t h a t i n w h i c h we a r e i n t e r e s t e d . We have a n e x a c t s o l u t i o n f o r

t h e l o a d i n g w h i c h c o n s i s t s o f t h e a p p l i e d l o a d s minus t h e un­

b a l a n c e d l o a d s . When we a p p l y t h e u n b a l a n c e d l o a d s t o t h e

s t r u c t u r e , and add t o t h e p r e s e n t d e f l e c t i o n s t h e i n c r e m e n t a l

d e f l e c t i o n s t h e y c a u s e , t h e new u n b a l a n c e d l o a d s a r e much

s m a l l e r , r e p r e s e n t i n g o n l y t h e e r r o r i n t h e s o l u t i o n . As t h e

u n b a l a n c e d l o a d s a p p r o a c h z e r o , t h e l o a d i n g f o r w h i c h o u r

d e f o r m e d p o s i t i o n i s a n e x a c t s o l u t i o n a p p r o a c h e s t h e l o a d i n g

whose e f f e c t s we w i s h t o s t u d y . F u r t h e r m o r e , t h e c l o s e r t h e

u n b a l a n c e d l o a d s a r e t o z e r o t h e more r a p i d l y do t h e two l o a d ­

i n g s a p p r o a c h c o i n c i d e n c e . We c a n t h u s f i n d a s o l u t i o n t o

w i t h i n any* a r b i t r a r y s m a l l t o l e r a n c e f o r e r r o r , l i m i t e d o n l y

by o u r c o m p u t a t i o n a l t e c h n i q u e s .

* T h i s i s p e r h a p s more v a l o r o u s t h a n d i s c r e e t . See C h a p t e r 8.

Page 13: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 7 -

L e t us c o n s i d e r a s i m p l e s i n g l e d e g r e e o f f r e e d o m

p r o b l e m w h i c h i l l u s t r a t e s t h e m a j o r f e a t u r e s o f t h e method.

I n f i g u r e 2.1 a 1000 f o o t l o n g i n e x t e n s i b l e c a b l e w h i c h w e i g h s

one pound p e r f o o t i s shown a t t a c h e d a t i t s l e f t end t o a s u p p o r t

and a t i t s r i g h t end t o a s p r i n g . The ends a r e c o n s t r a i n e d t o

r e m a i n a t t h e same h e i g h t . The s p r i n g has a s t i f f n e s s o f 1 k i p /

f o o t and i s u n s t r a i n e d when t h e c a b l e s p a n , L, i s 1000 f e e t .

One k i p i s a p p l i e d t o t h e r i g h t hand end o f t h e c a b l e , and i t i s

d e s i r e d t o f i n d t h e e q u i l i b r i u m p o s i t i o n .

F o r t h i s c a b l e , t h e h o r i z o n t a l component o f t e n s i o n , H,

i s r e l a t e d t o t h e s p a n , L, b y e q u a t i o n ( 3 « 5 ) i w h i c h may be

s i m p l i f i e d t o :

IOOO' long inextensible cable weight* 1 ibyft.

E x a m p l e Problem

F i g . 2.1.

Hsinhy = . 5 2.1

Where • Q005L H

2.2

Page 14: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 8 -

D i f f e r e n t i a t i n g e quation 2.1, we f i n d :

dH _ H c o s h Y 2 3

dL Lcoshy-^inhy The g e n e r a l i z e d degree of freedom a c t s to the r i g h t on

the r i g h t hand end of the c a b l e . Then at any span L, the un­

balanced l o a d equals the e x t e r n a l l o a d minus the r e s i s t i n g

f o r c e s due to the cable and the s p r i n g :

UBL = 1 - [ H + ( 1000- L )] (kips) 2.4

Where H i s found by s o l v i n g e q u a t i o n 2.1. The s t i f f n e s s ,

k, equals the cable s t i f f n e s s p l u s the s p r i n g s t i f f n e s s :

k - -^r-* 1 ( k/ft.) 2 , 5

d L The s o l u t i o n now proceeds as f o l l o w s :

(0) We cannot s t r e t c h the cable to the p o s i t i o n L = 1000

f e e t without c a u s i n g an i n f i n i t e f o r c e , so we choose

as the i n i t i a l p o s i t i o n L = 999 f e e t , c o r r e s p o n d i n g

to a d e f l e c t i o n § of -1 f o o t .

C y c l e 1.

(1) At L = 999 f e e t (S-l'). UBL = - 4.4463 kips k= 4.2318 k/ft.

(2) The i n c r e m e n t a l d e f l e c t i o n i s : " \ • 6 3 = -1.0507' 4.2 318

The new d e f l e c t i o n i s : -|.0-1.0507 = - 2.0507'

C y c l e 2.

(1) At § =-2.0507', UBL*-1.4445 kips . k = 2.10 21 k/ft.

I 4 4 4 « S

(2) The new d e f l e c t i o n i s : -2.0507- g |Q2| = ~ 2 7 3 7 8

Page 15: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 9 -

Cycle 3.

(1) At § =- 2.7378', UBL = - . 1489 kips k= 1. 7151 k/ft.

(2) The new d e f l e c t i o n i s : - 2.73 78- = -2.8246

Cycle 4.

(1) At 8 =-2.8246*. UBL =-.001435 kips k = 1.6824 k/ft.

(2) The new d e f l e c t i o n i s : - 2.8246- .001435 1.6824 = -2.8255

Cycle 5.

(1) At § =-2.8255', UBL= .00000013 kips Which i s small enough for most p r a c t i c a l purposes.

So our solution i s L = 1000'-§ = 997.1745'

Note that t h i s procedure exhibits quadratic convergence -

as the d e f l e c t i o n approaches the solution, the incremental

d e f l e c t i o n approaches the true error i n d e f l e c t i o n . In other

words, over the small deflections calculated as the solution i s

neared, the structure remains almost l i n e a r . In the f i r s t solu­

t i o n , the error i n the d e f l e c t i o n was cut by a factor of 2.36, from

1.8255 feet to 0.7748 feet. In the second solution i t was cut

by a factor of 8.8 (from .7748 to .0877) i n the t h i r d by 103,

and i n the fourth by 10,900.

The path followed i n the solution i s shown graphically

i n Figure 2.2.

Page 16: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 10 -

4

3

2

I

0

9- -i

-3

-4

-5

L , feet

9 9 9

l i near stiffness © start 1

o S T A R T

9 9 8 L

5 ? - L

3,4 9 9 7

P a t h of S o l u t i o n to E x a m p l e

F i g . 2.2.

The example c h o s e n was v e r y s i m p l e , b u t i t e x h i b i t s

a l l t h e i m p o r t a n t a s p e c t s o f t h e method. F o r more g e n e r a l

p r o b l e m s t h e r e may be many c a b l e s and many n o n - c a b l e e l e m e n t s ,

t h e c a b l e s w i l l n o t be i n e x t e n s i b l e , and t h e l o a d i n g w i l l be q u i t e

c o m p l i c a t e d ; b u t t h e same method w i l l c o n v e r g e r e a d i l y t o a s o l u ­

t i o n f o r a l m o s t any s t a r t i n g p o i n t .

A f u r t h e r p o i n t may be o b s e r v e d f r o m t h i s example -

b e c a u s e o f t h e q u a d r a t i c c o n v e r g e n c e o f t h e method, we c a n s a v e

t i m e by u s i n g a s t a r t i n g p o i n t as c l o s e as p o s s i b l e t o t h e s o l u ­

t i o n . I f we have s o l v e d a s t r u c t u r e f o r some l o a d i n g , and now

w i s h t o s o l v e f o r a d i f f e r e n t b u t s i m i l a r l o a d i n g , we w i l l be

w e l l a d v i s e d t o s t a r t t h e s o l u t i o n p r o c e d u r e a t t h e d e f l e c t e d

Page 17: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 11 -

shape r e s u l t i n g f r o m t h e e a r l i e r s o l u t i o n . The u n b a l a n c e d l o a d s

i n t h i s p o s i t i o n w i l l be j u s t t h e d i f f e r e n c e b e t w e e n t h e two l o a d ­

i n g s , and w i l l be q u i t e s m a l l i f t h e two l o a d i n g s a r e s i m i l a r .

F o r i n s t a n c e , i f we w i s h t o s o l v e t h e example j u s t comp­

l e t e d w i t h o u t t h e one k i p l o a d a p p l i e d a t t h e r i g h t end, t h e s o l u t i

( L = 9 9 6 . 5 4 f e e t ) i s c o n s i d e r a b l y c l o s e r t o t h e p r e v i o u s s o l u t i o n

( L= 9 9 7 . 1 7 f e e t ) t h a n i t i s t o t h e i n i t i a l p o i n t (L= 9 9 9 f e e t ) .

T h u s , as m i g h t be v i s u a l i z e d f r o m F i g . 2 . 2 . s t a r t i n g a t t h e p r e ­

v i o u s s o l u t i o n p o i n t w i l l r e s u l t i n c o n s i d e r a b l y f a s t e r c o n v e r g e n c e

t h a n s t a r t i n g a t t h e i n i t i a l p o i n t .

By s o l v i n g t h e n o n - l i n e a r p r o b l e m as a s e r i e s o f l i n e a r

p r o b l e m s , we a r e a b l e t o u t i l i z e f a m i l i a r methods t o s o l v e e a c h

l i n e a r p r o b l e m - i n p a r t i c u l a r , we use t h e methods o f s t i f f n e s s

a n a l y s i s . I n o r d e r t o m o d i f y a s t i f f n e s s a n a l y s i s c o mputer

p r o g r a m t o s o l v e c a b l e p r o b l e m s we need make o n l y two m a j o r mod­

i f i c a t i o n s ! a t e a c h s t a g e o f t h e i t e r a t i o n we need ( 1 ) t o e v a l ­

u a t e t h e v e c t o r o f u n b a l a n c e d l o a d s , and ( 2 ) t o f i n d t h e s t i f f ­

n e s s m a t r i x .

M o r e o v e r , t h e c o n t r i b u t i o n s o f t h e n o n - c a b l e e l e m e n t s

t o t h e u n b a l a n c e d l o a d v e c t o r and t h e s t i f f n e s s m a t r i x a r e

a l r e a d y known. A s s u m i n g t h a t t h e s e e l e m e n t s behave l i n e a r l y ,

t h e i r s t i f f n e s s m a t r i c e s a r e c o n s t a n t and t h e f o r c e s t h e y d e v e l o p

a r e s i m p l y t h e p r o d u c t s o f t h e i r s t i f f n e s s m a t r i c e s w i t h t h e i r

d e f l e c t i o n s .

F o r t h e c a b l e s , however, t h i n g s a r e n o t so s i m p l e . I t i s

n e c e s s a r y t o f i n d t h e e n d - f o r c e s d e v e l o p e d by e a c h c a b l e ; and t o

f i n d t h e i r d e r i v a t i v e s , w h i c h c o m p r i s e t h e c a b l e s t i f f n e s s m a t r i x .

T h e s e p r o b l e m s a r e d i s c u s s e d i n t h e n e x t two c h a p t e r s .

Page 18: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 12 -

C h a p t e r 3» C a b l e End F o r c e s .

S i n c e t h e l o a d i n g on e a c h c a b l e i s c o n s t a n t i n d i r e c t i o n ,

t h e c a b l e l i e s i n a p l a n e . T h i s p l a n e , h e r e i n a f t e r c a l l e d t h e

" c a b l e p l a n e " i s r e a d i l y f o u n d s i n c e (1) i t c o n t a i n s b o t h ends

o f t h e c a b l e , and (2) i t c o n t a i n s t h e v e c t o r r e p r e s e n t i n g t h e

l o a d on t h e c a b l e .

I t i s c o n v e n i e n t t o use a c o - o r d i n a t e s y s t e m i n t h e c a b l e

p l a n e when c a l c u l a t i n g t h e c a b l e end f o r c e s and s t i f f n e s s m a t r i x :

t h i s c o - o r d i n a t e s y s t e m w i l l be c a l l e d t h e " c a b l e c o - o r d i n a t e

s y s t e m " . As shown i n F i g . 3.1a, t h e y - a x i s i s o p p o s i t e t o t h e

d i r e c t i o n o f l o a d i n g , and t h e x - a x i s i s p e r p e n d i c u l a r t o i t .

F o r c e s and d i m e n s i o n s a r e shown i n F i g . 3«lt>, and i n F i g . 3»lc.

The a c t u a l d i r e c t i o n s o f t h e x and y a x e s a r e d i s c u s s e d i n

C h a p t e r 5 - f o r now, s u f f i c e i t t o s a y t h a t t h e y a r e r e a d i l y

f o u n d .

yj direction of loading on cable

The Cable Coordinate Sy s tem

F i g . ' 3.1a.

Page 19: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 13 -

F o r c e s in the C a b l e P l a n e

Fig. 3.1b. a = Cable area E= effective modulus

of elasticity USL = unstressed length

C - curve (stressed ) length

D i m e n s i o n s in the C a b l e P l a n e

Fig. 3.1c

Page 20: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 14 -

H ( y ' + d y ' )

Element of a Catenary Cable

F i g . 3 - 2 .

The relationships between the forces of F i g . 3«lb and

the dimensions and properties of the cable as shown i n F i g . 3.1c

may be r e a d i l y derived.

Summation of the y forces of F i g . 3 .2 y i e l d s : H y ' + w d C = H ( y 1 + dy ' )

so d y ' = -77-dC n

y H d x

solving , y' = Sjnh(^x-+ A) 3.1

y = "S-cosh(̂ - + A ) + B 3.2

Page 21: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 15 -

We have two boundary c o n d i t i o n s

@ x = 0 y = 0

@ x = L y = h

Which g i v e : A = s i n h " T w h

w L 2Hsinh L 2H -I

wL 2H 3.3

B = "-^-coshA 3.^

Knowing the shape of the ca b l e , and knowing t h a t the

component of cable t e n s i o n i n the x - d i r e c t i o n i s the constant

value Hf i t i s r e l a t i v e l y s t r a i g h t f o r w a r d to c a l c u l a t e the

f o r c e s at any p o i n t a l o n g the cable and the l e n g t h of the cable

i t s e l f .

The s t r e s s e d l e n g t h of the cable i s :

C = |V+^sinh ] 2 3.5

The y-components of the end t e n s i o n s a r e :

w _ wh , . t u wL , Cw _ , Vo --~2~ c o t n 2TT ~2~ 3*

A n d u I n \i - wh .. wL . Cw _ _ V, - -ycoth -grr + 3.7

The end t e n s i o n s themselves are simply:

To * | H"+ V 0 | ' 2 3.8

And S [ H 2

+ v . ' ] ' ' .

3-9

* In f a c t , x was chosen normal to the load i n order to y i e l d

t h i s s i m p l i f i c a t i o n .

Page 22: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 16 -

And i n t e r e s t i n g l y :

T, - T 0 = w h

The e l a s t i c e l o n g a t i o n o f t h e c a b l e , A» I s f o u n d f r o m :

0 o

A = H L r ^ c o t h v ^ + ± + J ^ s i n h ^ l 3.10 " a E[_2HL 2H 2 2wL H j

The u n s t r e s s e d l e n g t h o f t h e c a b l e i s o f c o u r s e t h e

a c t u a l l e n g t h minus t h e e l a s t i c e l o n g a t i o n :

U S L = C - A 3 . H

I n g e n e r a l , we w i l l know t h e c a b l e p r o p e r t i e s w . a ,

and E , and we w i l l know t h e p o s i t i o n s o f t h e ends o f t h e c a b l e

(and so h and L ). I f we a l s o know t h e v a l u e o f H i we c o u l d

d i r e c t l y s o l v e e q u a t i o n s 3.6 and 3.7 f o r t h e y-components o f t h e

end t e n s i o n s .

U n f o r t u a n a t e l y we s e l d o m know t h e v a l u e o f H » h u t i n s t e a d

know some o t h e r q u a n t i t y : t h e u n s t r e s s e d l e n g t h o f t h e c a b l e ,

USL: o r t h e s a g a t some v a l u e o f x i o r one o f t h e end t e n s i o n s To

o r T, . I n t h i s c a s e we use t h e known q u a n t i t y t o f i n d H , and

t h e n use H t o f i n d V 0 and V\ .

Page 23: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 17 -

J u s t as we a r e g o i n g t o u s e Newton's method t o s o l v e t h e

s e t o f s i m u l t a n e o u s n o n - l i n e a r e q u a t i o n s w h i c h d e f i n e t h e e q u i l ­

i b r i u m p o s i t i o n o f t h e e n t i r e s t r u c t u r e , so we w i l l now use i t t o

s o l v e f o r H '> H i s r e l a t e d t o o u r known q u a n t i t y (USL, s a g , T 0

o r T i ) by a n o n - l i n e a r e q u a t i o n , and Newton's method s o l v e s n o n ­

l i n e a r e q u a t i o n s .

I f we l e t K s t a n d f o r t h e known q u a n t i t y , t h e f o l l o w i n g

p r o c e d u r e ( s i m i l a r m a t h e m a t i c a l l y t o t h e example d i s c u s s e d i n

C h a p t e r 2) w i l l f i n d H .

(1) Guess a v a l u e o f H ,

(2) C a l c u l a t e K*, t h e v a l u e t h a t t h e q u a n t i t y K wo u l d

have i f i t were b a s e d on t h e g u e s s e d v a l u e o f H .

(3) D e f i n e f ( H ) = K - K * , t h e e r r o r i n K .

(4) C a r r y o u t t h e N e w t o n i a n s e q u e n c e :

H i+ 1 H' + f ( H ' )

V dH J

The g u e s s e d v a l u e o f H w i l l c o n v e r g e q u a d r a t i c a l l y t o t h e

c o r r e c t v a l u e , a t w h i c h t i m e f l H ) = 0 . We c a n s a y t h a t c o n v e r ­

gence has o c c u r r e d when t h e a b s o l u t e v a l u e o f f(H) i s l e s s t h a n

some a r b i t r a r i l y s m a l l f u n c t i o n o f K , f o r i n s t a n c e :

| f ( H ) | < . 0 0 0 0 0 1 K

Page 24: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 18 -

rl K I t i s o n l y n e c e s s a r y , t h e n , t o d e t e r m i n e - ^ — . T h i s t a s k On

i s s i m p l i f i e d b y u s i n g t h e f o l l o w i n g f u n c t i o n s :

oE o -JL a-f 3 - t

A - W J L + A -n - sinh2T sinh2Y A ' H M '/ ' 2 € y €^ 2

=j3y?c s c n 2

U s i n g t h e s e f u n c t i o n s , we c a n r e - w r i t e t h e • g o v e r n i n g

e q u a t i o n s :

And s a g

1 y = sinhX 3.1

y = -tL ( coshX - cosh A ) 3.2

A = 3.3

c = 3.5

Vo = aySL(€-̂ gcothy ) 3.6

v, = aySL(€ + /Scothy ) 3.7

A • L§(iev̂ hr + T + ^ y r ) 3.10

sag = £ * - y 3.12

Page 25: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 1 9 -

We can now d i f f e r e n t i a t e to f i n d 4 5 * T h e r e s u l t s a r e : an

Case 1 .

I f the known v a r i a b l e K i s the USL:

Case 2 .

3 . 1 3

I f the known v a r i a b l e K i s the sag at x

dsoq -i - \ L I"*. ̂ J-2Y* dA \ coshA HA + ——+sinhA-dH H d H Where:

dA xr, - ff( l-ycothX) Case 3̂ .

I f the known v a r i a b l e K i s t e n s i o n T0

3.14

3 . 1 5

Where:

3 . 1 6

3 - 1 7

Case 3i-»

I f the known v a r i a b l e K i s t e n s i o n T,

dT, dH H dV,

d H Where:

dV d -4>-rv

3.18

3.19

T h i s method i s not i n f a l l i b l e : there are two ways i n

which i t can f a i l . F i r s t l y , the cable equations are not s o l v a b l e

f o r any g i v e n c a b l e . We have d e f i n e d w as the loa d per u n i t

Page 26: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 20 -

l e n g t h o f c a b l e : t h u s i f we s t r e t c h a c a b l e t o d o u b l e i t s

o r i g i n a l l e n g t h we a r e c o n s t r a i n e d t o d o u b l e t h e t o t a l l o a d on i t

( w h i c h i s q u i t e r e a s o n a b l e f o r , s a y , i c e l o a d i n g ) . T h i s e x t r a

l o a d i n t u r n p r o d u c e s f u r t h e r s t r e t c h i n g , w h i c h p r o d u c e s f u r t h e r

l o a d i n g e t c . T h i s e f f e c t i s c o m p l e t e l y n e g l i g i b l e e x c e p t f o r

v e r y h e a v i l y l o a d e d v e r y f l e x i b l e c a b l e s , i n w h i c h i t c a n g e t o u t

o f h a nd. F o r t u n a t e l y s u c h c a b l e s e x i s t o n l y i n t h e i m a g i n a t i o n .

The o t h e r d a n g e r i s more r e a l : i t i s p o s s i b l e t h a t a t

some s t a g e i n t h e s o l u t i o n t h e v a l u e o f H w i l l become p a t h ­

o l o g i c a l l y s m a l l , o r e v e n n e g a t i v e , i n w h i c h c a s e t h e p r o c e d u r e

w i l l succumb t o n u m e r i c a l a i l m e n t s . The a n t i d o t e i s s i m p l y , a t

e a c h i t e r a t i o n , t o l i m i t t h e new v a l u e o f H t o be no l e s s t h a n

h a l f t h e p r e v i o u s v a l u e .

I n p r a c t i c e , t h e s o l u t i o n f o r t h e c a b l e end f o r c e s i s

e a s i e r done t h a n s a i d . I n A p p e n d i x 1 a s u b r o u t i n e w h i c h f i n d s

c a b l e end f o r c e s ( w r i t t e n i n G - l e v e l /360 F o r t r a n ) i s r e p r o d u c e d ,

a l o n g w i t h t h r e e m i n o r s u b r o u t i n e s w h i c h c a l c u l a t e — j - . dH

F o r c a b l e s w h i c h a r e d e f i n e d b y known s a g o r t e n s i o n

v a l u e s i n t h e i n i t i a l p o s i t i o n o f t h e s t r u c t u r e , t h e s o l u t i o n

f o r t h e i n i t i a l c a b l e end f o r c e s a l s o g i v e s t h e u n s t r e s s e d

l e n g t h s , upon w h i c h t h e c a l c u l a t i o n s o f c a b l e end f o r c e s a r e

b a s e d a t s u b s e q u e n t s t a g e s i n t h e s o l u t i o n .

0

Page 27: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 21 -

Chapter 4. The Cable S t i f f n e s s M a t r i x .

As was d i s c u s s e d i n Chapter 1, the s t i f f n e s s of a cable

changes as i t i s deformed. When we r e f e r to the s t i f f n e s s matrix

of a c a b l e , we mean the s e t of d e r i v a t i v e s o f cable end f o r c e s

with r e s p e c t to cable end movements evaluated i n the present

p o s i t i o n of the cable-. T h i s i s c a l l e d a "tangent" s t i f f n e s s

matrix, and i s analagous to a tangent modulus.

W i t h i n i t s own cable plane, each cable has f o u r degrees

of freedom: two at each end. I f we a s s i g n these degrees of f r e e ­

dom as shown by the numbered arrows i n F i g . 4.1, then, i g n o r i n g

f o r the moment the p o s s i b i l i t y of displacements out of the plane,

the c a b l e s t i f f n e s s matrix i s :

Hr

3F,, 3 5 ,

3F, 3S2

3F ,

3 5 3

9F, 354

3 F 2

3 5 , dFz 3 5 2

8 F 2

3 S 3

3 F 2

3 5 4

3 F 3

35 ,

3 F 3

35a

8 F 3

3 5 3

a F 3

3S4

3 F 4

3 5 ,

3 F 4

3 5 2 .

3 F 4

3 5 3

3F 4

3 5 4 4.1

Where F, i s the f o r c e i n d i r e c t i o n 1 , 5 , »• I s d e f l e c t ­

i o n i n d i r e c t i o n 1 , e t c .

Page 28: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 22 -

I f we now make t h e s u b s t i t u t i o n :

aS3

a8< ah =• 3F,=-aF2 = aF3 = 8F 4 =

•a§, s§2 aH a v o

aH av,

Our m a t r i x w i l l become:

aH aH - a H - a H

aL ah aL ah -avo -a v.. avo avo

a L ah 3 L ah -aH -aH an aH aL ah aL ah

-av, - a v , av. av, aL ah aL ah 4.2

Degrees of Freedom in the Cable Plane F i g . 4.1.

Page 29: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 23 -

Upon e v a l u a t i n g t h e d e r i v a t i v e s , i t i s f o u n d t h a t i n

g e n e r a l t h i s m a t r i x i s n o t s y m m e t r i c , and t h a t t h e s e t o f f o r c e s

r e p r e s e n t e d b y e a c h c o l u m n i s n o t s e l f - e q u i l i b r a t i n g . T h i s un­

u s u a l b e h a v i o u r i s due t o t h e f a c t t h a t we a r e a p p l y i n g a non-

c o n s e r v a t i v e l o a d t o t h e c a b l e . By d e f i n i n g t h e l o a d p e r u n i t

l e n g t h o f c a b l e a s t h e c o n s t a n t v a l u e w , we have assumed t h a t

i f t h e c a b l e i s s t r e t c h e d t h e t o t a l l o a d i n c r e a s e s .

T h i s d o e s n o t mean t h a t i n p r a c t i c e o u r c a b l e e q u a t i o n s

a r e i n a d e q u a t e : t h e e l a s t i c e l o n g a t i o n i s s m a l l compared t o t h e

l e n g t h o f t h e c a b l e , and t h e i n c r e a s e i n l o a d i n g on t h e c a b l e i s

i n t h e same s m a l l r a t i o t o t h e t o t a l l o a d . We do f a c e a p r o b l e m ,

however: c o n v e n t i o n a l s t i f f n e s s a n a l y s i s p r o g r a m s use s y m m e t r i c

m a t r i c e s , and i f we w i s h t o m o d i f y s u c h a c o n v e n t i o n a l p r o g r a m

t o h a n d l e c a b l e s , we w i l l s a v e a l o t o f t r o u b l e by u s i n g s y m m e t r i c

m a t r i c e s f o r o u r c a b l e s .

Now t h e asymmetry i n t h e c a b l e m a t r i x i s s m a l l , and i n f a c t

i s v i r t u a l l y n e g l i g i b l e i n most c a s e s . A c c o r d i n g l y , we w i l l make

m i n o r m o d i f i c a t i o n s t o t h e m a t r i x w h i c h w i l l r e n d e r i t , t h o u g h no

l o n g e r s t r i c t l y e x a c t , s y m m e t r i c .

T h i s i s r e a d i l y a c h i e v e d b y :

R e p l a c i n g : avo 3L

by - 8 H 8 h

a v i by aH aL ah

Page 30: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 24 -

And:

Where:

av. 8h

av* ah

by av* an

av. ah

a Vc ah

T h i s g i v e s us a new approximate matrix:

[K"] =

aH an -aH -aH aL ah ah aH av* - aH - av* ah ah ah ah

-aH -aH aH aH aL ah aL ah

-aH -av* aH av* a h ah ah ah

h.3

Using the approximate matrix does not hinder the s o l u t i o n

procedure. F i r s t l y , i t t u r n s out t h a t f o r c a b l e s w i t h i n (and

somewhat beyond) the range of e n g i n e e r i n g usage, the approxim­

a t i o n s are s m a l l . Secondly, Newton's method does not r e q u i r e

the c o r r e c t m a t r i x : a c l o s e one w i l l do. ( 1 ) , ( 2 ) , ( 3 ) « (In the

example i n Chapter 2 , f o r i n s t a n c e , any p o s i t i v e f i n i t e value could

have been used f o r the cable s t i f f n e s s , ^ ^ , and Newton's method d L

would have i n e v i t a b l y l e d to the c o r r e c t s o l u t i o n , though conver­

gence might have been slow). I t i s of course necessary to e v a l ­

uate the unbalanced l o a d e x a c t l y , but t h i s i s independant of cable

s t i f f n e s s .

Let us now t u r n back to what was ignored at the s t a r t of

t h i s chapter: the p o s s i b i l i t y of cable displacements out of the

Page 31: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 25 -

cable plane. Two more degrees of freedom are required to

describe these displacements, and are numbered 3 and 6 i n

F i g . 4.2. As for a pin-ended bar i n tension, the s t i f f n e s s i n u

these di r e c t i o n s i s simply y- , so the approximate matrix becomes: 3H 3 L

3H 3 h

0 -3-H 8 L

- 3 H ah 0

3 H 8 h

3 V* 3 h

0 ah -av* ah 0

0 0 X 0 O " \ - 3 H

3 L - 3 H

8 h 0

an 8 L

8 H ah 0

- 8 H a h

0 dH ah

3 V * ah 0

0 0 -\ 0 0 \ 4.4

The terms i n the matrices of equations 4.2., 4.3.., and

4.4., are derived i n Appendix 2. In the remainder of t h i s thesis

i t w i l l be assumed that the approximate matrix Kca i - s used.

Degrees of Freedom for a General Cable F i g . 4.2.

Page 32: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 2 6 -

C h a p t e r 5. The C a b l e C o - o r d i n a t e Sy s tem.

A t t he end o f C h a p t e r 2 we s e t out t o f i n d t he two new

f e a t u r e s w h i c h wou ld enab l e us t o c o n v e r t an o r d i n a r y s t i f f ­

ness a n a l y s i s program i n t o an improved v e r s i o n c a p a b l e o f hand ­

l i n g c a b l e s t r u c t u r e s . These two f e a t u r e s were the c a p a c i t i e s

t o f i n d t he c a b l e end f o r c e s and the c a b l e s t i f f n e s s m a t r i x , and

t h e y have been p r o v i d e d i n C h a p t e r s 3 and 4 .

L i k e many m o d i f i c a t i o n s , t h e y do not f i t d i r e c t l y i n t o

the e x i s t i n g f ramework , f o r t h e y work i n terms o f c a b l e c o ­

o r d i n a t e s , and s t i f f n e s s a n a l y s i s programs work i n g l o b a l c o ­

o r d i n a t e s . To adapt them we need a t r a n s f o r m a t i o n m a t r i x , and

t o ge t the t r a n s f o r m a t i o n m a t r i x we need t o know the d i r e c t i o n s

o f t he c a b l e c o - o r d i n a t e a x e s .

The l o a d p e r u n i t l e n g t h o f c a b l e , W , may be s p l i t i n t o

components p a r a l l e l t o t he g l o b a l X , Y , and Z a x e s : wx i W y i

and r e s p e c t i v e l y . Thus the c a b l e l o a d i n g may be r e p r e s e n t e d

v e c t o r i a l l y a s :

W = Wy

5.1

Now y , t h e d i r e c t i o n o f the y - a x i s i n t h e c a b l e c o ­

o r d i n a t e sys tem must be o p p o s i t e t o t he d i r e c t i o n o f l o a d i n g .

A v e c t o r i n t h i s d i r e c t i o n i s t h u s :

y = w,

- w.

Page 33: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 2 ? -

L e t C be the l i n e from the end o f the c a b l e a t the o r i g i n

o f the c a b l e c o - o r d i n a t e system t o the o t h e r end o f the c a b l e .

( F i g . 5 . 1 ) . C i s r e p r e s e n t e d by i t s t h r e e components:

c = c

c 2

5 - 3

Now the c r o s s p r o d u c t o f two v e c t o r s i s p e r p e n d i c u l a r

t o b o t h o f them. The c a b l e z - a x i s i s , o f c o u r s e , p e r p e n d i c u l a r

t o the c a b l e p l a n e , and s i n c e b o t h y" and C l i e i n the c a b l e

p l a n e , Z must be p e r p e n d i c u l a r t o each o f them. Thus we w r i t e :

z = C X y 5 . 4

The c a b l e X - a x i s i s , o f c o u r s e , p e r p e m d i c u l a r t o the y

and Z -axes, and so i s found by:

x = y X z 5 . 5

E q u a t i o n s 5 . 2 . , 5 . 4 . , and 5 . 5 . , d e f i n e v e c t o r s p a r a l l e l

t o the c a b l e c o - o r d i n a t e a x e s . I t i s c o n v e n i e n t t o n o r m a l i z e

t h e s e v e c t o r s by d i v i d i n g each term by the l e n g t h o f the v e c t o r ,

A s u b s c r i p t 1 w i l l denote a n o r m a l i z e d v e c t o r . (The components

o f a n o r m a l i z e d v e c t o r a r e , o f c o u r s e , the d i r e c t i o n c o s i n e s o f

t h e v e c t o r ) . For example, the l e n g t h o f the W v e c t o r ( e q u a t i o n

5 . 1 . ) i s w , where:

w = 2 ^ 2 2 Wx + Wy

+ wz

V / ,

5 . 6

Page 34: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 28 -

So t h e n o r m a l i z e d c a b l e l o a d i n g v e c t o r would be

'w x /w ^ V l y / W

w z/w 5 . 7

The q u a n t i t i e s L and h a r e s i m p l y t h e x and y components

o f C , and a r e r e a d i l y f o u n d b y :

L = X i - C

h =y,-c

5 . 8

5 . 9

Where • r e p r e s e n t s d o t p r o d u c t .

I n F i g . 4 . 2 a r e shown t h e s i x d e g r e e s o f f r e e d o m o f a

c a b l e . I n t e r m s o f them, t h e c a b l e end f o r c e s ( F i g . 3 . 1 6 ) a r e

r e p r e s e n t e d b y t h e v e c t o r :

- H

V o

0 H

V ,

0 5 . 1 0

and t h e s t i f f n e s s m a t r i x i s as i n e q u a t i o n ( 4 . 4 ) . To t r a n s f o r m

them t o g l o b a l c o - o r d i n a t e s we w i l l u se a 6 x 6 t r a n s f o r m a t i o n

Page 35: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 29 -

m a t r i x , J_TJ . T h i s m a t r i x i s composed o f two i d e n t i c a l 3 x 3 s u b -

m a t r i c e s ft] a r r a n g e d on t h e d i a g o n a l :

o o p 0 0 0 0 0 0!

0 0 0 0 0 0 0 0 0

5 . 1 1

Where t h e t h r e e c olumns o f t h e s u b - m a t r i x a r e t h e v e c t o r s

x\, y t , and Z t :

[T.] = [ xx y x z t ]

I n g l o b a l c o - o r d i n a t e s , t h e c a b l e end f o r c e s a r e

5 . 1 2

q I ' I • c

And t h e s t i f f n e s s m a t r i x i s :

5 . 1 3

K CO 9 T c

T 5.14

We now know a l l we need i n o r d e r t o c o n v e r t a s t i f f n e s s

a n a l y s i s p r o g ram t o s o l v e c a b l e s t r u c t u r e s . I n t h e n e x t c h a p t e r

we w i l l c o n s i d e r some ways t o e x t e n d t h e v e r s a t i l i t y o f t h e

method.

Page 36: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 30 -

Cable and Global Coordinate Systems

F i g . 5 . 1 .

Page 37: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 31 -

C h a p t e r 6 . A d v a n c e d T o p i c s .

W i t h what has b e e n d i s c u s s e d i n t h e p r e v i o u s f i v e c h a p t e r s

we a r e now a b l e t o a n a l y z e many c a b l e s t r u c t u r e s . I n t h i s c h a p t e r

we w i l l c o n s i d e r some r e f i n e m e n t s w h i c h w i l l make t h e method more

g e n e r a l .

1. N o n - l i n e a r B e h a v i o u r o f Non-Cable S t r u c t u r a l Components.

I n C h a p t e r 2 i t was assumed t h a t t h e n o n - c a b l e components

o f t h e s t r u c t u r e were l i n e a r - t h e i r s t i f f n e s s m a t r i c e s w o u l d

n o t change as t h e y d e f l e c t e d . T h e r e a r e many c a s e s where t h i s

a s s u m p t i o n i s n o t j u s t i f i e d , f o r i n s t a n c e : i f t h e m a t e r i a l

s t r e s s - s t r a i n r e l a t i o n s h i p i s n o n - l i n e a r , o r i f t h e member u n d e r ­

goes l a r g e r o t a t i o n s , o r i f t h e r e i s a n i n t e r a c t i o n b e t w e e n a x i a l

f o r c e and b e n d i n g s t i f f n e s s .

I n p r i n c i p l e , t h e s e n o n - l i n e a r i t i e s pose no p r o b l e m - we

c a n s i m p l y h a n d l e t h e s e e l e m e n t s j u s t as we h a n d l e t h e c a b l e s , by

u s i n g a t a n g e n t s t i f f n e s s m a t r i x , and e v a l u a t i n g t h e member end

f o r c e s a t e a c h s u c c e s s i v e d e f o r m e d p o s i t i o n o f t h e s t r u c t u r e . I n

p r a c t i c e , t h i s a p p r o a c h c a n be q u i t e d i f f i c u l t , b u t f o r a t l e a s t

one o f t h e n o n - l i n e a r i t i e s m e n t i o n e d above t h e r e i s a s i m p l e r

p r o c e d u r e .

I n frame a n a l y s i s , t h e e f f e c t o f a x i a l f o r c e on t h e b e n d i n g

s t i f f n e s s o f a beam i s g e n e r a l l y h a n d l e d by a d i f f e r e n t k i n d o f

m a t r i x : a " s e c a n t " m a t r i x . " S t a b i l i t y f u n c t i o n s " (4) d e f i n e t h e

s e c a n t m a t r i x i n t e r m s o f t h e a n t i c i p a t e d a x i a l f o r c e . U s i n g t h i s

scheme, a s o l u t i o n i s p e r f o r m e d u s i n g t h e l i n e a r m a t r i x . T h i s

s o l u t i o n g i v e s a n e s t i m a t e o f t h e a x i a l f o r c e s , and a s e c a n t

m a t r i x i s b u i l t b a s e d on t h i s e s t i m a t e . A s o l u t i o n i s now p e r -

Page 38: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 32 -

f o r m e d b a s e d on t h i s new m a t r i x , and a b e t t e r e s t i m a t e o f t h e

a x i a l f o r c e s r e s u l t s . The p r o c e d u r e i s c o n t i n u e d u n t i l s u c c e s s ­

i v e s o l u t i o n s c o n v e r g e , w h i c h i s u s u a l l y a c h i e v e d a f t e r j u s t two

o r t h r e e s o l u t i o n s .

Now t h i s s e c a n t m a t r i x i s n o t t h e t a n g e n t m a t r i x we want,

b u t i t i s a l o t c l o s e r t o i t t h a n t h e l i n e a r m a t r i x i s , and as

was m e n t i o n e d i n C h a p t e r 4, i t i s n o t n e c e s s a r y t o have t h e

c o r r e c t m a t r i x : a c l o s e one w i l l do. M o r e o v e r , t h e s e c a n t m a t r i x

l e t s us f i n d t h e member end f o r c e s : i n i t s d e f o r m e d p o s i t i o n

we c a l c u l a t e t h e a x i a l f o r c e i n t h e member ( w h i c h i s no p r o b l e m

s i n c e t h e a x i a l s t i f f n e s s i s c o n s t a n t ) and t h e n t h e s e c a n t m a t r i x

b a s e d on t h e a x i a l f o r c e . M u l t i p l y i n g t h e s e c a n t m a t r i x by t h e

member d e f l e c t i o n s now g i v e s t h e t r u e ( e x a c t ) n o n - l i n e a r b e n d i n g

moments and s h e a r s .

The p o i n t t o n o t e a b o u t t h e s e c a n t m a t r i x i s t h i s : i f t h e

g u e s s e d v a l u e o f a x i a l f o r c e i s c o r r e c t , t h e n t h e s e c a n t m a t r i x

i s l i n e a r , w i t h r e s p e c t t o b e n d i n g and s h e a r d e f o r m a t i o n s . The

a x i a l f o r c e s i n t h e members t e n d t o c o n v e r g e r a p i d l y on t h e i r

f i n a l v a l u e s , so t h e beams behave q u i t e l i n e a r l y by t h e t i m e

t h e f i n a l s o l u t i o n i s a p p r o a c h e d .

T h e r e i s one d a n g e r i n t h i s method: i f t h e a x i a l l o a d s

a r e t o o g r e a t , t h e s t i f f n e s s m a t r i x w i l l become s i n g u l a r . I t i s

p o s s i b l e t h a t i f a s t r u c t u r e were l o a d e d a l m o s t t o i t s c r i t i c a l

l o a d t h e N e w t o n i a n s e q u e n c e w o u l d wander beyond t h e c r i t i c a l l o a d

and s u f f e r a p r e m a t u r e d e m i s e . T h i s p r o b l e m o c c u r s r a r e l y , and

c a n be o b v i a t e d b y a p p l y i n g t h e l o a d i n s t e p s : f o r s m a l l s t e p s

t h e e r r o r i n e a c h s t a g e o f t h e i t e r a t i o n i s r e d u c e d , and t h e

Page 39: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 33 -

d e f l e c t i o n s n e v e r d e v i a t e f a r f r o m t h e s o l u t i o n . I n o t h e r words

we w i l l f i r s t s o l v e t h e p r o b l e m f o r , s a y , 50 p e r c e n t o f t h e r e ­

q u i r e d l o a d , t h e n f o r 75 p e r c e n t u s i n g t h e p r e v i o u s s o l u t i o n as

t h e s t a r t i n g p o i n t , t h e n f o r 85 p e r c e n t s t a r t i n g a t t h e s o l u t i o n

f o r 75 p e r c e n t , and so on.

Beam-column e f f e c t s a r e o f t e n s i g n i f i c a n t i n t h e b e h a v i o u r

o f guyed t o w e r s . S t a b i l i t y f u n c t i o n s were u s e d , as d e s c r i b e d

above, i n t h e s e c o n d example o f C h a p t e r 7.

2. S p e c i f i e d C a b l e T e n s i o n s .

I f we know t h e u n s t r e s s e d l e n g t h o f a c a b l e , we c a n f i n d

i t s end f o r c e s f o r any d e f o r m e d p o s i t i o n . I f , i n t h e i n i t i a l

p o s i t i o n o f t h e s t r u c t u r e , we know t h e s a g o f t h e c a b l e o r t h e

t e n s i o n a t e i t h e r end, we c a n use t h e methods o f C h a p t e r 3 "to

f i n d t h e u n s t r e s s e d l e n g t h ( b y f i r s t f i n d i n g H). F r e q u e n t l y ,

however, t h e c a b l e s i n a s t r u c t u r e a r e t e n s i o n e d t o p r e d e t e r m i n e d

v a l u e s a f t e r t h e s t r u c t u r e i s e r e c t e d . I n t h i s c a s e we do n o t

know t h e p o s i t i o n o f t h e s t r u c t u r e , f o r i t d e f o r m s f r o m i t s un­

s t r e s s e d p o s i t i o n a s t h e c a b l e s a r e t e n s i o n e d .

The s o l u t i o n t o t h i s p r o b l e m i s s u r p r i s i n g l y s i m p l e : a t

e a c h s u c c e s s i v e d e f o r m e d p o s i t i o n f o u n d d u r i n g t h e s o l u t i o n p r o ­

c e s s , we r e - t e n s i o n t h e c a b l e s t o t h e i r s p e c i f i e d t e n s i o n s ( b y

c h a n g i n g t h e i r u n s t r e s s e d l e n g t h s ) . When c o n v e r g e n c e i s a c h i e v e d ,

we c a l c u l a t e t h e t r u e u n s t r e s s e d l e n g t h s o f t h e c a b l e .

T h i s a n a l y s i s , o f c o u r s e , c o n s i d e r s o n l y t h e l o a d s a p p l i e d

a t t h e t i m e o f t h e c a b l e t e n s i o n i n g . Once t h e u n s t r e s s e d l e n g t h s

o f t h e c a b l e s a r e known, o t h e r l o a d i n g c a s e s ( w i n d , snow, e t c . )

Page 40: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 34 -

a r e r e a d i l y h a n d l e d i n t h e u s u a l f a s h i o n . The s e c o n d example

c o n s i d e r e d i n C h a p t e r 7 employed t h i s method o f s p e c i f y i n g c a b l e

t e n s i o n s .

3. M i s c e l l a n e o u s P r o b l e m s .

The e f f e c t s on c a b l e s o f t e m p e r a t u r e c h a n g e s , end s l i p p a g e ,

and t u r n b u c k l e a d j u s t m e n t a r e r e a d i l y h a n d l e d by c h a n g i n g t h e i r

u n s t r e s s e d l e n g t h s .

4. C a b l e L o a d s .

The l o a d s on a c a b l e due t o i t s own w e i g h t and t h e w e i g h t

o f a c c u m u l a t e d i c e a r e r e a d i l y e v a l u a t e d . F o r w i n d l o a d i n g t h e

e v a l u a t i o n i s more d i f f i c u l t .

F i r s t l y , t h e wind l o a d i n g a c t s p e r p e n d i c u l a r t o t h e c a b l e .

S i n c e t h e c a b l e i s c u r v e d , t h e d i r e c t i o n o f t h e wind l o a d i n g

v a r i e s a l o n g t h e l e n g t h o f t h e c a b l e , w h i c h i s c o n t r a d i c t a r y t o

t h e t h e o r y o f c a t e n a r y c a b l e s . We a v o i d t h i s e m b a r r a s s e m e n t i n

a r a t h e r d i r e c t manner: i f a c a b l e i s r e a s o n a b l y t a u t , we t r e a t

t h e d i r e c t i o n o f e a c h e l e m e n t o f t h e c a b l e as b e i n g t h e same as

t h a t o f t h e l i n e b e t w e e n t h e ends o f t h e c a b l e : C i and a p p l y t h e

w i n d l o a d n o r m a l t o C , ( F i g . 5»1«) I f t h e c a b l e has a l a r g e s a g ,

we s i m p l y t r e a t i t as a s e r i e s o f s h o r t e r c a b l e s , e a c h o f w h i c h

has a low s a g .

Now f o r w i n d a c t i n g p e r p e n d i c u l a r t o a c a b l e , t h e d r a g f o r c e

p e r u n i t l e n g t h i s :

w Lf T P < l v 2 C a

6.1

Page 41: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 35 -

Where P i s t h e d e n s i t y o f t h e a i r , d i s t h e c a b l e d i a m ­

e t e r , v i s t h e wi n d v e l o c i t y , and C d i s t h e c o e f f i c i e n t o f d r a g

f o r t h e c a b l e . A r e a s o n a b l e v a l u e f o r C d i s 1.2. A i r a t s . t . p .

w e i g h s .08071 l b s / f t . 3

I t has b e e n shown (5) t h a t i f t h e wi n d d i r e c t i o n i s a t an

a n g l e 7) t o t h e p l a n e p e r p e n d i c u l a r t o t h e c a b l e ( t h a t i s , t h e

p l a n e p e r p e n d i c u l a r t o C ) t h e d r a g i s s t i l l p e r p e n d i c u l a r t o

t h e c a b l e and has m a g n i t u d e :

The w i n d v e l o c i t y may be r e p r e s e n t e d by i t s t h r e e g l o b a l

components V x , v y , and V 2 , so t h a t v e c t o r i a l l y i t i s :

6.2

V 6.3

The d i r e c t i o n o f t h e d r a g , wrf » i s f o u n d b y :

wd = C X V I C 6.4

And when n o r m a l i z e d i s w r i t t e n W, 'dl Cos Tj i s s i m p l y :

6.5

So t h e c a b l e l o a d i n g v e c t o r due t o wi n d i s :

6.6

wind = W d P r o g C O s 2 7 ? W < "

Page 42: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 36 -

Chapter 7. Examples.

Example 1.

This simple example has been solved by others (6), (7). A

cable spans 1,000 feet h o r i z o n t a l l y between fixed supports, the

midspan sag being 100 feet. The cable weighs 3.16 l b s / f t , i s 2 6 0.85 i n area, and has an e f f e c t i v e modulus of 19x10 p s i . A

v e r t i c a l load of o i s then placed 400 feet from the l e f t support.

As solved by Frances and O'Brien (7) the loaded point moves

from x = 400', y = 96.0495' to x = 397.180', y = 114.509'. The

problem was solved by the methods presented herein, using a number

of d i f f e r e n t i n i t i a l p o sitions. The convergence c r i t e r i o n used

was that the unbalanced forces should a l l be less than one pound.

The procedure converged to the same f i n a l p o s i t i o n as that found

by Frances and O'Brien, regardless of the i n i t i a l p o s i t i o n chosen.

The number of i t e r a t i o n s required to achieve convergence for each

i n i t i a l p o s i t i o n i s shown i n Table 7.1.

It i s apparent upon examining the range of s t a r t i n g points

used that the method i s not p a r t i c u l a r l y vulnerable. For the

case where the s t a r t i n g point was x = 400', y = -50' the v e r t i c a l

s t i f f n e s s i n the i n i t i a l p o s i t i o n was so small that the f i r s t

s o l u t i o n led to a value of y which was about 700' too low! Never­

theless, the correct solution was eventually found, though twenty

i t e r a t i o n s were required. For an i n i t i a l p o s i t i o n which was i n

any sense reasonable, only f i v e or six i t e r a t i o n s were required.

Page 43: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 37 -

CONVERGENCE OF EXAMPLE 1.

CASE IN IT IAL POSITION NUMBER OF ITERATIONS REQUIRED

TO ACHIEVE CONVERGENCE.

X y

1 400 100 10

2 400 0 15

3 400 -50 20

4 400 -96.0495 7

5 400 -110 5

6 400 -120 5

7 400 -200 6

8 400 -300 6

9 350 -110 6

10 390 -110 6

11 410 -110 5

12 450 -110 8

T a b l e . 7.1.

Page 44: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 38 -

Example 2.

I n t h i s example t he e f f e c t s o f v a r y i n g t he i n i t i a l c a b l e

t e n s i o n s and t he b e n d i n g s t i f f n e s s i n t he mast o f a guyed tower

a re i n v e s t i g a t e d . The tower i s 1,000' h i g h ( u n s t r e s s e d ) and i s

ancho red a t i t s t o p and m i d - p o i n t s by f o u r c a b l e s a t each l e v e l .

The c a b l e s a r e ancho red 700' f rom the t o w e r . A r e a s , w e i g h t s ,

and l o a d i n g a r e as shown i n F i g . 7.1.

Four d i f f e r e n t s l e n d e r n e s s r a t i o s f o r t he mast were c o n s i d ­

e r e d : l / r = 310, l / r = 269, l / r = 240 and l / r = 219, where

1 = t o t a l tower h e i g h t . The c a b l e s were s e t t o t he p r e d e t e r m i n e d

t e n s i o n s under t h e i n f l u e n c e o f c a b l e and mast dead l o a d s o n l y .

The a n t e n n a l o a d s a t the t o p o f the mast and t he w ind l o a d s were

t h e n a p p l i e d , and t he deformed shape and member end f o r c e s f o u n d .

Beam - co lumn e f f e c t s on t he mast were c o n s i d e r e d as d e s c r i b e d i n

C h a p t e r 6.

The c a b l e s were i n i t i a l l y t e n s i o n e d , f o r each s l e n d e r n e s s

r a t i o o f t he mas t , t o 10, 20, 30 and 40 k s i a t t h e i r b o t t o m s ,

g i v i n g a t o t a l o f 16 c a se s c o n s i d e r e d . Some t y p i c a l r e s u l t s

under t h e t o t a l l o a d a r e shown i n F i g s . 7.2 t o 7.7.

The a x i a l f o r c e i n the mast was u n a f f e c t e d by c h a n g i n g the

s l e n d e r n e s s r a t i o , bu t i n c r e a s e d m a r k e d l y w i t h i n c r e a s i n g c a b l e

p r e t e n s i o n , as shown i n F i g . 7.2.

Page 45: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 39 -

Note: the values of l/r = 310,269,

240,219 correspond to

r 2( inches2) = 1500,2000,2500,3000

Note: similar cables out-of-plane

G u y e d Tower

F i g . 7.1.

Page 46: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 4 0 -

< 2 5 0 I 1 1 1 1 1_ 10 20 3 0 4 0 50

Initial c o b l e s t ress (ksi)

F i g . 7 . 2 .

The bending moments i n the mast i n c r e a s e d as the b u c k l i n g

l o a d was approached. Thus i n F i g . 7.3 we see the moment i n c ­

r e a s i n g as the p r e t e n s i o n or the slenderness r a t i o i n c r e a s e d .

F i g . 7 . 3 .

Page 47: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 4 1 -

The d e f l e c t i o n s f o l l o w e d a p r e d i c t a b l e p a t t e r n : h i g h e r

i n i t i a l guy t e n s i o n s d e c r e a s e d t h e d e f l e c t i o n s a t t h e guy a t t a c h ­

ment p o i n t s , w h i c h were r e l a t i v e l y u n a f f e c t e d by t h e t o w e r s l e n d e r ­

n e s s r a t i o , b u t i n c r e a s e d t h e d e f l e c t i o n s a t t h e 750' l e v e l as t h e

b u c k l i n g l o a d was a p p r o a c h e d . The d e f l e c t i o n s a t t h e 250' l e v e l

were q u i t e s m a l l due t o t h e h i g h e r s t i f f n e s s o f t h e l o w e r h a l f o f

t h e m a s t . The d e f l e c t i o n s a t t h e 1,000' and 750' p o i n t s a r e p l o t ­

t e d i n F i g s . 7.4 and 7.5.

to > 1 6

O O 2 5

_ +-- a » o o »

o

o

v O

10

l/r = 310, 2 6 9 , 2 4 0 , 2 1 9

20 30 4 0

In i t i a l c a b l e s t r e s s ( k s i )

F i g . 7.4.

o m N 2 0

5 *" 1 5

o a > v

o •*-

- 10 • 4 -a a

JL

l /r = 310

l/r = 2 6 9

l/r = 2 4 0 l/r : 219

10 20 3 0 4 0

In i t i a l c a b l e s t r e s s ( K s i )

F i g . 7.5.

Page 48: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 42 -

F i n a l l y , t h e guy t e n s i o n s on t h e windward s i d e i n c r e a s e d

w i t h i n i t i a l t e n s i o n , as m i g h t w e l l have b e e n e x p e c t e d . The

t e n s i o n i n t h e h i g h e r c a b l e was a l m o s t u n a f f e c t e d by t h e v a r y i n g

s t i f f n e s s e s o f t h e mast, w h i l e t h a t i n t h e l o w e r c a b l e i n c r e a s e d

w i t h i n c r e a s i n g s l e n d e r n e s s o f t h e mast, as i n d i c a t e d i n F i g s . 7.

and 7.7.

6 0

a. o Q. O ^ 3 — •o in

e *• *

tt T3 tt c

<D — £ X

50

4 0

10

" r • 219 l/r = 3 1 0

20 30 4 0

I n i t i a l c a b l e t e n s i o n s t r e s s (ks i )

F i g . . 7 . 6 . .

F i g . 7.7.

Page 49: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 43 -

T h i s example i s n o t i n t e n d e d t o be a c a s e s t u d y , b u t

r a t h e r t o p o i n t o u t t h e f a c i l i t y w i t h w h i c h t h e method c a n h a n d l e

o t h e r w i s e i n t r a c t a b l e p r o b l e m s . Over t h e 16 s o l u t i o n s p e r f o r m e d ,

on a v e r a g e o f 2.5 i t e r a t i o n s were r e q u i r e d t o s e t t h e p r e t e n s i o n s

i n t h e c a b l e s , and on a v e r a g e o f 3*25 i t e r a t i o n s were r e q u i r e d

t o s o l v e t h e l i v e - l o a d c o n d i t i o n . The f u l l s e t o f 16 s o l u t i o n s

were p e r f o r m e d i n a b o u t 70 s e c o n d s on a n IBM 360-67.

Page 50: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

_ 44 -

C h a p t e r 8. D i s c u s s i o n .

I n g e n e r a l , t h e Method p r o p o s e d h e r e i n w i l l c o n v e r g e f r o m

t h e i n i t i a l p o s i t i o n t o t h e n e a r e s t s t a b l e e q u i l i b r i u m p o s i t i o n .

The c l o s e r t h e i n i t i a l and f i n a l p o s i t i o n s , t h e f a s t e r t h e Method

w i l l c o n v e r g e .

I f t h e s t r u c t u r e s t a r t s a t , o r e r r o n e o u s l y wanders i n t o ,

an u n s t a b l e c o n f i g u r a t i o n , t h e s t i f f n e s s method w i l l b r e a k down.

I t i s r a t h e r h a r d t o make a r e l i a b l e p r e d i c t i o n a s t o w h e t h e r t h e

Method w i l l c o n v e r g e o r n o t f o r a g i v e n s t r u c t u r e . We may* s a y ,

however, t h a t i f a s t r u c t u r e h as a w e l l - d e f i n e d p o s i t i o n o f s t a b l e

e q u i l i b r i u m , and i s n o t u n s t a b l e c l o s e t o t h i s p o s i t i o n , t h e n f o r

an i n i t i a l p o s i t i o n r e a s o n a b l y c l o s e t o t h i s p o i n t t h e Method w i l l

c o n v e r g e t o i t . G i v e n t h e p r e s e n t s t a t e o f m a t h e m a t i c a l knowledge

r e g a r d i n g Newton's Method, we c a n s a y no more. More o p t i m i s t i c a l l y ,

we c a n p o i n t o u t t h a t , i n t h e p r o b l e m s so f a r p r e s e n t e d t o i t , t h e

Method has n o t f a i l e d t o c o n v e r g e on a s t a b l e s o l u t i o n i f one

e x i s t e d .

The a d v a n t a g e s o f t h e Method may be summarized:

( 1 ) The r e s u l t i s an e x a c t s o l u t i o n o f t h e e q u a t i o n s

c h o s e n t o d e s c r i b e t h e b e h a v i o u r o f t h e s t r u c t u r e .

(2) The Method c a n be a p p l i e d t o s t r u c t u r e s w h i c h c o n t a i n

many c a b l e s ( s l a c k o r t a u t ) and many n o n - c a b l e e l e m e n t s .

* By t r a n s l a t i n g t h e m a t h e m a t i c a l p r o o f o f c o n v e r g e n c e g i v e n by

G o l d s t e i n (3) ( A p p e n d i x 3) i n t o s t r u c t u r a l t e r m i n o l o g y .

Page 51: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 45 -

(3) A l r e a d y e x i s t i n g s t i f f n e s s a n a l y s i s p r o g r a m s c a n be

a d a p t e d t o t h e Method w i t h o u t g r e a t d i f f i c u l t y .

And i t s d i s a d v a n t a g e s :

(1) B e c a u s e o f t h e g e n e r a l i t y o f t h e Method, i t d o e s n o t

s o l v e c e r t a i n r e s t r i c t e d t y p e s o f p r o b l e m s as e f f i c ­

i e n t l y as more s p e c i f i c m e thods.

(2) The Method may b r e a k down ( t h o u g h t h i s a p p e a r s t o

be a v e r y r a r e o c c u r r e n c e ) .

Page 52: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- 46 -

B i b l i o g r a p h y .

L i v e s l e y R.K., " M a t r i x Methods o f S t r u c t u r a l A n a l y s i s " , Pergamon P r e s s , 1964.

J o h n F., " L e c t u r e s on N u m e r i c a l A n a l y s i s " , G o r d e n and B r e u c h , I967. K a n t o r o v i t c h L.V. and A k i l o v G.P., " F u n c t i o n a l A n a l y s i s i n Normed S p a c e s " , M a c M i l l a n , New Y o r k , 1964.

H o m e and M e r c h a n t . "The S t a b i l i t y o f Frames", Pergamon P r e s s , I965. R e l f E . F . and P o w e l l C.H., " T e s t s on Smooth and S t r a n d e d W i r e s I n c l i n e d t o t h e Wind D i r e c t i o n , and a C o m p a r i s o n o f R e s u l t s on S t r a n d e d W i r e s i n A i r and W a t e r " . A s s o c i a t e d R e s e a r c h Committee, R & M 30?, London, J a n . 1917. R e s u l t s r e p r o d u c e d i n :

N a t i o n a l R e s e a r c h C o u n c i l o f Canada, R e p o r t MER-1 "The A n a l y s i s o f t h e S t r u c t u r a l B e h a v i o u r o f Guyed A n t e n n a M a s t s Under Wind and I c e L o a d i n g " , Ottawa, 1956.

M i c h a l o s J . and B i r n s t i e C , "Movements o f a C a b l e Due t o Changes i n L o a d i n g " , T r a n s . . ASCE, V127, 1962. P a r t 11.

O ' B r i e n W.T. and F r a n c i s A . J . , " C a b l e Movements Under Two D i m e n s i o n a l L o a d s " , J . S t r . D i v . ASCE, V 9 0 , No. ST3• June 1964. P a r t 1.

G o l d s t e i n A.A., " C o n s t r u c t i v e R e a l A n a l y s i s " , H a r p e r and Row, I967.

Page 53: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- i -

Appendix 1. L i s t i n g of FORTRAN Subroutine to C a l c u l a t e

Cable-End F o r c e s .

The f o l l o w i n g i s a l i s t i n g of a F o r t r a n Subroutine which

uses Newton's Method to c a l c u l a t e the end-forces of a cable

as a f u n c t i o n of known USL, sag at some p o i n t x, or end t e n s i o n

T or T. . o 1

A l s o i n c l u d e d are three f u n c t i o n sub-programs to c a l c u l a t e

the d e r i v a t i v e o f the known f u n c t i o n w i t h r e s p e c t to the h o r i ­

z o n t a l components of cable t e n s i o n (H).

Page 54: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- i i -

APPENDIX 1

C-**** SUBROUTINE TO DETERMINE CABLE END FORCES

SUBROUTINE CABPOS<W,EL,V,USL,AREA,E,H,A,B,T0,Tl,SAG,X) IMPLICIT REAL*8tA-H,0-Z)

C***» FOR GIVEN : w = LOAD IN POUNDS PER LINEAR FOOT c** *« EL HORIZONTAL LENGTH C **** V = VERTICAL LENGTH c « * * * USL = UNSTRETCHED LENGTH OF CABLE c * * * * AREA AREA OF CABLE

SAG SAG OF CABLE AT X c * * * * E = MODULUS OF CABLE

TO = TENSION AT BEGINNING c * * « * T l TENSION AT END c* * *« C**«* NOTE: IF SAG.NE.O CALCS WILL BE BASED ON SAG C***« I F SAG.EQ.O AND TO OR T l NE.O CALCS WILL BE BASED ON C***« TENSION, OTHERWISE CALCS WILL BE BASED ON USL C**** C***« THIS PROGRAM USES A NEWTON-RAPHSON METHOD TO CALCULATE THE C***« POSITION OF THE CABLE, AND RETURNS VALUES OF: C**** USL C*«** H = HORIZONTAL TENSION C**«* T0,T1 {NOTE: IF VERT COMP < 0, T IS SET < 0) C**«* SAG AT X C**«* A,B = CONSTANTS IN THE CABLE EQUATIONS: C***« C«*** Y = H/W*COSH(W*X/H+A)+B C**** Y* = SINHtWX/H+A) C**#*

NITER = 0 C * * « * GUESS A VALUE OF H, IF NECESSARY

IFtH.EQ.O.>H=W*EL/2. IFC H.LT.(W*EL/20.))H=W*EL/20. AE=AREA*E

1 CONTINUE IFtSAG.NE.O.)G0 TO 7 IFCTO.NE.O.O.OR.Tl.NE.0.0)G0T011 CALL DUSLDHtW,EL,V,AE,H,USL$,DERI V) F=USL-USL$

C**«* F = ERROR IN CALCULATED USL IF{DABS(F/USL).LT.1.D-8)G0T02 G0T08

7 CALL DSAGDH(W,EL,V,AE,H,X,A,B,SAG$tDERIV> F=SAG-SAG$

C***# F = ERROR IN CALCULATED SAG IF(DABS(F/SAG).LT.1.D-6)G0T02 GOT 08

Page 55: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- I l l -

11 I F (TO.HE.0.) CALL DTODH (W, EL, V, AE,H, T$ , DERIV, & 1 2, & 1 3) CALL DT1DH (W,EL,V,AE,H,T$,DERI V,& 12,&13)

12 F=ro-rf C * * * * F = ERROR IH CALCULATED TENSION AT BEGINNING

I F (DABS (F/TO) . LT. 1.D-6) G0T02 G0T08

13 F=T1~T$ c * * * * F = ERROR IN CALCULATED TENSION RT ESD

I F (DABS (F/T1) . LT. 1.D-6) GDT02 8 DELTAH-F/DERIV

IF{(DELTAH+H/2.).LT.O.)DELTAH=-H/2. H=H+DELTAH KITEB=BITER+1 IF ( N I T E R . L T . 1 3 ) G 0 T 0 1 WRITE(6,100) H,F

100 FORMAT(' CABPOS: NO SOLS AFTER 12 ITERATIONS. H=•,F9 * • F=',F9.6))

C**** WRAP UP - GET UNKNOWNS 2 IF(SAG.NE.0.)GO TO 9

IF(TO.HE.0.0.OR.T1.NE.0.0)GOT015 CALL DSAGDH (W,EL,V,fcE,H,X,A,B,SAG$,DERIV) SAG=SAG$ GO TO 10

9 CALL DUSLDH(W fEL,V,AE,H,USL$,DERIV) USL=USL$ GOTO10

15 CALL DSAGDH (W,EL,V,AE,H,X,A, B, SAG, DERIV) CALL DUSLDH(W,EL,V,AE,H,USL,DERIV)

10 CONTINUE S0=DSIHH(A) S 1 = D S I » H (W*EL/H+A) T0=H*DSQRT (1. +S0*S0) *DSIGN (1. DO,SO) T 1=H*DSQRT (1. +S 1*S1)*DSIGN (1. D0,S1) WRITE(7,101)NITER,H

101. FORMAT(13,' ITERATIONS. H=',F13.5) RETURN END

Page 56: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- iv -

SUBROUTINE DUSLDH (W , EL, V, AE, H , US L$, DERIV) IMPLICIT REAL*8 (A-H,0-Z) S/R TO FIND USL AMD D(USL)/DL FOR k CABLE BE=V/EL GA=W*EL/2./H SHGA=DSINH (GA) CHGA=DCOSH (GA) DE=H/AE EP=DSQST(BE*BE+SHGA*SHGA/GA/3A) rH=DE*(BE*BE*GA*CHGA/SHGA+0.5+SHGft*CHGA/2./GA) OSL$= (EP-TH)*EL EIA=SHGA*CHGA/EP/G&-SHGA*SHGA/GA/GA/EP PSI=BE*BE*GA* (CHGA/SHGA-S ft/SHGA/SHGA)-SHGA*CHGA/2./GA

1+(1.+2.*SHGA*SBGA)/2. DERIV = EL/R* (- ET A - T E* D E* PSI) RETURN END

Page 57: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- V -

SUBROUTINE DSAGDH(W,EL,V,AE,H,X,A,B,SAG$, DE81V) IHPLICIT REAL*8 (A-H,0-Z)

c * * « * s/R TO FIND SAG, D (SAG) /DH, A AND B FOR A CABLE C**** NOTE THAT THE EQUATIONS ARE SLIGHTLY REWORKED C**** FROH THOSE IN THE THESIS IN ORDER TO INCREASE C**** COMPUTATIONAL EFFICIENCY

AL=AE/EL BE=V/EL GA=W*EL/2./H SHGA=DSINH (GA) CHGA=DCOSH {GA) A=DRSINH(GA*BE/SHGA) -GA B=-EL/2./GA*DC03H (A) SAG$=BE*X-EL/2./GA*DC0SH (2. *GA*X/EL*A) -B DE=H/& E DGADH=-GA/H DADH=1./DSQRT (1.+GA*GA*BE* BE/SHGA/SHGA) *(BE/SHGA-GA*BE

1/SHGA/SHGA*CHGA)*DGADH-DGADH DBDH=EL/2./GA/GA*DCOSH(A)*DGADH-EL/2./GA*DSINH(A)*DADH DERIV=-1./W*DC0SH(2.*GA*X/EL+A)-EL/2./GA*DSINH(

12.*GA*X/EL+A)* (2,*X/EL*DGADH+DADH)-DBDH RETURN END

Page 58: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- v i -

SUBROUTINE DTODH (W , EL , V, AE, H, T $, DER IV , *, * ) IMPLICIT REAL*8 (A~H,0-Z)

c * * « * S / B T 0 F I H D TENSION AND D (TENSION)/DH FOR A CABLE TMOLT=-1. GO TO 1 ENTRY DT1DH(W,EL,V,AE,H,T$,DERIV,*,*) TMULT=1.

1 CONTINUE AL=AE/EL BE=V/EL GA=W*EL/2./H SHGA = DSINH{GA) CHGA = DCOSH (GA) DE=H/AE EP=DSQRT(BE*BE+S HGft*SHGA/G A/3A) ETA=SHGA*CHGA/EP/GA-SHGA*SHGA/GA/G&/EP PHI=BE*GA*GA/SHGA/SHGA VV=AL*GA*DE*EL*(BE*THULT*CHGA/SHGA+EP) T$=DSQRT (H*rI + VV*VV) DVDH=TMULT*PHI-GA*ETA DERIV=1./T$* (H + VV*DVDH) I F (TMULT.LT. 0.0) RETURN 1 RETURN 2 END

Page 59: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- v i i -

A p p e n d i x 2. D e r i v a t i o n o f Terms i n t h e C a b l e M a t r i x .

I n e q u a t i o n s (4.2), (4.3) and (4.4) t h e s t i f f n e s s m a t r i x

f o r a c a b l e was d e f i n e d i n t e r m s o f s e v e r a l d e r i v a t i v e s . I n t h i s

A p p e n d i x t h e s e d e r i v a t i v e s a r e e v a l u a t e d .

I n a d d i t i o n t o t h e s y m b o l s d e f i n e d i n C h a p t e r 3t w e w i l l

r e q u i r e a n a d d i t i o n a l f u n c t i o n :

The u n s t r e s s e d l e n g t h o f a c a b l e i s c o n s t a n t , s o :

a^SL . ai£ iA ) , 0 A 2 a

a h dh

So :

a c . a A ah " a h A2.2

From e q u a t i o n (3.5)

-3C - Ot V BH_ ah ' p / € og - ah A2.3

And f r o m e q u a t i o n (3.10)

A2.4

Page 60: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- v i i i -

S o l v i n g e q u a t i o n s ( A 2 . 3 ) and (A2.4) f o r ^tL 3h

| y - ^ [ 2 y S c o , h y - ± ]

D i f f e r e n t i a t i n g e q u a t i o n s (3 . 7 ) and (3.6) we f i n d :

|^=a[ r8(coth r +/9/€)] + «t>-yr)) | i i

3h 2 y S c o t h * / j - 2<j> 3 H 3Vt

3h + 3 h

As d e f i n e d i n C h a p t e r 4 , t h e a p p r o x i m a t e term:

3h " 2 3h 3h

So

3 C 3A 3 L " 3 L

A2.5

A2.6

A2.7

A2.8

Or = a/Scothy + ̂> A2.9

As i n e q u a t i o n (A2.1)

3USL 8 ( C - A ) 3 L 3 L ' U A 2 - i o

A 2.ll

Page 61: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- i x -

From eq u a t i o n (3.5)

8 L € € + 7> o £ 8 l _

And from e q u a t i o n (3.10)

A2.12

3A a

S o l v i n g e q u a t i o n (A2.12) and (A2.13) f o r dH dL

A2.13

dH dL -a

Or

dL " " ^ a F

A2.14

A2.15

And d i f f e r e n t i a t i n g equations (3.7) and (3.6) we f i n d :

U-a[y8(€-% + i,-*v ) ] + ( « - ^ ) |H And

9 H , 3V,

A2.16

A2.17

Knowing H . equation (A2.5), (A2.9) and (A2.15) are r e a d i l y

e v a l u a t e d to p r o v i d e the cable s t i f f n e s s matrix o f equations (4.3)

or (4.4)

Page 62: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- X -

A p p e n d i x 3. Newton's Method.

Newton's Method ( a l s o c a l l e d t h e Newton-Raphson method) i s

one o f t h e o l d e s t , s i m p l e s t , and b e s t p r o c e d u r e s f o r t h e s o l u t i o n

o f n o n - l i n e a r e q u a t i o n s . I t i s somewhat s u r p r i s i n g t h e r e f o r e , t h a t

i t was n o t u n t i l c o m p a r a t i v e l y r e c e n t l y t h a t m a t h e m a t i c i a n s were

a b l e t o come t o g r i p s w i t h i t .

Theorems d e s c r i b i n g t h e c o n v e r g e n c e o f Newton's Method may

be f o u n d i n K a n t o r o v i t c h (3), J o h n (2) and G o l d s t e i n (3)» Q u a n t i t ­

a t i v e l y t h e s e t h e o r e m s a r e o f l i t t l e use t o u s , b u t q u a l i t a t i v e l y

t h e y a r e most v a l u a b l e i n t h a t t h e y show t h a t Newton's Method w i l l

c o n v e r g e t o a s t a b l e s o l u t i o n ( a s s u m i n g one e x i s t s ) f o r a s t r u c t u r e

p r o v i d e d o n l y t h a t t h e i n i t i a l p o i n t i s c l o s e enough t o t h e s o l u t i o n .

C o n s i d e r t h e f o l l o w i n g t h e o r e m s * ( b a s e d on G o l d s t e i n ' s

Theorem 1, C h a p t e r C-4, page 143, w h i c h i n i t s t u r n was b a s e d on

K a n t o r o v i t c h ' s w o r k * * ) . I n i t l e t :

be d e f l e c t e d s h a p e s o f t h e s t r u c t u r e .

be t h e s t i f f n e s s m a t r i x a t X

be t h e u n b a l a n c e d l o a d s a t X

K(x) UBL, . (x)

Which we w i l l m e r e l y s t a t e , and n o t p r o v e . The i n s i s t e n t ' r e a d e r

may v e r i f y f o r h i m s e l f i t ' s i s o m o r p h i s m t o G o l d s t e i n ' s t h e o r e m .

Some r e a d e r s m i g h t f i n d K a n t o r o v i t c h somewhat t o o h i r s u t e t o be

r e a d i l y d i g e s t e d , hence t h e r e f e r e n c e s t o G o l d s t e i n and J o h n ,

Page 63: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- x i -

L e t a p o i n t X 0 ( t h e i n i t i a l p o i n t ) L e g i v e n f o r w h i c h

K_1(x0) e x i s t s .

S e t 7)o = || K'Hxo) U B L ( X o ) l l= t h e l e n g t h o f t h e i n c r e ­

m e n t a l d e f l e c t i o n v e c t o r c a l c u l a t e d a t X 0 .

D e f i n e t h e s p h e r e S s u c h t h a t i t c o n t a i n s a l l X where:

II x- X o 11$ 27?0

( S i s t h u s a s p h e r e i n d e f l e c t i o n s p a c e c e n t e r e d a t X o

and h a v i n g a r a d i u s e q u a l t o 27] 0).

D e f i n e ^ 0 = || K ^ ( X o ) ! ! = t h e i n v e r s e o f t h e s m a l l e s t

e i g e n v a l u e o f K (x0) . ( I n a h i g h l y s t a b l e p o s i t i o n o f

t h e s t r u c t u r e j 3 o i s s m a l l and p o s i t i v e , i t becomes

l a r g e r as a n u n s t a b l e p o s i t i o n i s a p p r o a c h e d , and i s

i n f i n i t e a t a p o s i t i o n o f n e u t r a l e q u i l i b r i u m ) .

I f a numberk e x i s t s s u c h t h a t :

II K(x)- K ( y ) l l > k l l x ^y ' ! f o r a l l x and y i n S

A n d ! /§o7? 0 k$ l/2

Then t h e s t r u c t u r e has a p o s i t i o n o f s t a b l e e q u i l i b ­

r i u m i n S and t h e N e w t o n i a n s e q u e n c e d e f i n e d by:

x,+1= X j - K ' ^ X j ) U B L ( X j )

c o n v e r g e s q u a d r a t i c a l l y t o i t .

Page 64: 1971 Thesis- Analysis of Cable Structures by Newton's Method by Miller

- x i i -

Note t h a t t h e c l o s e r t h e i n i t i a l p o s i t i o n X 0 i s t o t h e s o l u ­

t i o n , t h e s m a l l e r w i l l be7) 0and hence t h e s p h e r e S . The s m a l l e r

t h e s p h e r e S i s , t h e more n e a r l y w i l l t h e s t i f f n e s s m a t r i x v a r y

l i n e a r l y w i t h d e f l e c t i o n s a c r o s s S and t h e s m a l l e r w i l l k b e . Thus

t h e c l o s e r t h e i n i t i a l p o i n t i s t o t h e s o l u t i o n , t h e b e t t e r t h e

c h a n c e s (and t h e f a s t e r t h e r a t e ) o f c o n v e r g e n c e .

What i s t h e e f f e c t o f u s i n g an a p p r o x i m a t e m a t r i x ? J o h n

shows ( C h a p t e r 2.12) t h a t i f t h e e r r o r i n t h e a p p r o x i m a t e m a t r i x i s

bounded t h e n t h e c o n v e r g e n c e c r i t e r i a become h a r s h e r , b u t t h e same

g e n e r a l s t a t e m e n t c a n be made: i f t h e i n i t i a l p o i n t i s c l o s e

enough t o t h e ( s t a b l e ) s o l u t i o n t h e n c o n v e r g e n c e i s a s s u r e d .