56
AEDCTSR 86 V46 DOC NUM SER CN UNC28865 -PDC A 1 II II IIIIIIII II III I INVESTIGATION OF THE DEVELOPMENT OF LAMINAR BOUNDARY-LAYER INSTABILITIES ALONGA BLUNTEDCONE J. C. Donaldson and S. A. S~mons Calspan Corporation/AEDC Operations APR I ~ 1989 k~Y 4 19e@ ,,,. ?#OH 14s~ Oecember 1988 Final Report for Period July 16-21, 1986 ".~ ~,,,,,* '~=," ," - . . . . . "L.,,., ~'~ .... , PROPERTy OFI!.S AiR FORC~ AEDC" --.1' ,~ , I eL, ,.~JJ~AL LIBRAkV Approved for public release; distribution is unlimited. TZC~.,i~J ,TC~ L ~ ~.~,,-_ F!L.F., C0~2" P~,CPFRTYOF U.S AIR =ORCE AEDC TECHNICAL JBRARY ARNOLD EII, IGINEERING DEVELOPMENTCENTER ARNOLD AiR FORCEBASE, TENNESSEE AIR FORCESYSTE~IS COMMAND UNITED STATES AIR FORCE UNCLAS$1F,=ED

19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

AEDC TSR 86 V46

DOC NUM SER CN

UNC28865 -PDC A 1

II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I IIII III I II I I I II II IIIIIIIIIIIIIIIIIIII I INVESTIGATION OF THE DEVELOPMENT OF

LAMINAR BOUNDARY-LAYER INSTABILITIES ALONG A BLUNTED CONE

J. C. Donaldson and S. A. S~mons Calspan Corporation/AEDC Operations

APR I ~ 1989

k~Y 4 19e@ , , , .

?#OH 14s~

Oecember 1988

Final Report for Period July 16-21, 1986

".~ ~,,,,,* '~=," , " - . . . . . "L.,,., ~ ' ~ . . . . , PROPERTy OF I!.S AiR FORC~ AEDC " --.1' ,~ , I eL, ,.~JJ~AL LIBRAkV

Approved for public release; d is t r ibu t ion is unl imited.

TZC~.,i~J ,TC ~ L ~ ~ . ~ , , - _

F!L.F., C0~2" P~,CPFRTY OF U.S AIR =ORCE

AEDC TECHNICAL JBRARY

ARNOLD EII, IGINEERING DEVELOPMENT CENTER ARNOLD AiR FORCE BASE, TENNESSEE

AIR FORCE SYSTE~IS COMMAND UNITED STATES AIR FORCE

UNCLAS$1F,=ED

Page 2: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

NOTICF..q

W h m U. S. Govemmmtt drawinss, specif'u:atiom, or other data are used for any purpose other than a ¢lefhdt~ related Government procuremmzt operation, the Government tlm, el~ incurs no respomibiUty

any obiissfion whatsoever, and the fact that the govermmmt may have fmmulated, furnished, or in any way supplied the said drawings, specif'gatio~, or other data, is not to be regarded by implication or o t h ~ or in any m a m ~ liceming the holder or any other person or corporation, or conveying any rishts or permiss/on to manufacture, use, or sefl any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Govermumt.

.APPROVAL STATEMENT

report hM been reviewed and approved.

WILLIAM T. SMITH, Maj, USAF Chief, Reentry Systems Division Dir of Aerospace Fit Dyn Test Deputy for Operations

AplpcOved for publication:

FOR THE CO~O~4~NOER

Deputy fo r . O p e r a t i o n s

Page 3: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLw~r~ TECHNICAL DATA

1. Export of information contained herein, which includm, in some circumstances, rdease to foreign nationals within the United States, without first obtaining approval or license from the Deparunent of State for items controUed by the International Traffic in Arms Regulations (1TAR), or the Department of Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of law.

2. Under 22 U.S.C. 2778 the penalty for unlawful export of items or information controUed under the ITAR is up to 2 years imprisonment, or a fine of $100,000, or both. Unde~ 50 U.S.C., Appendix 2410, the penalty for unlawful export of items or information ¢ontroUed under the EAR is a fuse of up to SI,000,000, or five times the value of the exports, whichever is gream-; or for an individual, imprisonment of up to l0 years, or a fine of up to S250,000, or both.

3. In accordance with your certification that mablishes you as a "qualified U.S. contractor," unauthos~rzcl disseminmion of this information is prohibited and nlay result in disqualification as a qualified U.S. conlractor, and may be considered in determining your eligibility for future c o n m u ~ with the Deparunmt of Defense.

4. The U.S. Government assumes no liability for dire~ patent infringement, or contributory patent infrinsement or misuse of ur.hnical dam.

5. The U. S. Government does not warrant the adequacy, accuracy, currency, or completeness of the technical data.

6. The U.S. Government assumes no liability for loss, damase, or injury resulting from manufacture or use for any purpose of any product, article, system, or material involving reliance upon any or all technical data furnished in response to the request for technical data.

7. If the technical data furnished by the Govanment will be used for commercial manufacuzdng or other profit potential, a license for such use may be necessary. Any payments made in support of the request for data do not include or involve any license tights.

8. A copy of this n m k e shall be provided with any partial or complete reproduction of throe data that are provided to qualified U.S. conn=,c~ors.

Page 4: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

REPORT DOCUMENTATION PAGE 1~, REPORT SECUriTY C[__~_~$!FICATION UNCLASSIFIED i

2a. $_¢OJRITY r~ ~$!FICATION AUTHORiTf

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE

;AEDC-TSR-86-V46

w.,~_~ OF~ee~oR~:~: ORr~N~ZAnON Arnold Engineering Development Center

6~ ADDRESS (O~, $~ta, and ZtPCo~e)

Air Force Systems Command

l Eb. OFFICE SYMBOL Of ~WW~We)

D0F

lb. R~[Ki~TiVE M~RKINO~

Form Approved OM8 NO. 0704-0188

3. DiS~m~UTION IAV~I.ABIUTY OF REPORT

Approved for public re~ease; d is t r ibut ion is unlimited. 5. MON~OmNG ORGANIZATION ~ P O ~ NUMBERS)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDkF,~ (CRy, State, ~ Z/PC.m~)

Arnold Air Force Base, TN 37389-5000

8a. M.~A..H. ¢ OF FUNOINGISF~N~ORING Tab. OFFICE SYMBOL '9 PROCUREMENT iNSTRUMENT IDENTI ORGANIZATION A~AL/FIMG and | (ff ,AoHraUe)

AEDC/DOF I Be. _A~.$$ (Oty, Stare, and ZlPCode) '10. SOURCE OF FUNDING NUMBERS

Wright-Patterson AFB, 0hto 45433 P'C~eAM IPRGJECr ]~ ~ Arnold Air Force Base, TN 37389-5000 ~1102F-

11. TITLE (/~_J;--~'_-~ $ecurny ~J-~;~,,e&,~). . Investigation of the Developmen~ of Laminar Boundary-Layer Cone

Donaldson, J. C. and Stmons, S. A., Calspan Corporatton/AEDC Operations 138. TTF~. OF ~EPORT !13b. riME COV[~.b ]14. DATE OF REPORT . ( '~ur , . ,~ ,Ooy) Final I FROM 7/1B[86 TO 7/21/86; uecemoer z~.z~

16. SUPPI~A~'NTARY NOTATION

Available in Defense Technical Information Center (DTIC).

18. SUBJECT TF,~qS (Cl~/nl/e on, m ~ r m / f .,,lel~Ury 4rid/doe ypersontC flow laminar boundary-' l u n t cone hot-wire anemomet~

19. AiSYHACT (C~;~,-,~e on . ; ; ; ~ . ff ; ~ . , . t y

IDENTIFICATION NUMBER

TASK IWORK UNIT ELEMENT NO. NO. NO IACCESSION NO.

I l ~s tab i l i t i es Along a B1 unted

15. PAGE C ~ N T

I i a~ ~nwfy by ~ ~mberj

I y- layer surveys )matry

ind tunnel tests boundary-layer stabi l i ty

Measurements of mean-flow and fluctuating-flow parameters were made in the boundary layer of a spherically blunted (O.7-in. radius), 7-deg (half-angle) cone in an investigation of the stabi l i ty of laminar boundary layers. The flow-fluctuation measurements were made using hot-wire anemometry techniques. Flow-field profiles and model surface pressures were also measured. The testing was performed at free-stream Mach number 8 with a free-stream unit Reynolds number of 1.6-million per foot. The test equipment and techniques, and'the data acquisit ion and reduction procedures are described. Analysis of the hot-wire anemometer data is beyond the scope of th is report.

20. O~;K,iUTION/AVAILABILITY OF AB$THACT 21. ABSTRACT SECURITY CLASSIFICATION r ' l UNCLASSIFIED/UNLIMITED R'I SAME AS RPT ~ one USERS UNCLASSIFIED

Z2a. N~._u__ ~ OF RESPONSIBLE INDIVIDUAL Z2b. TELEPHONE ( J ~ Area CoDe)122¢. OFFICE SYMBOL • 454-7813 l D0CS C. L Garner 1615 )

DO FG,~ 1473, JUN 86 Prevmused~omareob~eta. SECURITY ~LASSIFICATION OF THIS PAGE

UNCLASSIFIED

Page 5: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

CONTENTS

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 2.0 APPARATUS

2.1 Test Fac i l i ty . . . . . . . . . . . . . . . . . . . . 2.2 Test Ar t ic le . . . . . . . . . . . . . . 2.3 now-ri ld su v;y . . . . . . . . . . . . .

2.4 Flow-Field Survey Probes . . . . . . . . . . . . . . 2.5 Test Instrumentat ion . . . . . . . . . . . . . . . .

3.0 TEST DESCRIPTION 3.1 Test Condit ions and Procedures . . . . . . . . . . . 3.2 Data Acqu is i t i on . . . . . . . . . . . . . . . . . . 3.3 Data Reduction . . . . . . . . . . . . . . 3.4 Measurement uncertalntlGs . . . . . . . . . . . . .

4.0 DATA PACKAGE PRESENTATION . . . . . . . . . . . . . i7 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .

ILLUSTRATIONS

Io 2. 3. 4. 5. 6. 7.

Tunnel B . . . . . Model Geometry and'Gage locations i ~ i i i i [ [ i ] ~ i Test Instal lat ion

• • • • • • • • • • • • • • • • • D • •

Survey Probe Rake . . . . . . . . . . . . . . . . . . . . Probe Details . . . .

Typical Surface Pressure D i s t r i bu t i on . . . . . . . . . .

TABLES

le 2. 3. 4.

Model Instrumentation Locations . . . . . . . . . . . . . Estimated Upcertainties . . . . . . . . . . . . . . . . . Test Summary . . . . . . . . . . . . . . . Stations for Mean-Flow Surveys] . . . . . . . . . . . . .

SAMPLE DATA

Io 2. 3. 4.

Hot-Wire Anemometer Data (Type 9) . . . . . . . . . . . . Probe Flow Calibration (Type 6) . . . . . . . . . . . . . Flow-Field Survey Data (Type 4) . . . . . . . . . . . . . Model Surface Measurements (Type 2) . . . . . . . . . . .

paae

2 6

6 7 7 8 g

10 12 14 16

!8

19 20 21 22 24 26 29

30 31 35 41

42 44 45 49

Page 6: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

ALPHA, ALPI

CONFIG

CURRENT

DATA TYPE

DEL

DEL*

DEL**

DEW

DITTD

DITTL

EBAR "

ERM$

ETA

ITTD

ITTL

ITWL

LRE

NOMENCLATURE

Angle of attack, deg

Model configuration designation

Anemometer heating current, memp

Code indicating nature of data tabulated:

" 2 " - Model surface pressure and temperature measurements

" 4 " - Mean boundary-layer p ro f i le measurements using p i to t pressure and total temperature probes

"5" - Probe flow cal ibrat ion data

"g" - Quantitative hot-wire anemometer data at particular point locations within a survey or within the free stream

Boundary-layer total thickness, in.

Boundary-layer displacement thickness, in.

Boundary-layer momentum thickness, in.

Tunnel s t i l l i ng chamber dew point temperature, oF

Enthalpy difference at boundary-layer thickness, DEL, ITTD-ITWL, Btu/Ibm

Local enthalpy difference, ITTL-ITWL, Btu/Ibm

Anemometer mean voltage, mv

Anemometer output rms voltage, mv

Effective total-temperature probe recovery factor ETA-(TTLU-T)/(TT-T) or (TTTU-T)/(TT-T)

Enthalpy based on TTD, Btu/Ibm

Enthalpy based on TTL, Btu/lbm

Enthalpy.based on TWL, Btu/Ibm

Local unit Reynolds number, in.-1

Page 7: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

LRED

LRET

LRETA

LRETD

M, MACH

MA

MD

ME

ML

MU

MUTD

MUTL

MUTT

MUI'FD

MUTTL

P

PHI, PHIl

POINT

PP

PPD

PPE

PT

Unit Reynolds number at the boundary-layer thickness, DEL, in.-1

Local "normal shock" unit Reynolds number (based on MUTTL), in.-I

"Normal shock" unit Reynolds number at the anemometer location (based on MUTTL), In.ml

"Normal shock" unit Reynolds number at boundary-lay@r thickness, DEL {based on MUTTD), In.-1

Free-stream Mach number

Mach number interpolated to the anemometer location

Local Mach number at boundary-layer thickness DEL

Mach number at boundary-layer edge

Local Mach number

Dynamic viscosity based on T, Ibf-sec/ft2

Dynamic viscosity based on TD; Ibf-sec/ft2

Dynamic viscosity based on TL, Ibf-sec/ft2

Dynamic viscosity based on TT, Ibf-sec/ftZ

Dynamic viscosity based on TTD, Ibf-sec/ft2

Dynamic viscosity based on TTL, Ibf-sec/ft2

Free-stream static pressure, psla

Roll angle, deg

Data point number

Probe pitot pressure, psia

Pitot pressure at boundary-layer thickness DEL, psla

Pitot pressure at boundary-layer edge, psia

Tunnel s t i l l i ng chamber pressure, psia

Page 8: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

PT2

PN

PWL

Q

RE

RE/FT

RETD

RHO

RHOD

RHOL

RN

RUN

S

SD PW

T

TAP

TCXXX

TD

TDRK

THETA

TL

Free-stream total pressure downstream of a normal shock wave, psia

Model surface pressure, psia

Model wall static pressure used for boundary- layer survey calculations, psia

Free-=tream dynamic pressure, psia

hree-stream unit Reynolds number, In.-I

Free-stream unit Reynolds number, ft-i

"Normal shock" Reynolds number based on total temperature probe thermocouple diameter and viscosity of MUTT

Free-stream density, Ibm/ft3

Density at boundary-layer thickness DEL, Ibm/ft3

Local density, Ibm/ft3

Model nose radius, in.

Data set iden t i f i ca t ion number

Curvlllnear surface distance measured from model stagnation point, in.

Model wall pressure standard deviation

Free-stream static temperature, OR or OF

Pressure orifice identification number

Identification number of thermocouples on model interior surface

Static temperature at boundary-layer thickness DEL, OR

Temperature of Druckprobe transducer, OR

Peripheral angle on the model measured from ray on model top, posit ive clockwise when looking upstream, deg

Local s ta t ic temperature, OR

Page 9: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

TT

TTA

TTD

, TTE

TTL

TTLU

TTTU OR

TWL

UI)

UE

UL

V

X

XC

XSTA

ZA

ZP

IT

Tunnel s t i l l i ng chamber temperature, OR or OF

Local total temperature interpolated to the anemometer location, OR

Total te~erature at boundary-layer edge thickness, DEL, OR

Total temperature at boundary-layer edge, OR

Local total temperature, at pi tot probe height OR

Uncorrected (measured) probe recovery temperature, interpolated to ZP, OR

Uncorrected (measured) probe recovery temperature,

Model wall te~erature used for boundary-layer survey calculations, OR

Local velocity component parallel to model surface at boundary-layer thickness, DEL, ft/sec

Local velocity component parallel to model surface at boundary-layer edge, ft/sec

Local velocity component, parallel to model surface, ft/sec

Free-stream velocity, ft/sec

Axial location measured from virtual apex of cone model, in.

Calculated X location of survey station, in.

Nominal X location of survey station, in.

Anemometer probe height, distance to probe centerline along normal to model surface, in.

Pitot-pressure probe height, distance to probe centerline along normal to model surface, in.

Total-temperature probe height, distance to probe centerline along normal to model surface, in.

Page 10: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

1.0 INTRODUCTION

The work reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems Comand (AFSC), under Program Element 61102F, Control Number 2307, at the request of the Air Force Wright Aeronautical Laboratory (AFWAL/FIMG) and the AEDC Directorate of Aerospace Flight Dynamics Test (AEDC/DOF). The AFWAL prn~r~m ~anager was Kenneth F. Stetson and the AEDC/DOF program manager was ~lton R. Thompson. The results were obtained by the Calspan Corporation/AEDC Operations, operating contractor for the Aerospace Fl ight Dynamics test ing e f fo r t at the AEDC, AFSC, Arnold Air Force Base, Tennessee, 37389. The test was performed In the yon Karman Gas Dynamics Fac i l i t y (VKF) Hypersonic Wind Tunnel (B) on July 16-21, 1986, under the AEDC Project Number CFO3VB (Calspan Project Number V--B-07).

This test was the sixth in a series of studies designed to investigate the development of laminar boundary-layer i ns tab i l i t i es on sharp and blunt cones in hypersonic flow (Refs. 1-2). The present study was devoted to instabi l i t ies associated with a spherically- blunted cone model. Boundary-l~yer and free-stream flow-field data were obtained using hot-wire anemometer-, total temperature-, and pitot pressure- probes. Model surface pressure distributions were also obtained. The model configuration was a 7-deg (half-angle) cone with a spherically blunted nosetip of 0.70 in. radius.

Testing was performed at Mach number 8 at a free-stream unit Reynolds number of 2.6 million per foot and zero angle of attack. Hot- wire anemometer probe calibrations were obtained over a range of s t i l l ing chamber pressures between 200 and 575 psla with a nominally constant s t i l l i ng chamber temperature of 850 deg F.

Inquiries to obtain copies of the test data should be directed to AEDC/DOF, Arnold Air Force Base, Tennessee 37389. A microfiche record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel B (Fig. i) is a closed circuit hypersonic wind tunnel with a 50-in.-dlam test section. Two axisymetric contoured nozzles are available to provide Mach numbers of 6 and 8, and the tunnel may be operated continuously over a range of pressure levels from 20 to 300 psla at Mach number 6, and 50 to go0 psla at Mach number 8, wlth air supplied by the VKF main compressor plant. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350OR) are obtained through the use of a natural gas fired combustion heater. The entire tunnel {throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets. The tunnel is equipped with a model injection system, which allows removal of the model from

6

Page 11: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

the test section while the tunnel remains in operation. A description of the tunnel may be found in Ref. 3.

2.2 TEST ARTICLE

The model used for this investigation was one of the two Lubard models (fabricated by AEDC) which are seven-degree half-angle cones constructed of 304 stainless steel. These models have a 40 in. virtual length and a 9.82 in. base diameter and a series of interchangeable nose sections including a nominally-sharp nose and several spherically blunted noses of various radi i . The blunted nose section of 0.70 in. radius was used for the present investigation.

The f i r s t five test entries used the Lubard pressure/heat-transfer model which has been used for several other test programs and is now in very poor condition. Thus, for this entry, the Lubard force model was used and instrumented for additional surface pressure measurements.

During the tests performed in 1981, i t was discovered that near the nose region of this configuration the maximum disturbance energy point in the flow over the body, as detected by the hot-wire sensor, is located outside the boundary layer. As the surveys move toward the base of the model, however, this maximum energy point approaches and enters the boundary layer. To ensure that this phenomenon was bracketed by the test surveys, an existing frustum extension was attached at the model base to extend the model length by 10.5 in.

The model was instrumented with 25 pressure ori f ices. Table 1 lists the location of this instrumentation and indicates that the top centerllne (THETA = O) of the model was the main ray of pressure instrumentation. Pressure orifices were also located on the THETA = 90-, 180-, and 270-deg rays at three additional axial stations. A sketch of the model geometry and instrumentation locations is given in Fig. 2.

In order to monitor the model shell temperature, four thermocouples were mounted t o the internal model wall. These were located at THETA = 270 degrees (or -90 deg from the main ray of pressure or i f ices). Actual axial locations of these thermocouples are given in Table I. (See also, Fig. 2).

The model was installed as far upstream in the wind tunnel as practical, to permit surveying the boundary layer as far downstream as possible. The model instal lat ion is shown in Fig. 3.

2.3 FLOW-FIELD SURVEY MECHANISM

Surveys of the flow f ie ld were made using a retractable survey system (X-Z Survey Mechanism) designed and fabricated by AEDC. This mechanism makes i t possible to change survey probes while the tunnel remains in operation. The mechanism is housed in an air lock

Page 12: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

immedlately above a port in the top of the Tunnel B test Section. Access to the test section is through a 40-in.-1ong by 4-in.-wide opening which can be sealed by a pneumatically operated door when the mechanism is retracted. Separate drive motors are provided to (I) insert the mechanism into the test section or retract i t into the housing, (2) position the mechanism at any desired axial station over a range of 35 in., and (3) survey flow f ield of approximately lO-in. depth. A pneumatically-operated ashield was provided to protect the probes during injection and retraction through the tunnel boundary layer, during changes in tunnel conditions, and at times when the probes were not in use.

The probes required for flow-field survey measurements are rake- mounted on the X-Z mechanism at the foot of a strut that is extended or retracted to acco~lish the survey. The direction of the survey with respect to the vertical is fixed by manually sweeping the strut to the selected angle between 5 deg (swept upstream) and -15 deg (swept downstream) and locking the strut in position.

A sketch of the survey probe rake is shown in Fig. 4. The top and rear surfaces of the rake are designed to mate to the strut of the X-Z Survey Mechanism. The rake is provided with four O.10-in. I.D. tubes through which are mounted the hot-wire anemometer-, the pitot pressure-, and total te~erature probes. The fourth tube was used in the present test for housing a "touch-sensor" probe that caused the survey mechanism to halt when the probe made contact with the model surface. The tubes were slotted to accouodate spring clips attached to the rake which were used to hold the probes in position.

2.4 FLOW-FIELD SURVEY PROBES

The hot-wire anemometer probes (Fig. 5a) were fabricated by the VKF. Platinum-10% rhodium wires, drawn by the Wollaston process, of ZO- or 50-micro-inch nominal diameter and approximately 140 diameters length, were attached to sharpened 3-mil nickel wire supports using a bonding technique developed by Philco-Ford Corporation (Ref. 4). The wire supports were inserted in an alumina cylinder of 0.032 in. diameter and 0.25 in. length, which was, in turn, cemented to an alumina cylinder of o.og3 in. diameter and 3.0 in. length that carried the hot-wire leads through the probe holder of the survey mechanism.

The pltot pressure probe (Fig. 5b) had a cylindrical t ip of 0.007- in. inside diameter. Th is probe was fabricated by cold-drawing a stainless steel tube through a set of wire-drawing dies until the desired inside diameter was obtained. The outside surface of the drawn tube was subsequently electropolished to a diameter of 0.015 in. to minimize interference with the flow f ield surveyed.

The unshielded total temperature probe was fabricated from a length of sheathed thermocouple wire (O.020-in. O.D.) with two 0.004- in.-diameter wires. The wires were bared for a length of about 0.015

8

Page 13: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

in. and a thermocouple Junction of approximately O.O05-1n. diameter was made. Details of this probe are shown in Fig. 5c.

2.5 TEST INSTRUMENTATION

2.5.1 Standard Instrumentation

The measuring devices, recording devices, and calibration methods for all parameters measured during this test are listed in Table 2. Also, Table 2 identifies the standard wind tunnel instruments and measuring techniques used to define test parameters such as the model attitude, the model surface pressure, probe positions, and probe measurements. Additional special instrumentation used in support of this test effort is discussed in the following subsections.

2.5.2 Model Surface Instrumentation

Eighteen surface pressure taps were located along the zero ray of the model. In addition, two taps were located on the gO-deg ray, three on the IBO-deg ray, and two on the 270-deg ray. These taps, having approximate diameters of 0.064 in., were connected by tubing either to one-psid Druck® or 2.5-psid ESP transducers of the Tunnel B Standard Pressure System.

Model shell temperatures were monitor@d by four Chromel®- Alumel® thermocouples attached to the interior surface of the model. These thermocouples were mounted at THETA = 270 deg at nominal axial locations of X = 15-, 24-, 34-, and 45 in. (see Table i ) .

2.5.3 Hot-Wire Anemometry

Flow fluctuation measurements were made using hot-wire anemometry techniques. Constant-current hot-wire anemometer instrumentation with auxiliary electronic equipment was f~rnished by AEDC. The anemometer current control (Philco-Ford Model ADP-13) which supplies the heating current to the sensor is capable of maintaining the current at any one of 15 preset levels individually selected using push-button switches. The anemometer amplifier (Philco-Ford Model ADP-12), which amplifies the wire-response signal, contains the circuits required to compensate the signal electronically for thermal lag which is a characteristic of the f in i te heat capacity of the wire. A square-wave generator (Shapiro/Edwards Model 1-50) was used in determining the time constant of the sensor whenever required. The sensor heating current and mean voltage were fed to autoranging digital voltmeters for a visual display of these parameters and to a Bell and Howell model VR3700B magnetic tape machine and to the tunnel data system for recording. The sensor response a-c voltage was fed to an oscilloscope for visual display of the raw signal and to a wave analyzer (Hewlett-Packard Model B553B/B552B) for visual display of the spectra of the fluctuating signal and was recorded on magnetic tape for subsequent analysis by

Page 14: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

AEDC. A detailed description instrumentation is given in Ref. 5.

of the hot-wire anemometer

The a-c response signal from the hot-wlre anemometer was recorded using the Bell and Howell Model VR3700B magnetic tape machine in the FM- WBII mode. This channel, when properly calibrated and adjusted, has a signal-to-noise rat io of 35 db for a 1.000 volt rms output and a frequency response of +I to -3 db over a frequency range of 0 to 500 kHz. A sine wave generator is used to check each channel at severcI discrete frequencies, using an rms-voltmeter which is periodically checked on 1, 10, and 100 volt ranges. The sensor heating current and mean voltage signals from the hot-wlre anemometer were also tape- recorded using the FM-WBI mode. Magnetic tape recordings were made at a tape speed of 120 in./sec.

2.5.4 Pitot Probe Pressure Instrumentation

Pltot probe pressures were measured during surveys of the model boundary layer using a 15-psid Druck transducer calibrated for 10- psid fu l l scale. The small size of the pi tot probe (Section 2.4) was characterized by time delays for the stabi l izat ion of the pressure level within the probe tubing between or i f ice and transducer, when the probe was moved across the boundary layer. In order to reduce this lag time, the p i to t pressure transducer was housed in a water-cooled package attached to the t ra i l i ng edge of the st~ut on which the probe rake was mounted (Section 2.3). The distance between or i f ice and transducer was approximately 18 inches. The resultant lag time was of the order of one second.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

A sumary of the nominal test conditions is given below.

H PT, psta TT. o B V, f t /sec O. Dsia T. OR P, psta RE/FT x 10-6

8.0 575 1311 3822 2.64 95 0.06 2.6

A sumary of the present testing is presented in Tables 3 and 4 together with that of each of the f ive previous efforts, two of which are documented in Refs. 1-2. These tables provide a complete suMary of the various types of measurements made with each configuration for the six tests. The individual tests may be identif ied by RUN numbers. For Test I , RUN < 200; for Test 2, 200 < RUN < 300; Test 3, 300 < RUN < 400; Test 4, 400 < RUN < 500; Test 5, 500 < RUN < 700; and for the present testing, RUN > 700.

In the continuous flow Tunnel B, the model is mounted on a sting support mechanism in an instal lat ion tank direct ly underneath the tunnel test section. The tank is separated from the tunnel by a pair

10

Page 15: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

Prior to each operating shi f t , the Tunnel B circuit was purged to minimize the amount of particulate matter in the flow. Th is was necessary for protection of the extremely sensitive hot-wire probes from particulate impacts.

Probes mounted to the X-Z mechanism are deployed for measurements by the following sequence of operations: the air lock is closed, secured over the mechanism, and evacuated; and the access door to the tunnel test section is opened. The various drive systems (see Section 2.3) are used to inject the probes into the test section and position the probes at a designated survey station along the length of the model, She shield protecting the probes is raised, exposing them to the flow, and the flow f ield is traversed in the d~rection normal to the model surface to the probe height (or heights) selected for measurements. When the traverse has been concluded, the shield is closed over the probes and the mechanism is repositioned along the model. When the surveys are completed or when a probe is to be replaced, the X-Z Mechanism is retracted from the flow and the access door is closed. The air lock is then opened for probe work.

The survey probe height relative to the model was monitored using a high-magnification closed-circuit television (CCI~/) system. The camera for this system was f i t ted with a telescopic lens system which gives a magnification factor of 20 for the monitor image. The probe and model were back-lighted using the collimated light beam of the Tunnel B shadowgraph system which produced a high-contrast silhouette of the model-probe outline. The camera was mounted on a horizontal- vertical traversing mount to fac i l i ta te alignment of the camera with the probe at various model stations visible through the test section windows. The v ideo camera was interfaced with an image analyzer/dig~tize~ system (IADS) which was used to measure the distance between the probe and model surface using coaq~uter-assisted image analysis techniques. The software for making these measurements was designed to locate the lower edge of the probe and the upper edge of the model surface automatically, thus minimizing inconsistencies associated with location of the edges by an operator using a cursor. The measurement accuracy was further iaq~roved by calibrating the system prior to testing, using the automated edge-location technique to locate edges separated by a known distance.

11

Page 16: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

A hardcopy of the video image of the probes and model edge was provided in near real-time showing, by means of a graphics line, the location of the edges measured and displaying a printout of the measured distance and other pertinent documentation (Ref. 2, Fig. 6). The accuracy of this measurement technique was determined to be better than ±0.0007 in. over a range of 0.003 to 0.2 in. under air-off conditions. Provisions were made to determine the magnitude of edge movement caused by probe and model vibrations .rid to calculate a correction factor for the measurements i f required. However, vibrations of the model and probes were negliglble when measurements were made under the present test conditions.

The model was oriented in roll to avoid interference of the surface instrumentation with the boundary-layer probes. The flow-field surveys were obtained only after the model had reached equilibrium temperature. Init ial probe positioning near the model surface prior to each survey was accomplished by manual maneuvers of the probe controller while observing the CCTV monitor. The flow-field surveys were acco~lished in the following sequence: (i) the survey mechanism was positioned at the desired model axial station (XSTA) by the controller operating in either manual or automatic mode and locked in axial position; (2) the survey mechanism was driven downward in the direction normal to the surface by the controller until the "touch- sensor" probe (Section 2.3) made contact with the surface; (3) measurements of probe positions relative to th~ surface and to each other were made using the IADS and the information was manually entered into the data system; (4) the probes were traversed across .the flow field in selected increments by the controller in either manual or automatic mode to acquire the desired data; (5) the axial position of the survey mechanism was unlocked and the mechanism was repositloned at the next survey station along the model.

3.2 DATA ACQUISITION

The primary test technique used in the present investigation of the in i t ia l development of instabilities in a laminar boundary layer was hot-wire ane~ometry. In addition, mean-flow boundary-layer profile data (pitot pressure and total temperature) were acquired in order to define the flow environment in the vicinity of the hot-wire. Surface pressure distributions on the model were obtained to supplement the profile data. The various types of data acquired are summarized in Table 3. Model stations for mean-flow surveys are listed in Table 4.

3.2.1 Hot-Wire Anemometry Data

The hot-wire anemometer data acquired during the present test ing were of two general categories: (1) continuous-traverse surveys of the boundary layer to map the response of the hot-wire anemometer as e funct ion of distance normal to the surface and (2) quant i tat ive hot- wire measurements using the wire operated at each of a series of wire

12

Page 17: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

heating currents at one or two locations on each profile. The anemometer probes used are identified in Table 3f.

Data of the f i r s t category were acquired with the hot wire operated using a single heating current, in the present case the maximum (practical) current. The probe was generally translated in a continuous manner from near the model surface outward to a distance of approximately three times the boundary layer thickness. These data were recorded as analog plots of the hot-wire response (rms of the a-c voltage component) versus probe height normal to the model surface. The plot was used primarily for the purpose of determining the station in the boundary-layer profile where the hot-wire output reached a maximum level.

Quantitative hot-wire data (second category) were acquired at locations determined f rom the continuous-traverse surveys ( f i rs t category data). The point of maximum rms voltage output of the hot wire, the "maximum energy point" of the profile, was selected for quantitative measurements at each model station. The quantitative data were acquired using each of a sequence of two or more wire heating currents; one current was nominal-zero to obtain a measurement of the electronic noise of the anemometer instrumentation. Each wire heating current, wire mean voltage (d-c component) and the rms value of the wire voltage fluctuation (a-c component) were measured 40 times using the Tunnel B data system. At the same time, these hot wire parameters were being recorded (generally, a flve-second record duration) on magnetic tape with a tape transport speed of 120 in./sec.

3.2.2 Flow-Field Survey Data

Mean-flow boundary-layer profiles extended from a height of 0.02 in. above the model surface to somewhat beyond the edge of the boundary layer. A profile typically consisted of 25 to 40 data points (heights). The probe direction of travel was normal to the surface.

3.2.3 Model Surface Data

Surface pressure distributions on the model were obtained to supplement the boundary-layer profile data. Model shell temperatures were measured using the internal thermocouples.

3.2.4 Anemometer and Total Temperature Probe Calibrations

The evaluation of flow fluctuation quantitative measurements made using hot-wire anemometry techniques requires a knowledge of certain thermal and physical characteristics of the wire sensor employed. In the application of the hot wlre to wlnd tunnel tests, two complementary calibrations are used to evaluate the wire characteristics needed. The f i r s t calibration of each hot-wire probe is performed in the instrumentation laboratory prior to the testing: the probe is placed in an oven, and the resistance of the wire is determined as a function

13

Page 18: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

of applied wire heating current at several oven temperatures between room temperature and 600OF. The wire reference resistance at 32OF and the thermal coefficient of resistance, also at 32OF, are obtained from the results; the wire aspect (length-to-diameter) ratio is determined, using the wire resistance per unit length specified by the manufacturer with each supply of wire. Moreover, i t has been established that the exposure of the probes to the elevated temperatures of the oven calibration often serves to eliminateprobes with inherent weaknesses.

Each hot-wire probe used for f low-fleld measurements is callbrated in the wind tunnel free-stream flow to obtain both the heat-loss coef f ic ient (Nusselt number) and the temperature recovery factor character ist ics of the wire sensor as functions of local Reynolds number. The variat ions of Reynolds number in the free stream are obtained by varying the tunne] tota l pressure (PT) while holding the tunnel tota l temperature (TT) at a nominally constant level. The resul t ing relat ionships are used to determine the values of the various wire sens i t i v i t y parameters required in the reduction of the quant i tat ive measurements.

A calibration of the recovery factor of the total-temperature probe as a function of local Reynolds number was made in the free- stream flow of the tunnel test section simultaneously with the calibration of the hot-wire probes. The local total temperature for the probes in free-stream flow was assumed to be ~qual to the measured s t i l l i ng chamber temperature, TT (see Section 3.3.4).

3.3 DATA REDUCTION

3.3.1 Hot-Wire Anemometry (Data Types 6 and 9)

In the present discussion, as t t pertains to the reduction of hot- wire anemometer data, only the basic measurements tabulated in the data package that accompanies this report wi l l be considered. (Examples of these tabulations are shown in the Sample Data.) The data processing associated with spectral analysis, modal analysis, and determination of ampl i f icat ion rakes of laminar disturbances is beyond the scope of th is report. Extended data reduction of the hot-wire results to achieve these analyses is planned for the present measurements.

The basic measurements associated with quanti tat ive hot-wire data are the fol lowing parameters: wtre heating current, wire mean voltage, and the rms. value of the wire f luctuat ing response voltage. The average value of 40 measurements of each of these three parameters was determined over a period of 5 sec fo r each nominal wire heating current employed, and the results were tabulated under the designation "DATA TYPE 9" together with certain associated model, flow f i e l d , and tunnel conditions. (See Sample 1.)

14

Page 19: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Free-stream tunnel conditions that are applicable to anemometer and total-temperature probe calibrations are tabulated under the designation "DATA TYPE 6". (See Sample 2.)

3.3.2 Mean Flow-Field Surveys (Data Type 4)

The mean flow-field data reduction included calculation of the local Mach number and other local flow parameters, determination of the height of each probe relative to the model surface, correction of the total-temperature probe using an appropriate recovery factor, definition of the boundary-layer total thickness, and evaluation of the displacement and momentum thicknesses. Sample tabulated data are shown in Sample 3, and typical plotted results are shown in Fig. 6. The data reduction procedures are outlined as follows.

The local Mach number in the flow field around the model was determined using the measured pi tot pressure (PP) and the local model static pressure (PWL) with the Rayleigh pitot formula.

The height of each probe above the model surface, in the normal direction, was calculated for each point in a given flow-field survey, taking into consideration the following parameters: the in i t ia l vertical distance determined from the CCTV image, the distance traversed in the vertical direction from the in i t ia l position employing the survey probe drive, the lateral displacement of the probe from the vertical plane of symmetry of the model, and the local radius of the model at the survey station.

The height of the pitot pressure probe above the model surface (ZP) was used as the reference for all probes because the pitot probe was located in the vertical plane of symmetry of the model. The recovery tewerature measurements (TTTU) of the total te~erature probe were used to interpolate (three-point) a value (I-FLU) corresponding to each height of the pitot probe. Correction of the interpolated recovery temperature, using the probe calibration data, was achieved by

i te ra t ion on the local Reynolds number beginning with the value calculated using the recovery temperature (I-FLU) to determine an in i t ia l value f6r the local dynamic viscosity (MUTTL). The iteration was continued until successive values of the "corrected" total temperature differed by no more than 0.1 deg R. For those surveys wherein the pitot probe was positioned below the total-tPJnperature probe (closer to the model surface), the corrected total temperature at the corresponding pitot probe heights was determined from a second- order curve f i t using three points, namely: the model surface temperature (TWL) and the corrected total temperature at the f i r s t two probe heights, where i t was available.

The total thickness of the model boundary layer in any given profile was inferred from the profi le of the total-temperature probe recovery temperature (I-FLU). Recovery temperatures measured above the edge of the boundary layer (in the shock layer) remained constant or

15

Page 20: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

essentially independent of the probe height. There was generally a very distinct "overshoot" in the recovery temperature profile immediately before the onset of the constant portion of the profile. The height at which this constant portion of the profile began was defined as the edge of the boundary layer, and the corresponding distance normal to the model surface was defined as the boundary-layer total thickness (DEL). Displacement and momentum thicknesses were determined by integration accounting for the model cone angle and local radius of curvature. Probe/model interference was noted for some of the data points near the model surface; these points were omitted from the in tegra t ions.

Model surface pressure distributions were measured during mean flow-field surveys, "DATA TYPE 4" (Sample 3). These measurements were made each time that probe data were acquired and the 25 to 40 values for each pressure were averaged. The averaged values and their respective standard deviations are included in the tabulations of DATA TYPE 4.

3.3.3 Model Surface Measurements (Data Type 2)

Model surface pressure distributions generally were obtained when the survey probe mechanism was located so as not to interfere with the measurements. These data are tabulated under the designation "DATA TYPE 2". (See Sample 4.)

The local model surface pressure, PWL, used in the boundary-layer calculations was determined using a fairing of the measured pressure distributions (selected runs of DATA TYPE 2). The static pressure was assumed to be constant across the boundary layer and shock layer and equal to the local model surface pressure at each survey s ta t ion. The fairing of the surface pressure distribution used for each test condition is shown in Fig. 7.

3.3.4 Total Temperature Probe Calibration (Data Type 6)

The recovery factor ETA used in reducing the total temperature probe survey data is defined generally as a function of the local Reynolds number based on probe diameter. In the case of the probe used in the present test, the factor ETA was essentially independent of Reynolds number; that is, ETA = constant for the test conditions being considered.

Free-stream tunnel conditions that are applicable to the total- temperature probe calibration are tabulated under the designation "DATA TYPE 6" (Sample 2.)

3.4 MEASUREMENT UNCERTAINTIES

In general, instrumentation calibrations and data uncertainty estimates were made using methods recognized by the National Bureau of

16

Page 21: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Standards (NBS),(Ref. 6). Measurement uncertainty (U) is a combination of bias and precision errors defined as:

U = ±(B + tgsS)

where B is the bias l imit, S is the sample standard deviation, and t95 is the gSth percentile point for the two-tailed Student's "t" distribution, which equals approximately 2 for degrees .of freedom greater than 3D.

Estimates of the measured data uncertainties for this test, including the basic hot-wire anemometer measurements discussed in this report, are given in Tables 2a and b. Estimates of uncertainties in flow fluctuations derived from the hot-wire anemometer measurements and in other calculated flow survey parameters fa l l outside the scope of this report. In general, measurement uncertainties are determined from in-place calibrations through the data recording system and data reduction program.

The propagation of the estimated bias and precision errors of the measured data through the data reduction was determined for free-stream parameters in accordance with Ref. B, and is summarized in Table 2b.

4.0 DATA PACKAGE PRESENTATION

Boundary-layer profile data, model surface data, probe calibration data, and basic hot-wire anemometer data from the test were reduced to tabular and graphical form for presentation as a Data Package. Examples of the basic data tabulations are shown in the Sample Data.

Figure 6 is an example of the plotted mean-flow boundary-layer survey results for the blunt cone configuration at a particular survey station which are included in the Data Package.

17

Page 22: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

.

.

.

.

.

.

REFERENCES

Si ler , L. G. and Donaldson, J. C. "Boundary-Layer Measurements on Slender Blunt Cones at Free-Stream Mach Number 8," AEDC-TSR-7g- V71, December 1979.

Donaldson, J. C. and Simons, S. A., "Investigation of the Development of Laminar Boundary-Layer Instabi l i t ies Along a Sharp Cone," AEDC-TSR-85-V16, April 1985.

Boudreau, A. H. "Performance and Operational Characteristics of AEDC/VKF Tunnels A, B, and C." AEDC-TR-80-48 (AD-AlOE614), July 1981.

Ooughman, E. L. "Development of a Hot-Wire Anemometer for Hypersonic Turbulent Flows," Philco-Ford Corporation Publication No. U-4944, December 1971; and The Review of Scientif ic Instruments, Vol. 43, No. 8, August 1972, pp. 1200-1202.

Donaldson, J. C., Nelson, C. G., and O'Hare, J. E. "The Development of Hot-Wire Anemometer Test Capabilities for M® = 6 and M~ = 8 Applications," AEDC-TR-76-88 (AD A029570), September 1976.

Abernethy, R. B. et. al., and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Measurements," AEDC-TR-73-5 (AD755356), February 1973.

1 8

Page 23: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Nozzle Section 7 'lest Section--/ ~ M a c h 6 or 8 / Q u a r t z Winciows-.. 7 /

_ / 'lhroat -- - - / m / - - t " ,

~ ~1 II1 I ~ : ~ ' " I

' P l i t °~'~'''~io~ - I ] ~ 1 lell I I

- J

Diffuser Sectio 7

~ T a n l ( to Tunnel Vent

I I ~ Atm~phere Vent /

~ /--- Relief Valve

Tank Entrance

- \

Subsonic _~ Diffuser

a. Tunnel assembly

Windows Ior Model inspection or PhotograPhy

Windows ior S~ lo~aph l Schlieren

Nozzle

end Valves

Tank Entrance Door for M ~ I Installation or Imeection

Model Injection and Pitch Mechanism

b. Tunnel test section Fig. 1. Tunnel B

19

Page 24: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Section C-C Section B-O Section A-A I

0 deg

~ 7 0 ~ 9 0 deg cey

O deg

, ~ ~ aeg

0 deg

2 7 0 ~ d o 9 ~

qO deg

180 deg 1~,0 ~eg 7 deg _=~-. R~i : 0.00i5

/ <_< , ; 1 " , , ,o : o , I - -

~ - - - - . ' - - . - ( - - ' - . -~ . . . . ~ ~ ~ . M _ I " F . . . . . . . . .. I 12 .40 diam

X Pressure Taps [] Internal Wall Themocouples

b

Frustu,~ Extension

Dlm~n;ions in inches unless othen~|se state6

FIGURE 2. Node1 Geo~netry and Gage Locations

Page 25: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Figure 3. Test Installation

Page 26: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

~O I%)

Nominally 118 i n . L a t e r a l Spacin8 of Probes

Total- Temperature Probe ' ~ ~ . . . .

Pttot Probe . ~

MOt- j Wire Probe

Y

P e r s p e c t i v e View

(Hot-Uire Probe Omitted for C l a r i t y )

Side View

a . Rake and Probe Insta l la t ion t

Figure 4. Survey Probe Rake

Page 27: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Rel Sh

;'> ~.

,2e ~.

;? :, ~,'. r i

j /

Total-Temperature Probe ...... .,. ~i

NOTE:

Model Surface

Touch-Sensor Probe not shown. .~

Pitot Probe ~i • !' .~., ,~- '< %,~.

b. Rake/probe mounted above model surface

Figure 4. Concluded

Page 28: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Pt-IOZ Rh O.O000Z in. dim. o r

/ ~ s e n s o r wire 0.00005 in. dim, ~ - ' - -copper leads

/ / " / sensor supports _ ~ / J ~ / 0.003 tn. dim. _ j ~ ~ .

Pyrocerat~) fal ring

a. Hot-wlre anemometer probe

Figure 5. Probe details

Page 29: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

0.015 o0 x 0.007 ID

0.20 --

0.063 OD x 0.040 ID

F 0 - O g 3 O D x 0.063 ID

0.032 00 x 0.024 I0

All Dimens~n~ ~ Inches ~ ~ew~nS n c e Inches

b. PiCot probe

0.020 nn ¢h.=+w.~ T/C Wi (ISA T

T/C Juncti

f 0.042 OD x 0.027 ID SS Tubing

~? ng

ubino

0

All Dimensions in Inches Not Drawn to Scale

3.00 ......

c, Total-temperature probe

YiEure 5. Concluded

25

Page 30: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

N O~

HERD IPG F IL P,:Jil

n 72-;

0.80 I

0.72j

0.64

o 56 iI zP (,..)°"8 I

0.40

0.32

rl~.CH

i' .99_"

0.24 _ r ~ :1:~ rl"u~ln u

0.16 {

0.08 ~!

r:-- AEDC AFltAL/llypersotnc Boundary Layer Stabt l | ty f3 .~', I I?..r:~07,

n D

i

Iz [ n r:

[ ]

[ ]

13

n ]

[ ]

IDI

[ ]

!

Zl

0 '0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

PP/PT2 Boundary Layer Stabfl f ty

1 ,,80

$~rT'~ F I L RUN

m A P24

F IL R~H F!LE A T',"PE4 • TJ~rl

2.00 ~;..:-E ! 1 6 ; ' 9 I : --'!01!-8S

8-' ! PLGL:)E .~64

Figure 6. Typical Results of a Nean-Flow Boundary-Layer Survey

Page 31: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

N

HERDIH" I~CH F I L PUll

n 724 7 .992

0.80

0 . 7 2

0.64

0.56

0.48

ZP ( i n . )

0.40

0.32

AEDC AFgAL/Hyperson.ic Boundary Layer p,-

0 .2G ! BE+ET~ . ;

" 1 [] 0 . 8 0 , , ,

Stab | l . i ty

0.72 U I u

13

I ©

[] |

[] !

c i:

0.64

0.56

0 . 4 8 r , , "- -" '"

ZP ( i n . ) ; : It

0 . 4 0 ; : : , , I_1

' |1

0.32 , = : . . . .

l'~ I~1 ?24

'~ 1] :": ," 0 . 1 6 0.16 , ' i i " - h e , ; '

I i U " ~ ',

0 . 0 8 ; L I I I 0 . 0 8 i ; l ~ : i i . I,: FIL A

0 q • 0 ~ | i I 0.70 0.75 0 . ' 8 0 0 . 8 5 , 0 . ' 9 0 0 . 9 5 1 . 0 0 1 . 0 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 , 0 . 9 0 0 . 9 5 1 . 0 0 1 . 0 5

TTLU/TT TTL/TT Boundary Layer S tab . i I . i t y

RRI'I FILE T.'FT_4. Tr.::i

PA~E 2 15=51 ll~tOV-CJG

61 iP~O6E.564

Figure 6. Cont inued

Page 32: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

0.400

HEgD 1 I';G F IL RU,4

I! 7-".1

0.800

0.720

0.640

0.560

0.480 ZP (in.)

0.320

O. 240

0.160 I1

0.080

0 : 0 '

I'L%H

7 -997

E.-- AEDC AFgAL/Hypersontc

0.2". IC,~--CI7

~ EI ; ) La

Boundary Layer Stabi l i ty

13

I"0 O0

o DI ]0131313 0 IIt00 ~

[ ]

I 0 O D O

0

0

[ ] 0

U u

S~',~ F IL E'~"

~ 72."

0

0

0

E!

0

1.00 2.00 3.00 4.00 5.00 HL

Boundary Layer Stability

6.00 7.00

FIL RRM FILE

- F.':GE 8.00 :~-sa I l -II"" ' - " -"

011r :o33E .~. ""

Figure 6. Concluded

Page 33: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

I O

3 . 2

3.0 a .

L 2.8

03 @,.

OZ.

~- 2.6

0 N • ,- 2 . 4 n:l

E o

z :

2 ° 2

2.0

B

I

0

13

I

4

0 1981 (Ref . 3)

0 1986 (Present Test)

RN = 0.7 i n .

RE/FT = 2.5 x 106

±1.0 pstd D r u c l ~ t r a n s d u c e r s

[ Heasurement Uncerta i n t y

C u r v i l t n e a r Dis tance from Stagnat ion Po in t , S, i n .

FFtgure 7. Typ ica l Surface Pressure D i s t r i b u t i o n

i I I I i i I I I I I ! I I a ! . I I

8 IZ 16 20 24 28 32 36 40

Page 34: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

Table 1. Model Instrumentation Locations

PRESSURE ORIFICE No.

1 2 3 4 5 7 8 9

10 11 12 13 14 15 16 17 18 19 2O 21 22 23 24 25 26

THETA, deg

0

90 180 270 go

180 270 180

X t

in. n

39.494 38.500 37.999 36.023 34.038 30.064 28.078 26.093 24.112 22.127 20.474 19.473 16.994 15.014 13.028 11.043 9.058 8.094

20.478 20.478 20.474 19.489 19.483 19.489 11.043

S ,

in. n

35.103 34.102 33.597 31.606 29.606 25.602 23.602 21.602 19.606 17.606 15.940 14.932 12.434 10.439 8.439 6.439 4.439 3.467

15.944 ~5.944 15.944 14.948 14.942 14.948 6.439

INTERNAL THERMOCOUPLE No.

I01 102 103 104

270

1 15.0 24.1 34.0 45,

10.4 19.6 29.6 41.

30

Page 35: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

W F-I

T A B L E 2. E S T I M A T E D U N C E R T A I N T I E S

a. Measured Parameters Ste4dy-stma;e Est|mated Aa..=:~;-~,~,,;,~;. . . . . .

~reoslon Index Bias Uncertainty Parameter (S) (BI 2 (B ÷ tgSS) Range Type o|

Designation I:,Ncem Measuring Device ol Umt Ol Ore*re ol Percent of ~ of Pvecenl Ol Und of

avla : t l~ M4~I qlutlnulell ~ t4~i~oi111 allMlll1~ h l l V l l q l l l r f l t lily 8dllllilj ~JJlllUl llWlll I

'.,ll.ngCh--m~.+; 20 lima )30 '" ' tO Ip~ z 0 ) l ~ 01o'Je0 p. Paro~ie~Ulic Pressure D*glquartx Pressure

(PT & PTR). psi Tramducor

"l'ot'alY~...,~.---ura 2 I"F )30 2 ~ s4"s sitoS)0"v ¢hroael41-Aiumela) (TT). "F ~I 'F )30 * 0.37S s ( Is$~ ,~7 s]o "f to ~.10o'~ Themncoupl e

"Bull Angle (PHI) _~g~. 20 IS'* )30 O* 203* ,!00" Potentlometer

~, lOt Pressure IPP) ,ps l + O 0 0 3 p s , + 0 0 I O ' p s I " 2 O 0 1 4 p S l ¢101s'd 0/~/ck~ ~; ~.S pS|d

s t r i l a gage transducers

IITU.'F 2 I +F )30 .*3°F :4 - ; (530'F Ilnshle|ded Chrmwl4t- 2 I *IF )30 -* 0 375 1¢ )is% • r~) (3300 "F Altmml® lhermcouple

i i i : | : . |

• Releren(e Abernethy. R.B et al and Thompson. J W "Handbook Uncertainty m Gas Tud)lne Measurements." AEOC-TR 73.5, February I g73

Nr, te, * Bias assumed to 1341 al~'o ,

Type of Re(ording Device

i (hgital data Kqull~tlon system

Digital ~ e t e r and Micru Processor Averaged (TTP) Oigital Thermometer for .e _-~_'_'_'~clam (TTB) Digital data acquititmn system/analog-to-damsel ¢oflvellor

Analog to d,gltal " converter/d~gwtal data acquisition system

Method of System Cahl~ratson

In-place apphcabon 01~ multiple Pressure levels measured with a pressure measuring device calibrated in the standards lab I'hormocouple vorohca- b in of NBS conforming/ voltage substltubOn calibration

Heidenham rotary an- corder ROD700 Resolution 0 0006" Overall accuracy 0 001" In-place apph(allon of multiple pressure levels measured with a I~essure measuring dev,ce cahl~ated ,n Ihl

Thermocouple var,f:¢~ lion o| NBS (on|orm:c voltage substsiutoOn (~!~_hratlon

Page 36: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

I%1

TABLE 2. CONTINUED

a. CONTINUED Steady,Slate Ell,mated Measurement*

PrecisiOn Index Bias Uncertainty Parameter IS) (B) 2 (g * tgsS) Range Type of

Designation pewcen! Measuring Oevi(ce Un~l of Degree o! Percent el Uml of Percent ol Umt of of

1~4chng iUieatutlfmenr F#1hEcl~m ihHNIIng MXXlwlmlml RelldmlJ Mxasucemlmt i

Model Pressure IPWI. -gO 0Q07Spfa )30 1'1.0 2(00015 psi . I.O%l o s * s Orucl~ ~ IS psld psi 0 ISlm,d S t r i f e gage

20 OO~l~J )30 20.1 2(0.004 psi . 0 1 % ) o l s s p transducers e l S l ~ 4

t O .00Z I ~ )30 2 0 003 psi 2 O 007 psi (2.S ESP e ;LS I ~ d strain gage transdu(cer

Model Temperature 2 I *F )]O 2 ]r Z'F t 4 ;I'IF (600 "P ' " 1 l"Wl. *F

i I "F )30 2 0 375 2 O 380 (tw0'~ ¢hr~mel l I -A lml®

Themacauple ZP. ZT. ZA.in 20001 m )30 20 00;t in. t 0.004in. ~10m PotentJometec and

Optical

(Survey Slalmn), in t 0 Ol I in. )30 2 0 01Z m ' 2 0.014 in. UI; m Potent,ometer and Optical Grat0cule

ERM$, mv 2 O S O * 2 1 (!,TO0 my Phtl(co Ford Corp. CURRENT. ma tO.S 0 * 2 1 (Sea Model IADP.12/13

Hot-rare Anemometer EBAR, mv 20.S 0 * :l: 1 (M0mv System

||

"Reference: Abemethy, It g. et al and 111ompmn, J. W "Handbook Un(erta,nty m GM Tuftlxne Measurements" AEDC-TR-73-5, February 1073

Note: * Otasauumedtobezeco.

Type of Recordin 9 Devi(ce

Analog to digital (converter/digital data acquisition system

Oigital data acquisition system analog-to-d0gital convertec.

Digital data acquisition system analog.to.dlgital Converter. Digital Data Acqu/sition System A/1D Converter Optically Positioned Zero

Digltld data acqumtlon System analog-to-digital (onvecler.

Method of Systenl Cahbrat,on

, In-ldace apldl(catlon o~ multnplepressure levels measuredwlth a (~racsure measuwing

evice (calibrated m the Standards Lab

Thermocouple verifica- t ion o| NBS conformic voltage substitution (alibrat:on

Decision Ml(crometer

Precmon M*crometer

Precision Otgltal Voltmeter

Page 37: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

f.,o

TABLE 2. CONTINUED

Parameter OeugnatlOn

i

lurbulence

*;-!-'~'-dy-Stete Esl0mated .~...-=:~,; ~, .T. ~- .;.'

F+.~,~on Index B,as " Uncerte0nty (S) IO) ~ (o + toss)

O('gfllll ol ~'G+~.+-~ ol Uml ol l~r~Erl| ot Ullll Of lqllXlltl ol UIIII O| II~ldlng Ideatulvmen! Fleedm i RI~ -]~1- ' n'~ .u__~ ...~:.~:.~. .__+ i~__...:....w.;; u i d n - - "

U nk;';.~,,..~ - Uo'~k~;'+ Unk;;++;+

I I mm *Reference A ~ - ; ~ ; , y , R B el al and Thompson. J W ",'~--r,~.~,,~, Uncert~+~;y in Gas Turbine Measurements * A|I)¢-IR-?]-S, February 1073. • " Range o | present measurements

a. CONC, LUDEI

Range + * Type of Type of Method of

Measuring Device R~ordlmj Systerr Aml~nude Frequency Device Cahbrat,on

OC m I volt I)C to 250 Hot-wire Anemometer • Analog data Wore Rids (Heating KHZ or S0Q System (20 micro-lm:h recurded on charKter0st,cs current up to KHZ dream and SO mioo- inch tape | (x by oven S me) (frequency diem) subsequent calibratmn

~ I y b a c k and response rqKlucUon band determined • 40 loops o l Heat-transfer by filters date recorded charaster~st0cs used) on dig0lal data by ( •h i , ration , r

acquisition tunnel free- sl~tem (AO stream (Onverlerl for +Arh #hn

Page 38: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

w

TABLE 2. CONCLUDED

Parameter Designation

P,~

PT2, apsi

Q. psi

T,'F

V. fl/sec

RHo, Ibm/hi

MU, Ibf-sedft2

M

RE, per ft

b. Calculated Parameters

Estima;'e(I IVleasurement* Precision Index

(5) Percent of Unit of Read|ng Measurement

0.82

0.57

0.57

0.25

0.04

0.59

0.25

0.13"*

0.36

Degree of Freedom

)30

Bias (e)

Percent of Unit of Reading Measurement

0.02

0.02

0.02

0.24

0.12

0.25

0.24

O*

0.37

Uncertainty * (B + tgsS)

Percent of Reading

1.65

1.16

1.16

0.74

0.20

1.43

0.74

0.26

1.09

RE/FT

Un,t of x 10 .6

Measurement Nom.

" Reference: Abernethy, R.B. et al and Thompson, J.W. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5, February 1973

NOTE: * Was assumed to be zero. • * Determined from test section repeatability and uniformity during tunnel calibration.

2.5

MACH, Nominal

8.0

Page 39: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

a ,

TABLE 3. Test Summary

S u r f a c e p r e s s u r e and t e m p e r a t u r e (Type 2 D a t a )

HODEL CONFIG ALPHA,de9 PHI,deg RN, In.

7-deg Cone 0 -91

0 0 45 45

0 -85

1 -2 ÷2 +2

0 -2 - 4 -2

• 0 0 -110

1- -4 20 -4 0 +4 0 0 -110

0.0015 0.150 0.350 0.700

O. 700

2.000 0.0015

0.0015

1 0.0015

0.0015

0,0015

RE/F~ x10""

1.3 2.5 2.5 2.5

2.6 ¼

2.5 3.5 0.5 2.6 1.0 1.0 1.0 0.6 0.6 0.6 1.0 2.3

2.0

3.0

<:

RUN

358 72,73

210,211 302,303,305 312,313,314 315,317,322 330,339,340, 341,343,349

701,706,715 721 729,738,742

130,131 408,409,410

411,412 429 430 431

448,449 450,451 452,453 . 471,472

477

524 525,526,529,531, 532,553,554,564, 5K~,577,578,604, 605,606,607

608,609 517,618 619,620

579,580,581,582, 583,584,591,592, 595,596

586,587

NOTES: I. Tes~ 1, RUN ~, 200; ~Test 2, 200<RUN <300; 400 < RUN < 500; Ref. 5, 500 < RUN < 700; and

Test 3, 300<RUN<400; Test 4, for present testtng, RUN >700.

2. Surface pressure measurements are also included on Boundary-Layer Survey Data (Type 4).

35

Page 40: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

f~z cTi

b.

J

TABLE 3. Continued

~an-Flow Boundary-Layer Survey Matrix (Type 4 Data)

RN. RE/FJ ALPHA, l l

In. xlO "o deg 6 8 IO |!

O.O01S 0.5 0 I .o 0 112

I.O +2

1.3 0

2.0 6OI |

3.0 500

0.1S 2.5

0.25 ?.S

0.70 2.5

2.6

0.90 2.5

2.00 3.5

NOTES: l . 2 .

.

X STATION (NOHINAL) ' S I ' 6 i I O 20 24 25 26

i . . . . .

I l l

459b

602

IIO

4S8 ~

I 60.1

~ 105 105

1254

I !

1 I

t

76 104

I , I

727 F

PHI ,, -90 deg except where noted.

!09

I ! I

' | . . . . . .

373 i

i I

lOl

249

376

2o i 3o

lOB

372

)! 3, 42

. . . . . L-.--l~ 27Z 107 i !85a

, 145e I 1,5,

371 370

p .

75 74 102 101

i241 240 j 1208¢ ! 242( .[ . . . . 207c=

377

Test i , Run ( 200; Test 2, 200( Run ( 300; Test 3, 300 ( Run ( 400| Test 4, 400 ( Run ( 500; Test S, 500 ( Run ( 700| end f o r present t e s t i n g , Run ) 700.

Superscr ip ts : e - Alpha - -2 .0 deg, PHI - 0 deg, windward survey b - PHI - -85 deg c - Cold we l l deter THL - 525-, 640-, 540-deg R. f o r Runs 207, 208, 242, r e s p e c t i v e l y . A l l o ther date obta ined at hot we l l cond i t ions (THL ~ 860 deg R).

e - Extended survey o f preceding RUH, a l l outs ide boundary layer . f - PHI - 45 deg.

378

725 f 724 f

122

Page 41: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

RN, In.

0.0015

RE/IT xlO-O

1.0

1.3

2.5

ALPHA, deg.

0

0.15

0.25 2.5 0

0.50 3.5 0

0.70 2.5 0

0.90 2.5 0

2.00 3.5 0

TABLE 3. Continued

Hot-Htre Qualitat ive Survey Natrix (Type 3/Type 4 Data), RUNS

X STAT[ON'(NONINAL) ......

10 14 15 17 19 20 2 5 . 26 27 28 30 31 32 33 34

51 46 42 34 26 21 16 15

0 ]73 372

0 96 88 84 79 67 64 60

255 ~ 208 ( 254 2OT

140 141 14~ 139 138

257 ( 256

376 377

371

57

NOTES: 1. Run numbers (200 from Test 1; RUN numbers ( 300 from Test 2; RUN numbers ( 400 from Test 3.

2. Run numbers ( 200 obtatned as Data Type 3; Run numbers ) 200 obtatned as Data Type 4.

3. Superscripts:

c - Cold ~al l data, THL - 525-, 640-, 540-deg R. for RUNS 207, 208, 242, respectively. Al l others at hot wa]l conditions (TLW z 860 deg R). e - Extended survey of preceding run, a l l outstde boundary layer.

35

12

-)40 -)42 c

134

129 132

36

11

370

37

8

54

378

Page 42: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

TABLE 3. Continued , d. PART-i'. Hnt-Wtre q u a n l t a t i v e R.n ttaLrtx iType 9 Data} fo r AL'PHA = 0 I~UNS

l lira ' "¢.~ "* " ~ . I | I l ' ' i , , ~ i o i . . . , - - . . . . , . . . . . . . . . . . . . . ~ , ~ , ~ , . o I i * . - I o i I , I . , . l . l . , i . , l ' . . . ,~ : . ' : . . ~ i , , ' : o,'1.._!~1 I-1 I=d ~'; ~.'!,,,~--: I :

, ~ I i I I I i ~ ~ I I I I n i i ! I I / I 1 _ 1 , , , I , ! I / ~ I I I -~°1 ° I '~ '~ ~'.;'~'V-~'!,~;~,'.~':-~--':--',=-'Im.!,,.,,.,~.'~l! I I ~ l ~ l ~ l ' ~ i ' ~ ? . " ' ~ ' ~ ' : i l

- 4 " 4 ~ ,--!--, , - , 1 4 J - , _ J _ , ;-L-I ~ , I i I I / 1 1 1 , e I ! ! : : i !

L [ i I ~ l ! l, t-~[l~] I a ~ . t ~ a ~ l . ~ . . , , "

I " : l l ; la l ~ a z eel,

l- F ; - ' i .... "1 ~-i-l-,~,\! ~ t - ;1", I I il I ' ~n ~ ~ l . , l ~ i , i ~ l l ~ m ! ; I ' / I I V l , I : i i I / l ' . - H , , , I , . ,,,,I.,I.,i,.,I,..,,.!,,,,,,,,,..,.,I.

[ , v l~, viii I v ' I I ; , ~ l I l l I i i " ' I

, . : . , / 1 1 , : , . , ! I~ I1'I,,I I I 1 , 1 1 1 . - - - i - - - . ! - i l-.-/-l-~ I ' ; i~- ._U I__l ._._: ' , i~- \ ~ 1 ~ : 1 ~ 1 ' ,

I , / . ! • , . I / [-_!--t-*:-t--t--h--t-t~,~-,--t NOTES:

j | , ' , • t--t-t-l-- " -t~,t- t

'&Ic :re.E4,~

. ,~1 *a/,i l I, ~f/£

I " ' ~ 'Wl I,d I~¥,1

J~ seq

i . Roll a t t i tude: PHi • -gO dog for RUN < SWI; PHI • - I |Odeg for SO0 ( I U I • 100; Pill • 4S dog for Itwl ) 100. i . Test I , RUII < Iw l ; Test l , ZOO ¢ IIwl • SO0; Test ] , 3RU c RUN • 4wl; Test 4, 400 • IIwl ~ gwl;

Test S, Swl • IIwl < ;QO; and for present test ing, RUN ) I l l . $. Tvo d is t i nc t maxima disturbanCe ene~j~ pinks were noted for same runs. "Outer Pelt" I~1 emlberl l i s ted iboYe

dished l i ne ; " inner Plek m RWl n l b e r s l i s ted below dashed l ine . 4. SUPERSCRIPTS: s - Single sons l t l r l t # for RUN numbers So noted. For e l l other awls, d l t l were obtained

on | | u|re t ens l t l v t t l es . • o No "Inner Nek" observed; date ohtelnud i t approximate height vh i re l i nk wee

Ilrev|maslT observed.

~ ;.. Hot-141re Quantitat ive Run Ha trt._x (Ty.pe 2. Data) for ALPHA II . . ~ . ~ ~ ~ . . . . . . . ~ ~ - , . ~ ' . ~ : , , , , ~ ~ ;

• I ! I - - - " - r - - t . _ ! _ .I.f

t I I; . . . .

NOTES ! . IIUII nUlbers $00 frml Test Z; TUN nUlbers betifeen 400 and SO0 f r o l Test 4 ; ' SOO < RUN < 7wl from Test S,

Z. Single wire sens i t i v i t y for each run.

0 RUNS

m

i

I I

i~

Page 43: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

e .

TABLE 3. C o n t i n u e d

H o t - w i r e a n e m o m e t e r and t o t a l - t e m p e r a t u r e p r o b e c a l i b r a t i o n i n f r e e - s t r e a m (Type 6 D a t a )

• J

RU._N._N I~r (range).psta RE (range)xlO "5, per tn. Hot-Wtre No.

6 202-355 0.75-1.3 6 7 150-352 0.56-1.3 7

37 152-352 0.57-1.3 7 52 352-579 1.3-2.1 8 77 349-577 1.3-2.1 14 80 300-582 1.1-2.1 15 92 300-577 1.1-2.1 17

114 400-804 1.4-2.9 3 126 399-808 1.4-2.9 2 133 398-806 1.4-2.9 1 137 399-807 1.4-2.9 16 209 200-580 0.74-2.1 31 226 201-579 0.76-2.1 33 243 199-579 0.74-2.1 40 301 214-581 0.80-2.1 4 304 298-583 1.09-2.1 6 306 582 2.1 . 7 316 296-581 1.09-2.1 8 323 583 2.1 8 329 298-582 1.09-2.1 11 331 302-583 1.10-2.1 15 333 582 2.1 17 342 360-581 1.32-2.1 16 350 36b-582 1.31-2.1 52 413 226-601 0.85-2.2 33 454 228-602 0.84-2.2 33 523 220-440 0.84-1.7 54 552 300-440 1.1-1.7 76 702 139 0.54 69

704,705 199-576 0.77-2.2 63 711 200-503 0.77-1.9 67 712 275-505 1.1-1.9 61 713 193-427 0.75-1.6 64 714 226-579 0.87-2.2 35 720 231-577 0.89-2.2 38 728 229-553 0.88-2.1 39 737 229-553 0.88-2.1 36 741 215-546 0.83-2.1 37

NOTES:

1. Run numbers < 200 from Test 1; Run numbers < 300 from Test 2; Run numbers < 400 from Test 3; Run numbers < 500 from Test 4; Run numbers < 700 from Test 5; Run numbers > 700 from present test

2. Hot-wire probes were numbered Independently for each of the six test programs represented tn this table. For example, Hot-Wire No. 6 for RUN 6 was not the same sensor as that used for RUN 304.

39

Page 44: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

TADLE 3. Concluded

f . Ho t -w i re I d e n t i f i c a t i o n

Hot-Wtre No. RUN No.

6 6 7 7-5, 8 52-71

14 77-79 15 80-91 17 92-100

3 114-121 2 126-128 1 133-136

16 137-142

HF-4 207-208 31 209-225 33 226-239,250-285 39 242 40 243-249

4 301 6 304 7 306-321 8 316,318-321,323

11 324-329 15 331-332 17 333-338 16 342,344-349 52 350-357,359-378

33 414-427,432-447 455,460-470,473.476

Wt re Diameter

20 u-in.

20 -in.

20 u-in.

50 p-in.

20 p-tn.

54 S23 20 v-in. 76 551,552,555-559 50 u-in.

561-563,566-576 71 585 50 u-fn. 74 588-890 50 iJ-in.

177 597 50 p-tn 73 610-616 50 ~-in. 69 702 50 p-in 63 704,705,707,710 1 67 711 61 712 64 713 35 714,716,-719 20 p- in. 38 720,722,723 [ 39 728,731-736 36 "737,739,740 37 741,743-748

NOTES.. 1. Run numbers < 200 from Test 1; Run numbers < 300 from Test 2; Run numbers < 400 from Test 3; Run numbers < 500 from Test 4; Run numbers < 700 from Test 5; Run numbers • 700 from present test

2. A hot - f i lm probe was used for RUNS 207-208 (HF-4) 3. Hot-Wire probes were numbered independently for each ot' the

six test programs represented tn th is table. For example, Hot- Wire No. 6 for RUN 6 was not the same sensor as that used for RUN 304.

40

Page 45: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

X(STATION)

6 10 1] 14 15 16 17 18 19 20 24 25 26 27 28 30 31 32 33 34 35 36 37

42

* Indicates

TABLE 4.

RN,in. 0.0015

Stattons for Hean-Flow Surveys i

5, in.

0.15 0.25 0,50 ! 0.70 6.00*

10.07 9.08 11;18 14.10 13.11

15.10,14.93" 14.11

17.12 16.13 18.08

20.14 19.15 24.01" 25.18 24.19 23.51

27.19 26.20 28.20 30.22 29.23 28.55

32.23 33.24 32.25 34.25 35.25 34.26 36.26 37.27 36.28

present test data.

8.40 6.73

11.76

13.78

15.95

21.84

33.59 31.91

11.43

21.51

25.54 26.55

31.58 32.59

37.6(3

0.90

19.16

2.00

2.73

11.80

21.87

~X , ~n. !

-- 40.00 tn. . - I

41

Page 46: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

I I . . I *l':e.i I I I ' : laAt;e I

l*.~ii~ 'lkl f. 9 hill . ' l , , i , /~e¢t.~lllltLil.'14 I 'A (~

i t l i , * T ~'tJjf, I'.c.r ~i k l ' I~kl*b 1'1 ( ',~, I '1 IF~V) I ~ ' V | ( i * S J ~ )

I - . , ~ ( ' I Y Y . 9 1 I J S . ~ l ~ . b I i , t . , *):)

] V. ~,tl d~ 2 4 . 7 q i i l l . Pc/ S .51 -'k.4,! I u .~ i , 4 4 9 . 9 7 I I g , S I ~ . 5 0 | F *(~2 5 u . , s | o 7 5 . 8 b 1 4 2 . ( / ! S.~)1,7~ *(,2 r, u . ,~ l I I 0 ~ . 1 7 141.G2 ~ I . S I q L , 1)~ I I . u l L 1 ~ 9 . 0 ~ 1 5 2 0 7 J 5 . 5 1 ) k i l l ? li I = a~I)U 1 5 4 . ~ 5 159 ,15 S .SU4~*U2 '1 I . ' iU4 1 8 3 . 8 4 109 ,54 beSU?l~* (i2

J il J . .J).~') 2UboJ5 l l ~0 .5h ; ) . S I 7 t : *u? I I I .~'1~ 211.'17 1 9 2 . b 4 5.511L4¢17. i 2 1 .,J') I J S J . J O ~ J l ) . 8 Q 505(,2F i ( I / j I I . ' , ' l I /71 , . i 4 ~JU. j ! . ~.5U41":4 02

AI.L'I*~ = Ood4 I;£G XC I Y . Y 7 J~ I%)

~. U~'t I t , l

IJ/* J'&'. (.11;~ I'U I |.U J- lIU*, I." A '[ ¢. iIF'C f3Xl*e.D 3 I - JU i - - , sb l l /4i" Gt'CIIHI~FU $I l | 4 J

i~l~lJd~('T qb V f l - i l l

hl, l l h f I - l i b ( ; [ 'u: t. ( i l k E O.~U !1* , ) X51'A = I U . *)U Is1.

rT I' ,1 T ~F" [ A l l l r t ; le| 11"61A! tPb lml ) I p E b ~ ) (VEIl |1 ) ( I H . )

I , J l l I F . 4 O J 5 . b g u l : - U ? 2 , ~ h ~ t ~ l ! 9 , 5 1 4 t ~ t U l 2 .ssYOt lU5 I , g U b L - ' 2 I . J | l l L t U ~ ~ . T U ~ - ¢ I 2 ~ . ~ 4 d L f u I I 9 , 5 1 4 ~ U 1 2 , U ~ i L f U ~ 2 0 0 1 4 ~ - 0 1 J. I l dk . t d ] ~ , b ~ : - O ~ ~o~45~ tUU g e S 1 4 ~ t b J ] , i ~UULtU~ 2 , b ~ 4 ~ - U j I . l l ,mb*( ;J ~ . b 8 4 ~ - b ] 2.b4ULoU*I 9 . b j 4 L ¢ O I 2,uu4~4U5 2 . b ; 4 E - U J i = ~ l f ) ~ t O ) 5 , b ~ l ) ~ - O ] ? , 5 4 J L t V ( ! 9=$14~401 ~ebah~4U~ ~ . 6 7 4 L o U l l . J l s l ~ t h ] 5 . T u J ~ - U 2 ~oS4NbeUO 9 . 5 1 4 ~ t U 1 2.4J91~4Ub ~ . 6 ] 4 L 0 0 | 1 .31uLodJ S . b ~ - ( J ~ ~.S4SLeQoJ ? . S i 4 ~ t O | ~ , O b ~ , v b ~ ,b~4~-OI I . J l J ) r : f d ) ~ .h0?E-O~ ~ . 5 4 | ~ t b U Q . 5 1 4 [ , 0 I ~ ,Gbb[4ob ~ , b ? 4 ~ - O I l . ] j l l ~ ' f O ) 5 , 6 9 0 £ - 0 ~ ] 0 5 4 2 L t u O 9 . S i 4 ~ ¢ U j 2 ,UHbL tO5 ~ , b ~ 4 ~ e O | I . I I ~ ; L ~ O | 5 , 2 0 0 L 0 0 ~ 2 . 5 ~ T L t U O 9 . 5 1 4 ~ 1 0 1 ~ .OgU~IU5 ~ , b l 4 / ' O I | . J l ( J ~ b ] b . B94~-O2 2,b44LobO 9 . 5 1 4 ~ t 0 1 ~.QHH~IUb ~ , b ) 4 L - O l

l . J l . l ~ 4 d ) 5 e 6 d | i - U ? ~ . 5 4 1 ~ t U O 9 0 5 1 4 [ t 0 1 2,UObb~Ub 2 . b l 4 ~ ' O l

L J * . . )

I I: IIJ,41,1 I' ~ .|~.l

SAHPLE 1. Hot-Hire Aneniometer Data (Type 9)

Page 47: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

J, lllJ l~dltitl" ,* I ]% |'~ls, I-.

i l lJ i ~Jl, I AI,~,I4(,H~.IVIt ItATA

I ' l l i ,ill PT T T i ' t I '1 ..IL, 2,,I I-"P I I ' b i A ) (U I ' .U 14) ( i - l , 11,1 liar..;; h i | i e#) ( I ' 5 4 A J

Itbtl i , r Xb rA :

IJATk. C'IHPiITI:U J -N i l , h I ' A I L HLCll i l I ILD ~ l - J U b - u ~ I IP , I', hk.(~i|hbLI) J i I , *qJ r I ~,r- f . i l |4Pbl ~ b b ~ l Z o Pl~ilJf'f~l' Nt, V U-Q7

I - ~ r . ( . ( ' ,~1. II~l,I : U. IO I n . )

141. I " I I U I ~ T T I I , I r T

i b .51bF* (12 I . J l O L t L , 1 l . ~ 5 ' ~ l - , , l I . * J J l l f e l ) ) 2 . 5 0 , I t - u 2 l . T V l | . - u l l . ] J 4 " / k - U i iJ. i l~)b~'-Ul I/.Y.PLJt.-ul 2 b . s I q F . , 0 2 I . I I P F s t | ] i . ~tkt,} - , , I I . ( , | d L e i l ) 2 . ? J , ~ ' - u I 2 . | i Y L I U 0 4. l l5 )U~,tQU ~. 4 b b / . - l l i O. bOsXk_ ego J 5 , b l ? t tO2 I . J l r l i t b $ 1 .254E- ,11 I . ~ J ~ L t o ] :t e 1)RI~.-II I ~). 7 i b L s sld 4 e OSGHi'..I t)U (J. 4bYt ' -U | U e OOUl:.e UO 4 5 . 5 u l K e b 2 l . ) l O t t b ) I . ~,.¢,2F -(, I I o ( IJd l~ tU j 2 . / J h l ~ - b l ~ . I iSL~UO ,J. O~)ll JLtVtJ ~I..CI I I.;-01 U.UUUI~,OO 5 5 .SuTk . .02 I . J IOF.( ( ) ) 1.2.~1F - h i I ,ioJleI~tU$ ;~. 7 )6J ' -U I 2 . 1 1 1 t . t v O 4 .ObY~LtOU Y . 4 7 i F . - U I O.UUUL tOU h 5 .S IYE I¢ )2 l e J I ( I [ I U ) I . ~r:f~F -()1 I oOJHl:.t U) 2 , 7 ) 6 } - u l ~.7~,Je.~ OO 4 .obT~lt 'e UO 9.4"12L-O1 u.OOut:eOO I 5 .SJ ]F t lJ2 I , J | I | ~ ; * i ) ) I . ~ 5 4 F -¢ l i | ,OJHl' . l U J 2 . 7 ) ~ t . - U I 2 , 1 i b L e u U 4 ,( IbbJlr tUU 9 , 4 1 2 L - U I O,UUOI~tUO 8 5.bb4~: t l ,2 I . J l l l k . 4 0 ] I .25;~F - , i l I . i l Jlll~ fu j i 2 .TJb l~oOI ~ ,T j4k .euO 4 .OSTCJl~t UU ~. 4 / :~k ' -UI O, QQUI~:I O0 9 .~. bU IE'.I02 1 , 3 1 0 1 4 0 ] i I . Jh )k . -O I 1 . 6 ] B L I O ) 2 , T ]6F:-UI 2 , 7 1 9 L t u O 4 .U614F; tuu U. 47 ]I~.-U I OeUOU~:eOO

10 5 , 5 1 7 L , 0 2 I . ] l O t I U | i . ;)~.lSr'-tsI I =OJll lsiO J ~.?~161;-O| ~ . 7;~Ok.t rio 4.i)511~)l~tl)O Y . 4 b g f : - U I U.OUut: IOO I I 5.5111~*02 I , ] iGl~ ' tO$ I . ~541~-;~i I . O J H k ÷ U J 2 . ? ) h k : - U | ; l , ? l S k t U O 4.0So2KeOU g . 4 b U k : - O | O,UOUi~iUU 12 5,5U2F:IU~ I . l I , I~ .ed] I . ~ 5 ? F - I , I I .1' J~llr.tO ) 2. '1 ) f F.-U I 2 . ? i 4 k . tUU 4,()bl~hF e~O U. 4e.~f~-I) I U.UQUI~IOO I.t 1). 51,4~. i l l 2 I . J I I~f. t t l ) | o 2 % / f - t ~ l I . O S h t . t l ) ) ~e ~ Jblr,-O| ~ . ) 11115full 4 . u b l Jf. tOU ~ . 4 l i k ' - U | U. ulld~,S Ou

k l , i h , i © b . Q4 Dk:G ~C

ft :- 1 , 9 d Y

I : ) . ~ 1 I l l . . )

(.~

I Ih , , , I , ,~t , ! I ' 1 ) 5

SN.IPLE ] . Concluded

Page 48: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

| . I I I . li, ,, I *" I i , 4 Vl , l , r . |

,.,.1,4 I ' i l P I (p, pk l lhF I'lol|lr. C A I , | I ' I ' I . [ ' I [ I I ,

#. I 'T r l I I ' .~i A ) l i t . { . I . )

I I . ~ 1 I ~ g . ~ J I .~(bT.*. I 2 # . V J I 9,~P. ,) 4 I l (J ;~.~7 J 1 . 9 b ~ U b , e ) I ] lJ~,.¢, I 4 l .y~) ~ u l . 1 7 I ) , 1 9 . , , I

l . g b J ¢ / . ~ l I I I L . h 7 t, I , O b J 4 1 . U l I 3C*'#.~. 7

I , l . l , , r FF

7 . I I ' I ! or;4 I . " /? ' , t , 4P l, 4 | . * *1~ , . ct l~ | . t'J. qtl'.i t** i) ! o J ; T * . * t '5 I . J~ 'ut * Q 5

~uNt l l , I

P¥ Ni, T l r u I v.*. i A ) t d L G I t j I . b 7 5 5 l l . u l b 4 I ~ l u . u S u * ) l . h 7 9 g d . U I b ' l I ~ l u . u Y u 8 2o~P J77 U . U ~ I 1 |,~U / .~14u6 ?o~41S 8 . u 2 U T I - G I . ~ ) S u Y i . LJUh ! UeU20g | & u q . ~ 4 laJ 2 . Y U I 9 U , U ~ u 4 I . , 'UJ. 'YSb J

iJAJr.. C i* , ; I ' i | IE. I I J-I iLI~-. u |hA l t . Hr..L'III~I i.U l b - J b l . - u u FIMk. I (VCi lp i ,¢U d r ~ l S l l I T /Mr . CIIr, PUT~'.) V b l i¢I I ' i~lhJl:C1 N U t ' I t - U )

* l l , l l l i l ' I - U L ( ; ( 'UI E. [ i . l~ = U = l l l I N , : ~ s r A = u . , , , I I , .

TTTU I TT Ir.TA I~L1 Us • , 5

OeY~b l ) ~).Y;~UI b,, 411~lk. t UU U e Y 2 S J * J . ~ I Y J O, 49;~L',t UU ( J . Y 2 ] 9 Uo'Jl~) I " / , SOul:.t UU O , g 2 2 0 I * . U I S Y ] , 4641:.10U U.~ t |UU U . 9 1 ~ 4 I s , 4 6 0 L t U b U o U | ~ J U , Y | ~ 9 U, 40 JF..tUO

4~

I h , , . I-I ! I h l SAHPLE 2. Probe Flow Callbratfon (Type 6)

Page 49: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

¢;1

)

)

)

)

)

)

.3

#

P

,#

P

II

I

)

, )

)

J

)

I+Ul. hUmnl, k 124 PAt;Y. I

t;AA,~ i"dPF 4 VI, u~ t l t , L,b $UKVLI$

F t l l ~ r v i T I PT2 I v $ 1 ~ ) 1DIG F) (PSJ~)

l b l T . o J I ) 1 0 , 7 4 .920 4 514 .12 1310.1 4.1,9~ 3 515 .~1 I J l O . 1 a.~t~5 4 51b ,9 ) I J l u . I 4 .~19 5 S l b . 4 J 1310.7 4 .~11

5 / 4 . ~ 7 I J 1 9 . 1 4 .~91 5 / b . ~ ! 1 |1~01 4. '),)S S I T , I l J I J l * ) . T 4 .92, ) h i S . b 1 1310.1 409f)~

lu 511 .b4 1 3 1 9 . / 4 .Ue~ 11 515 .63 I | I 0 . 7 4 .9V~ I~ S I I . 4 t I 1 1 9 . 7 4 .q11 1! 515 .11 I 1 1 0 . 7 4 .90o 14 $71 .41 1110.7 4 . ~ 1S 5 I S . g ) 1 1 1 0 . / 4 .511 I o 5 1 7 . 2 | I J t O . 7 4 .9~2 17 5 7 4 . ~ J I J I O . 1 4 .u95 i d S I 5 . U J 1310.1 4 . q P J 19 b l o . ~ l J | l O . 7 4 o 9 1 9 ~u S / 5 . 5 1 1J1~01 4.~*)d 21 513 .~1 I J l U , } 4 . b94 ~ 516 .d~ 1J100) 4 .912 21 S I 7 . 5 ] I ) 1 0 o 7 4 .924 24 - 5 1 5 . 1 3 I J1007 4.9,~4 2b 571 .d2 I ) 1 9 0 1 4089 ] ~ S I 6 . 2 1 1 3 1 0 . / 4 .~13 27 S I 6 . 9 ) 1310.7 4 .~19 3d 514.O2 1 3 1 0 . / 4 . e15 2') 5 / 4 . 9 ~ I I i q . 7 4 . 9n3 Jo S ) 7 . 1 1 1 3 1 0 . ) 4.921 31 5 /6 . , )~ | 3 1 0 . / 4 .~12 3J S ~ 3 . h ) l ) I d . ? 4 .~q2 )J 5 1 5 . ? J 1 1 1 0 . / 4 .~n9 J~ 5 / 7 . 7 1 1 3 1 0 . / 4 .~2~ )~ 5 / 4 . $ 1 i110=7 4.U~9 1o ~ 1 4 . b l I J l O . 7 4.a~O J l 511 .u ) I I I ~ . / 4.92U )~ 5 / ~ . ~ ! i 3 1 0 o ) 4 .914 J'l b11 .4~ I J l O . / 4,~QO 1. 5 1 5 . 1 | I J 1 0 . 7 4 .9d~ 41 5 / 7 , ~ ) I 1 1 o . / 4.c0?~ 44 ~ / 4 . H ) | 3 1 0 . / 4.Qa,~ 4J ~ / 1 . 9 J 1 3 1 n , / 4 , ~ 4 44 5 / b . J3 I ) 1 0 . / 4 .~14 4b b / 7 . 0 i 1319.1 4.9~v,

&

o)14 ] i" l ~ * l t *P l l I ~ |J L ~|1~ hF.CUI, b~i/ Jr);4 I. it4 ~.C aINU J...b Ti'~L CUI*PuTkl) I'I~*~JF.CT kU V

~ U i / t l ~ | I~LUNF ?-irk.(, ('lJ|,l,.. (Hh .* U . I U INe ) X-~TA : 4~). sJU l b .

5 1 5 1 | i u u o 8 ~

SAHPLE 3. F lo~-FJeld Survey Data (Type 4)

P /.I- Pp P.%h Y*'t, .11 1 r T . ZA TIA /4A I,H|.I A ( P S I A ) (1111 ( l --~iA) ( I S I A ) (I)LG H] rA . I j tl)l~c; H) ( i f , ) It. l-(. 141 (Pk.le lee)

u . Is~rD G.J) J7fl Ip. I o | U. J 511 q47 .1 beu]~J3 i l J n . 6 U .U2 j I 101vN.~ j . l . + i~ .u I 1 .Yb ]~ , . 04~ ).*. iJq ~/ i) .) , 411| r . Io*~ O.14q 941.1 u . u l,sJ ! 1 4 7 . o u o o | J ! I i ~ , J . J J . o / c . - b I i i . 7921,.,t Ud I) .bSq ,J. ( ~)10 I). I ~)o U.15U Cl47. I UeU4$] i I t 'J . J O. LI411 114u .9 I . J I I . - u I "/. 9221, 4,04 U . I J S 4 0 . i,b II) I) . I ~15 ( | . 1Sfl 941o | v . u S j 3 1112.5 OeUSJJ I 1 | 1 . 5 ;*. bus. -O I b , 24bi~tu;! 0 . ,1~ , I ) . t , 770 * 9o l t )? (o. iSO 9 4 " / . I u .U (+ j ] | i u l . R U. I IbJ$ I I U d . 4 4 . 2 1 L - U I 5.1151'.t@4 0,. 1.5,) ~.¢,J~IO O. Ib t , 0 . 1 4 ¥ 9 | 7 0 | U . u T j 3 I l u 4 . 9 U . u I J J I I b ~ . a l :~. 4 Jk.-u I 5 . 8 9 | L t 0 ~ O. (zSq O.J191n I). I oil UeiSn 9 4 7 . | b.V|" J3 I I u S . I U.UbJJ i 1~)1.. 2 2. I)UP.-U | 0 o9HIiI, ,0~ ) ' . (,Sq Q. IOYu O . l u | f t . 1511 947.1 U.UgJ t I t u 6 . d~ IJ. U'~J 1 I l u o . : l J . I Jr..-b I 9o U~ liP.,u4 U.US~ O . ) l l c f i . l Y 7 i~. 15h '141.1 U. j 0 ) j l A lb~eb u . l u J J I ! i j . 7 4= Ubr.-t, I 101911.'.96J u . slSc! U. 12"/'P 00216 O . l v q cl470 I U , i J J 3 I 1 i 4 . 9 U . I I J I I I I Y . 6 5.V21~-u I I .'*bO~:*,J J Sol)5. cl I). 1170 O. ?~) ! 0 . 1 5 0 9, ,7.1 U,p I ].41 1142.9 U . I ~ ] J 1149 .6 ) . ! I I ; - 91 1 o )SII , :*UJ (I . Ul~ C. I) . 1411~ I~. lU l (s. I b*) 9, ,1.1 U . I 1 j3 I I J,~. ] U . I 1 1 I 1141 .5 U. 4Sr.-UI 2.U92,, tlJ J U.bSa O . | $ 7 9 O . J / O . f)o I ~)f l '141. i u . | 4 J l J149 .0 u .1411 ! 1 b 1 , 1 Y . Y I b - U I d,, 4171.*lJ !1 U.U59 0 . 1 6 7 - o .411 P.14 '* 9 4 / . I U . I ~ J ) I t b 6 e Y U .15JJ 11HJ . I l . IS~*uU ~0~99(* , )J U. A~') I~. ! 170 0 .614 I). 15ll 9 ' ,7 . I u . l b J 3 I l u A . ) O.1~31 12u'~. 4 1. i ; ) L tuU J . 4 1 4 L t U J 0 . 0 6 0 L*. I I~ 711 41.7/ I O.1541 941.1 U . | 7 J 3 1297.O U . 1 7 J ) 121.+.1 ] .~H:4,uU 4. I ~41. ,IVJ O . . 5 9 U. 19Zn O.1,49 n . 1 4 9 947.1 u . i l u J 1211.9 u .17~J 12, ,1.1 I . lug. ~U,~ 4 .SO4L tuJ ' ) . t~5~ L,o l ~?,I U . I Y ~ P. 15') 947 .1 U . I U J 3 I 1 4 1 . 2 U . I ~ J J 12bb .1 I . d4L~uU 40UMS& ¢ u I u . ,,,+') U. d~U2(, I . I I 5 O. ISrl q41 .1 U e i ~ a ) ] ~J'J.O U. ll+~ J I ~ b b . 5 109 Jr.. t I)11 5 .4oJ l~ tOJ O. ilN') O. 2(lhll 1 .242 0.15i~ 947 .1 u e | ' ) J l 12J8. / U.1911 l / l ~ . B 2.U4P.,*UU b.b4~l t . tOJ O.uSg 9041 ]"1 1o4U6 0 . 1 4 ¥ 94701 U. A')UJ i ~),lS o5 U.19U I 12bo .5 ~ . 2 2 b * 0 0 6.J614"tU$ U.G59 11.417(* 1 .599 00150 94101 Uo.~OJ) 12 '+! .2 U.JOJJ 1 ~ 4 . 9 2 . ] 6 L , U * b o s t g K t o J Uo9OU U. +r22U 1.++Ul O. IS0' 94101 U 0 dlOII j 1265.5 I)0 ~IIU3 I J U i . 9 4.5 iL , )UO 10540k.e(IJ 0 . 0 5 9 0 .211 ' ) 1 .914 O.150 947.1 U.,Z133 1261.6 U.,~l J3 I IS* ) .9 4. OUI..+OU I I . JI14£,1,0 J 9.1*59 I).2J24) 2 . l l l l ) n0149 9, t7.1 u . . , l u 3 I ~ b ~ . 2 U.211sJ 1311 .3 4 .bo, . *uO 90:~+?1+'t01 I , . gt%U Q. JJ?¢l 70 I I : ! 11.1511 94701 u . &2j~l | 2 o 0 . 1 U=22J) I114.11 3. u SIP.full 1001Jl, . tu4 I.,. i,S 9 b.447(J 2 o ~hl,~ b . l b u 947.1 u . 4 J J ) I ,~ )? . b U.ZJ13 111: ; .9 J . Jbr.. t,JU | . |94~. t94 ( ; . ( '59 I) . 2' ; ' /d 30109 0 . 1 4 9 941.1 u . ~,~lj] 12b$. I U..P4JJ 1 3 1 4 . ) J.b. ,c *ljU i . ] , lSp'tO4 I*.OSq o ; . ) b l U | . S J H 0 0 1 5 0 9 4 7 0 1 U, 4 + 1 1 1 2 s 8 0 2 O , ~ S J ~ 1 3 1 1 , b + , 9..~k *t)O l , bb+l ' . tU ' ) IJeO~|) Ojd~ll(~ 3.~1 ' ) (I.1511 9 4 / . I U = ~ : 2 i ? ~ 4 . h O.2bJ~ 13UVo? 4.1hF-*UU I*7')bF.*t04 U . b S 9 0 . ~ 7 . o 4 . i J u 11.1511 947.1 U.-~ 113 | ~ ' i2 .4 O.d~IJJ 139b.7 4 . J l b t u U ] *9119htU'l O * t-JSq l/= ;7974s 40(o44 be 1 4 ' | q 4 1 o l U*&leJl 1 " 4 t 0( j Ue,~UJ J I I b l p , 3 4 . ~ 3k..I.ull 4 ,1141J . t@4 b . l J ~ ) 9 0 . JJ ~f) 5.11b~ i}0151 | 947 .1 U..~'!J2 I~J '~ .8 ~.JlJj ,~ | ] O V . | I 4 .UI I : . t~U ~ .312L* ' I , * U.q,bU U . I J I U 5.%~4 ~1. IS,) q q ) . l v . J2J2 i ~ J l l . ~ U.12J2 ! Juls. II b . 11~'.*uU :~. 5¥bl'.t tJ4 U . t , ~ 9 0 . 3~) 7(~ 5 . ' , J~ O. J 44/ 947.1 u . J4J2 i ~ J I . J 0 . J 4 J 2 I ) u u . b b.4@(*UU ~ . b 1"1L904 u . V5Q (I. 17 l f ) 6 , 1 0 ~ f l , 1 4 q 9 4 7 , 1 q~...JK.~ ~ 1 2 J 6 , 8 u , J o J ~ I J u b , 9 5 ,5o1 ' .* ~O 2 ,VSq l . t U'l t , . O5') 0 . -~ i**.4 b . SU7 O. I5'J 047 .1 v . 4U.l+) i ~ J b o l U. 4dJb I Jub . II S . ) Jr. fUl l 3. | j I I , tO 4 I/.1159 el. 4') 1,, 6 . II)1~ Q. I~)- 94101 v . q 4 J ? 12J5.7 U. 44.12 I l u b . 7 b. UbLtUil J .,~bbl'.tUq t l . b59 O. Sq?al T .UV/ '1.14"* ~'41. ! u . 4 H j I 12J5.1 |1. +lhJ2 1 ]U~ .7 b. ~) tI'.*UU J o J f / h t U 4 b .uS9 u . ' . J I,P "/. 2~)h (,0 I SII .941.1 ~1. :,~J2 14J.~.4 U.:)4J~ ] JU'*. I b**J~e.~U,I J .*lVSf~H),l u . (,bll ~1.5 ! 1,1 7 . ts ' t u . 15*1 °41o I v • "~++ J :~ t i e 4 = / U.Sh J,I I . luU. / be I~)~tOU 30~194~.t114 U. ;J59 I.*.~ I IU "/.'+4 J (~. I 4~1 94 /01 U.oflJd~ ! J ] i . II 1~.O912 1311..9 I , .4 I L t u U J ob4b [904 ' . , 59 O.b%liJ 7 . ~ h 0 . 1 4 4 '141.1 u . u 4 ] ~ i J J 4 . S i ) .o414 I )uUeH Uo~IL t ( /U J .bg l l~ . t l )4

' ; . II ~9 ,J.hY /IJ 1.7Ob he lS,I ~14701 U.O4J? I ] . t 4 . 4 II.O'~12 13Ub.Y O. 11" tO" ~1.75:~l~tu4 Q.CIS'* f t .# :7:, 1.1~Ji G.I~)(~ 941 .1 u . l ,+4J 12J4 .4 U . I ~ J I J lb lP .9 b. JJl~UO 3.1YUI'. tU4

Page 50: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

# + ,

46 5 1 4 . 4 9 1 3 1 0 . 7 4 . 8 9 8 0 . 0 5 9 0 .7671 ) 7 .H7R O . 1 4 9 V 4 7 , I U . I T J I 1 2 4 4 . 4 O .1751 l $ u g . U b . Jb6 tOO $ . J l S K t Q 4

P i l l = 4 5 . O OLG H m 7 , 9 9

~I,PIIA : - ~ , O DLG U [ ~ m - 6 0 . D iG

HEArt vAbU[G PT : ~ 7 ~ . o PS IA TT 0 1 J I 0 . 7 DEG H

PT2 : 4 .gOH * P S | A IEL a 2 . 1 7 b E , O 5 PER | H HII = T . h + T E - 0 8 h U P ' S E C / P T ~

PIll) : I , O H ) ~ - O ] hBH/FT$

P = 0 , 0 5 9 J P ~ I A PkL = U . i ~ U P61A T . I , a 9 4 1 . 1 DEG R

¥ a J b 2 | , ? V l / S E C Q = ~ . b 5 $ t 'S IA T m US,2 I)LU I(

I

- t

SAMPLE 3. Continued

Page 51: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

I ~U|s hU~II [H T~4 P*t ;~

) f l , l ) - FObb~ SU~VbI~

~ i l l ' l i " PI IPVE 01~1 I

l ' 1 , 0 i 7 0 o,0~I ) J 0 . 0 4 I l l U.ObU

3 0 , 0 ~ 1 0 O , O i b 4 U.Ob?l l OeO4~ b 0 , 0 7 7 0 O,Obu

) h ,9 .ou7n O,Obo I U . o 4 1 0 boOS]

l i , O i i l / I P , O S I I ~ U .107 i l U , 0 6 2

) I I 0 , 1 3 7 0 O,~SU IZ 0,14711 O.09~ I J U . I bTO 0 , 1 1 / 14 O, IbTs l O , 1 4 Y

I 15 U . I I I O 0 . 1 t 4 Ib O . l e T s l 0 . 2 4 ~

.l:b IT 0 , I ~ 2 0 O . 2 b P

2'P 0 . 2 u 6 0 0 , 3 1 2 ) 20 0 , 2 1 2 0 0 . 4 4 4

22 o , 2 1 7 0 O .50b 23 0 , 2 2 2 0 O,Sbe

| 24 b , 2 1 ? * l 0 , 6 7 ) 25 o.2J2o 0 . 6 e ~ ?b 11,21711 ~,~61 ~7 i i , 2 4 | 1 i O.@bb 24 n . 2 s 7 n I,OGO 2v 0 . ? o / . I . I I / JU I s . ? / 7 0 J ,~20 31 d . ~ b T n I . | b o

| 3J 0 . ) 1 1 0 I , $ ~ / 34 0 . 3 J ? o 1 . 7 6 2 3b O,3b?O 1 , 8 7 ~

) 3o 0 . ) ! 7 ~ I o951 )1 ~ . 4 1 b ~ 2 . 0 5 4 ]d 11.4b~O ? , 1 ] o

i IV l l , 4 ~ ) U I,~II 40 U . S J l l l ~o2911 41 0.5176 1 , 3 4 e

) 4~ l i . ~ l ~ l ) ~ ,JPU 4J Sl.b~ lfl 2 , 4 1 / I * i t . b t l l l 2,410

) l b 0 . 7 1 1 0 2 o 4 / J

I

2

. t . b J t * o l 3 . b l i f * l l I ! • 4 (~1.. o,Lt I l . 20t,--U I

3 . 1 4 t - ~ , 1 4. I )["-,¢ l S . 2 ~ t -dO 6 . ]TF.-,~t ?.SuF' - I¢ l

I . 12i. t li lt I i l l ! t l l l l J , O./[ ti lts 1.90L*~:O 2 . U I E i u U 1 . I ' ) [ t i iU l . l ? f ~ O I s

2 o h 41,. t I.l|l 2 ,@?~lhO 2 , i lk.SOl) l . | t F t i i l l I , l l l . t O O 3. i t t ' l l i b I , 71",F *l'l~ 4,021" IUi l t , 24 t . I i i i i 1 o 4 ]!. to l l 4 . b?t ' t .19 4 . ] ' l l - : t III) $ . Uqt. tUi l S.34Et0~ b , 5 2 [ t O u

5 . 1 7 F t o o ~.RQr t l l 's b . l l l f t i l l s b . I 0t t l ) l l I , . I ?t. i l l l l I I , 7 l i . i no b . l i l t ' I l l , , l . J l t i l l l l I t . 14~ l l l l i

, .L/F I" r r h l l TTO, r r b I I T L ( l ' t ; ( . K | II.%G PI

r ; . l 'It,. I Id~4.5 1 1 2 o , 3 OogS¢~ , l . t ? / 101h. '~ l l o g . o , O .HS] O . rb . , 101U,S I 1 0 1 , J Q.H4N O.I lS r) ! 1 0 6 , S ! 1 0 7 , 2 o . n 4 s O.l*b4 0 1 0 4 , h I l u S , h s l ,x44 ¢.,1.1k I O l lS , I I l O h , ~ *) ,~44 (). I 03 01117,2 I I s ) 9 . S Slel i4i 0 . 1 3 2 1 1 1 1 , 0 0115 .1 i i , i~b I ~ , I b Y 111" / ,5 I 1 2 2 , 9 ~ , ~ S 1 ( , . I ~'i 012'~.I~ 1 1 3 4 . 3 ll,kO5 ; , , J24 10JQ,4 i l 4 ~ , 7 Q,d?T I ; . Pl~ I I I S S , J 10611.i, l l , k Y ? ( ' , Jb4 1 1 7 4 , ~ ! 1 ~ 2 , l U.qOh I I . t~h 1 | 9 ~ , 1 021P ;7 lY,' l J t" l , , 4 1 6 1~12 .0 1240 .S U,'~4h l l . 4 ? ) I ] l l i s , I I 1 2 b J . q de 1o4 n,.~UO 1 2 3 7 , l 1 2 1 3 , ~ * i , i i ~ @0544 1 2 4 3 , ~ 1 2 H t . 1 , 1 ,900 Q.57 q 1 2 4 9 , 9 1192,9 I),q8~, U ,614 I ] 5 4 , 5 1300 .1 Q,c) f? u , ~ S b 1 2 5 7 , 1 13US,7 O ,qgh 0,71~1 1 2 5 8 , 9 I 3 1 N , ] I ,OOi : 0 . 7 4 6 1~600~ 1 3 1 4 , 2 leOU3 0 , 7 8 3 126u ,0 1 3 1 h . 0 I ,OO4 0.@25 12SPeP I j i 5 , 9 i , d 0 4 O.~ i ~ 1256 .1 1 3 1 5 . ~ 0 , n 0 4 U..qJ7 0~51,3 t J J J e 4 I . 0 0 ~ I , ( l l l l I 0 ~ 4 6 , b 131i1.1 0 .llUO l,Cib'/ 1 2 4 3 , b 1 J i l t s 1 Oo~g~ 1 .104 1~400P I ) U A . ~ l l , 9 9 e 1 . 1 4 4 1 2 4 0 , b I $ 0 ~ , ] o , 9 9 P I . I 6 1 121;1.2 I J o A . 9 li,099 ! . ) . 6 1 I 2 ] i l ,~ , I Jh l i , ~ U,9~Y 1,11t, 1 1 3 7 , $ 0301deH OiUVQ I , .175 l ~ i h , 9 OJGd.9 O , ; 9 q 0 ,404 1 1 3 6 , 5 O i o e , q q , 9 9 9 1 .43~ I ; 135 .9 1 i 0 8 , ? o , 9 9 9 1.4e. / 1 2 3 5 , 5 i 3,i11,7 O.~Yle

04Y7 1~35,0 O)OH.7 O. 99*~ ,5 ; t l 0 2 3 5 , 2 I J O Y , I Q.qgq . 5 J , I 7J40~, I Juno? 11,'09.4 ,5.~# 1, / J4°7 0 }fill . 9 I t , qqcl . ~ 5 i i l i , S 0 I t s6 .1 *1 o,lq,l .~71 01104,I i l b l l . v I t , libel ,~.19 I I ; 4 , I 03u | , , 9 *s , , l iY

SAHPLE 3.

~ut, i l~, i Isbl lhr / - i , f .~; Cu:, i x s r A : q. .u . :

I~li *|b II~,/hl~ IU~.G PI I f ' i / h i C )

I v ' i T . i b . ~ t l sh i f ~ u . l l ) I O v 7 , O b , l l J ; ) I . *U) U . | 4 1 I O ~ U , ~ J . 0 9 i ~ t d ~ U . | Id~ l u ~ 6 . ~ J.~)71EIO~ U = l O j I O i l , O ~. I 4 i t . t i l l O, I ,~I | l l l iS . I ~).Ub I f IO~ U . 1 4 ~ 1( ;13,1 o . o ? l ~ l . )~ u . l ~ ) t lOP6,1 0 . ~ I b L i . i ; f U .~4J I I I 3 I , N i tO.I/ I- t i l l O.l~.U I d l 7 , , t I , l,~b~- t i ) J 1 . 3 l i

lOllY i # i , J i l b l . t i ) l U. 4lll.i q b 7 , 7 I .'l%ll19110 I~. I b l 917, .J I . o l ' ~ l t l i J ~l.S~ I D 0 4 . Q 'r. u~ ll*.**~ J U.'~V.t h l b , l 4 , J I II~.tbJ U,b*. I ) J4,fl) ~ . ~ l.l~., t t.t J O. ?;~d 7114e I l . o l , l t obJ U , | S 4 6 2 h , 7 ~. 140t ' tU J b , "/~/~ U41,b 4 , o Idr*ts'~) OeUI~ b e ? . 2 4 . ~ 4 I~ . f l lJ U,l~4q S 4 h , b JeU~uLtUl i O . b l l SOOt9 J , 1i1 ||r9~lJ O i 8 1 b 1 1 1 , I J . iH~l~ i i lJ OeiOU 442 ,0 J . ~4br'¢() J U. ~ J~) 4 1 1 . i i . d ' l u ~ t O ] O . ~ S I So|leO J , $411~.t'l J U. ~nrl J.12,h Je,J Ib f . t@J O ,qqb JOsle~ * 3 . 4 b I I ' . i JJ I . v o U 2 u 4 , 4 J . b*:yF.tO J I , , 1 ~ ~US,J $ , b q It" * , lJ 1 . u l 0 l ieU,6 J . ' ~ b ~ , t OJ i o d l b 7 i 6 . 1 i . i q u b t l i i l . V . I b i l O . q J . o J IF. t , iJ 1.1141 I V S . O J,IJbu~:~U3 I , u S b i 1 4 , $ J , u ] b t t i l l I o u h d i l n , O J . o # b t . t l l J 0 , l i b J I I t )o~ i , o t , k . * . ) J I . u n ~ I o 4 , 9 J . lip I I . , i l J | , U o q Ib '~ . 0 J . I I ~ l . t , l J ' , t i l l I b 4 .Irl J . I ;~li. i l l l I , I I 4 0~1 . l l J . / ~ i ~ t J i I . u ; b l l n , ! J . I JJt. i l ) J I , U I I

115,11 J . I Jll[-.iOJ I . l l l , I 1t4,11 J , I ~ u l t l ) . l I . i i 7 9

Contl nued

I.~1c I~, Pul~.s l l k l l r bl'.(:llltl ~.i~ t l l ~L lt fClJl l l {|1 l ' i " t . Cflr..Pu te l l PklJJLCT ~u V

(kS. = U. l i l l b . ) Jh=

J b ' J U l . - , ~ S l S l l l u

0 6 1 ~ *i-U7

I.k-" bP s F I P I H I l l ) IPL~ i h )

7 e 41)cir. tip l; le4UJL4U~ b . o 2 : 'F : * . , b . 7 ? Y r t o 2 ~l. Jhok t l l d b , JJ Jk4)u;I

I . l l . l l t~ t i l , t / , b | l t t O / I . U 2 b L * U 3 1 .U¢,bLIUJ I ,J4OE tbJ I , d g ~ k * u 3 I .hS~t : t l l J 1 , bn t l~ tU J ~,uUel I , IQJ I ,dTr.F ~ l i j J . 4bdC~'tU$ , t , ~ J l b t U J J ,dGue*U3 1 , 0 3 1 f . 4 0 3 $ , o~VI-.tVUJ J, l l /Vk- ' tU I q • b7 ' ) ' . toIJ J , b4~tl~tO)

I . 4SUro*,; J b , 171r . tbJ 11.~!31 b*¢,J b ,6231~,03 ¥ . Illrll~ • b J 0 , ~Uli).#¢lJ i . l l l r t u 4 b , / T I l ~ t O J I , ~htp. 9 ;)-i ~ , J 4 5 g t ( / ] 1 . 4 X I F * , , 4 l i e U 9 9 ( I U ] 1 , 7 4 ~ . t 0 ~ t , ? 9 S E t O 3 ~, O4bL~,04 9 . Y 2 1 L I O J 4,J;FTF t( ;~ | , U / I L + U 4 "l - b l l / k . t i:4 I , I 6 / ( * U q ) . 12ULf l , , i 1,2191~IU4 J , 9 } l l t . t U4 l , 4 b J v t 0 4 4 . i H 4 r . t 0 4 1 .0J4~. t f14 b , 7 2 1 r ,1,4 ! , d i : b k t i l 4 b , h ~ I ["'bJ4 I .Vb41~i l i4 - 7 .4ZdE. t04 J , Ub fll~th41 : b , 3 7 J f : 1 0 4 if= 4124r.t04 1 ,Ublt:,* US ' I**.) I bt',tO4 I , 4~i4e.*Ub 4 , |bb l~ t04

l .b l ' J r . t i1~) ' J ,UJJ~t *14 1 .65 JhiUl*t J o l o b ~ i O 4 i , 1 7 o b , O b JeJOO~t04 I . l l l l l~ ' tQ~ J .41o l - e e l ~ ,021~ f l l~ J,.*! J IP tIJ4 ~ . l l l h t Q 5 J , b l ] k 4 1 1 4 4 , I / q l [ ts.~) Jl l l l~ JL (~114 2 , ~ JbF. IU~) ) = / l ~ k t 0 4 l , ~YUF . t l b J , I ~b t . tU4 ~. J~be.* u:a J , l~91r t@4

Page 52: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

i t , , ) . l d l u ~.41~b O. JTI, * .O I.C, h7 t ~ J i . 4 I JUg . I ) l l . 9 t l q I ' l J . ~ J . 1 4 4 E t O ] 1 . 0 7 ~ ~ . JSTEfUS J . U l S l ~ t u 4

fit: Ali~ V Al~UIr. S

I ' lo l = 4 5 . U Itb(; Pl* = b 7 5 . i l PS |A T K L / y l b = U . 7 2 4 6 = 7 , ~ 9 TT = l J I U . 7 I)~G K PNb m u e I S u P ~ I A

AI,I ' I IA= - O , o I)b~ P = qp.(l~93 PS|A Tkb • 9 4 7 , 1 UEG X T = ~ b . 2 bEG R

EI)(|k VAI,U~S

PPL • ] , | O U ~ t U U P S I A ~ [ x q . U I S ~ 4 U U

?TL a | , J | l £ ~ O ] DEG U~ n O , ~ q T E ~ 0 4 F T / ~ C

4~ O0

SAHPLE 3. Continued

Page 53: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

l l t le i i , l ,< 7.~1 1"4(;( ]

tJA|A TVl'k ,l l-lth.+l-,h ,'~lll<f A('I,

I AP :, ( I N )

I J ' i . I 0 1 4 .J4. I 0 ~ } I J..'~',/7 4 J l , b ( J b ~) J~). l , rlb I 4 5 . b U 2 u 4 5 . b 0 2 9 ,'1 . h b 2

I I I / o h l J b I ~ 1 5 . 9 4 ( ! I t i 4 . Y J 2 14 i J . 4 J 4 Jb J 0 . 4 j 9 I o 8 , 4 5 ? I ? 6 . 4 3 9

• ib I I , 4 . 4 J 9 ~ID I~* 3046?

2u 1 5 . q 4 4 21 I b . 9 4 4 2:~ 15 . c ;4u 2J 1 4 . q 4 b 7.1 1 4 . 0 4 2 2~ 1 4 . 9 4 8 ~u b , 4 1 9

I I I" A.~ U it f..|4 ~:,~1T $

r l l k IA Pi, hip I ' l l | ' * l p ( b E G ) 11',~1A ) 11'51 )

O 0 , 1 4 2 q (I.InUI)a, J . 4Ul l2 U o e l S J 7 O. IIOU-I 2 . b 9 0 5 U O , J J b 6 II . iIUll I ;~. J I )19 Q 0 . 1 4 4 6 ( J . u o o 2 2 . 4 J 6 5 o 0 . 1 3 4 6 o . t t u o J 4 . ~ 7 1 9 0 0 . 1 ~lJO AeIIIIU2 2 . ~ 5 S 1 U O. 1.150 O.OUi)4 2 . .~ II~}l) 0 0 , 1 2 S 9 ¢i .OOO J ~1. 1 2 0 8

U 0 e 1 4 2 h n , O O O J 2 . 4 0 ] 4 0 O . l J l O U,(* l iO2 ~ , 2 0 1 b 0 0 . 1 2 0 S O,OOUb 2 , U 1 9 7 b 0 . 1 3 1 5 O .Ou03 2 , 2 1 6 2 0 0 . 1 2 " / 5 n . O I , ; 7 2 . 1 4 8 1 b 0 0 1 1 5 0 O, I IUOJ I , Y J 7 4 0 11, I ] :~ t l ( , . r )OO,~ 2 . 2 J 7 4 O 0,, 1 5 5 ] O.O(m04 2 . b i b 2 0 0 . 1 7 0 0 O.OUO2 2 . 9 H I 3

VU 0 .1 .141 O, oO~t.I 2 . 2 1 U l 180 0 . 1 7 8 8 0.( ,0c, 1 2 . 1 7 0 1 2 1 0 0 0 J ~ ) ] I I , I IUU .! 2 . 1 1 1 0

9 0 0 . 1 2 S 6 O.t)UalJ 2 . 1 1 6 4 l e o 0 , 1 5 2 2 0 . 0 0 0 2 2.2:~ 14 2 7 0 0 . 1 7 9 7 0 , 0 0 0 2 2 . 1 8 5 7 I b 0 0 . 1 : ) $ 4 I ) , O 0 0 J 2 , ~ 4 7 6

U u h t | u I

r ( ' l O J 1 0 5 2 . u 7 0 rCIO.~ 1 , 0 7 . 6 1 0 T C I O I 0 1 7 . b 1 0 • T L l u 4

I I A l'r., (. Lit4 pu| ' i , . l ) DA I't i~P.eUI41JL',U 'r 114t., hECLIHI.E.U 'r I H,'- CIJHPUTk, U PRiIJF.CT NU t,

I l l , l iNT 7-Dt . t ; I~lll'l '. ( I ,h : U . ' IU I I I . ) X~TA = 42 ,Uu live

9 J S . D I 0

J ~ f l I I V * I I I J "* I U - J t l b - ~ J l )

5 l ~ l l l u U b l ~,£

i t -U1

I '11] :

AIJI'I1L = kt: :

4D .U I,l-.G ? , g q

-- t . I . 11 I I I ' . ( ; 4 . :~OOF *UI Lh

iII~A~J V ALII~'5

I-'1 = ~175.t, I- ' : , |A TIJPK -" ~ 0 4 , 1 U£t,; I( Ti" : 1 1 1 0 . 7 Ill-.('; |(

r = h . tP : , ' ) ! I ' .~ |A T • ~ , 2 UI'U h

I~LIII r l l ) l i11. n4 J / I SAHPLE 3. Continued

Page 54: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

I i l i l l l i.l|~ii~t i~ $ )4 PA|;~. i

) ! * t l t . l :u Ai, I~VlI,UA I I l i l

i ) I,~llill ~; l l / i l l ' l . P I # i p l l

I i . 4~q, . - I~ l S , ] q s r - q i '~ 2 I . H S 4 ~ + l l l 5 . : } I | E - : l ~

I / . ~ f H t - 0 1 b . I I l t . - O ~ 4 4 . b f l f - I I I S . i ) ' l II" -I1~

]) ~ J . b J*~t--O I D. | l i J t : - i l ] I b J . 4 ) I f - O l S . J 19F. -~ l 7 J. 1~2SL -a l l $ , $)Qt ' . - , ,~

'-) u t . 211'l~.-OI $ . ~l~&l.-*l~

IG ~ . q~)b~'.-U I 1 . I " / lb -n~ l ' ) I I ~ , 4 O i l - i , l II. 4~*S; . - , i l

l i b . /V~)L - I ' I ~ . u ' ; ~ t - - I I 1 u , I ~ O t - ( l l I . : l l S t - O l

| 14 b . 5 ~ 4 1 - ( , I i . 5 4 ~ l - n l 15 o . i T q t - & i 3 . ~ 1 5 , . * 0 1 I b 0 o J ] ] i - n l ; t , b l I I" - 'n l

' } I 1 t . S l l l L - I I I 1 . 1 ; h L - i l l 16 / . I ~ F - U l ) . 4'~ ? t ' - , l l L ; I I +I / . ~ b 4 L - O I J .b*J II~-II I

¢~ | ~t, d . i 5 4 L - & l 4 . 0 / & t - q l 21 u . I~C;L-(~l 4 . o l S t - n i 22 u . 5 5 o I * 0 1 S . 2 b l ~ ' . n I

) 25 i . | S l [ * @ i S . g l J i . - n l 2~ u . 9 4 t L - O J 6 . 4 1 q £ - I , I 2b ~l. 146t -01 1 . 1 S S £ - n l

"} l o ~ * * )4JLoOI ~ . g 4 b P . - , l l 21 v . l J s t * O I 9 . ~ I ) F - ( i l ~e 1 . 0 1 I t 4)00 1 . 0 4 P f : * ~ l )

") 1+ I . u S | r , . + bO I . l + l t * P u IU I . lig21~iO0 I l l l l l t tOI)

) J~ I . I l l t * d # I . 4S~lt , h i | J ] I . 151ik ibO I . ~ l t ' * , l , , J l i . J2q| . iUU I oil | JEll|@

JI J5 I o 4 * f i t *P l l i . 9 ITF'*i*U

! i J ? I . t . l i i . , O , I I . I J l ~ i t , , O Jd | . As|?r.f UO l . i i l & t i h i ) g I .*l~¥1P. I liO 1 . Jl*iit. i l ) l l 40 I . I I / L i O i l 1 . J l ] i ' i l . i

' ) 41 4 . i l ~ i 11,fi ) . f l i l f l l i l 41 I o 4 J I r * l l l l 1 . i / l~ l , f ~ill • I ] l l .~¢l l l r t ( l . I l . } l l i IP i l

J 44 & o / 4 h i ,ul~ l . $ . ~ O i - , n o 4~ I . i i f ihL #1 I I I J i b ? I ! I l l i l I I I * l l ) l l l u l i 1 . * * i *~ *lit~

I

, l i . /~. l l

t . 2 i s t - 0 2

b. i ,~91-11# 5 . . ~ 1 1 - o l 6 . 5 7 7 £ - U ~

| . e ; f A ~ * l l i | . 1 4 | | . i l l I . l . l i ) ! - i~ l I . r , i¢)i of) I ~ . / . 4 t * r , I 4 , ~,,Qt - 6 1 J . I llllt .1". I ] . (~ iSF -*~1

i l , II JQI - I l l ~)o IUI~F - I / I S . S S ? F - , * I 5 . 9 u ~ - U I

I.o 760t - f i l

? , 6 i l 5 [ - 0 | / . q ¥ ~ l ' - U I M, 424F..-ii I II . i~71'|:-I I I Q. ~ l l l l l- +ll I I . l i l l t ,~l,, I ol, iCk t i l l i I * I 1 ?I ' l l , * ) I . l # S t ,# t , I • ~ I ? i . , u l l I . 2g f t , i~.ll I o I ~ k t ' l l l i l I . 40 IE iU i l 1 . 4 I l L * . , I ' | . JboF'*dt,

I * . l i~k~' lbi l I . Sb Jf . * . l l i I , 5 ?,*~ * ~ . I . $ b 4 r , i ; , . | o ~4i | l f i l l | I o ~'l l , t" t I l l I ol" I ' I l l i l l I . t i " t t .,~l

T T I J I ' r i ,

I I . s n i I F - ; l i l l . $ 2 5 E = n l l l . 4 | f t - , J l , . l f i F - ( , I

.11.4 Jbt * U I I*. 4 I g F - O I # ° ¢oOk-O I I I . D , i ~ F - U l O . 5 h 2 t - i l l i l . o 4 9 f - O I U. 166F'-0 I H , l l l 2l "?1 q , o q b E - i l l t l . l g i t - l i l i . 15'~1 - I l l ' i . o J l t - U I q . i l l F - I I 9 . l i I [ = Q I 9 . l ISi l t " ( , I 9 . y l I t - o f ~ . Y S f F - , , I 9 . g ? l F * U l I . O~2K*Ob I . O U i L t O b I , u(i Jlr" i f lu 1 , 0 0 I t t,1,* I . O I I I I ' i O U t . t ' ) t t - ~ l l . t i t l l . - ' i l i . t l b l ' - ~ l t . l ? b t -r~l ~ . 9 J U P - l i l q . ')I~UI -:11 Y. 91101,-,II ' l . Y k l i * ; l l 9 . q ~ l l f - I l l @. 9]~11 • - i l l 9 . q T ' I L - I . I

t . i l l 21 *e l l 9 . ? 7q l ' - i , I t . i ~ l l - , i l q . %ll l l t '* i l t . ~ l l U t - l i t 9 ° ~ i t - i l l t , li lt I i . i f I

i b # l ~

J.42SE. tUO $ . l l l t * O , i | . i l i L t i l l i ] . 4 4 2 t i i i O 1 . 4 0 $ £ i # ~

J . Z f l l f b o i . l l S l f U l l ] , f l i q [ i O ~ ~ ° q H ~ f U l l

1 . 4 ~ 5 t . oUO 1 . ? t i t *UU 2 . l ~ n l ' * u O I . & ~ I . E i U q I . q f l ' ~ I dq I . l i l b t U ~ I . l q l b l t U 4

1 . 1 9 ~ i * . # I . I I o l L t ~ #

8 . 5 T f L - U l

i . i o ~ f . - U l ~ . o l 4 ~ * * l t ~ . ~ U S ~ * I * I

S , l ~ g [ - I I

4 . A J Z t = ~ I 4 . ? J T t - , l | 4 . ~ 1 1 " * ! 4 , ~ Y 2 1 - U I

I . ~ l ~ L - l l l 4 . ~ l l l l - U I

I : . I L LIJ-POI 11~

l i f t kk l . l l k&kD II~*l~ C I ~ * P U I I u I ' i , UJECT nU v

~ u ~ l l ~ l *~l.il*,l | ' l , L : , Cl~#l. l i . I . • U,~U | # , . ) I Ib [A • 4 ~ . I I l l i l . *

I l l l u l . / I n )U

l . t l l l ' - U l l , t l l * l . - l l l I ° t l I F - I l l 4 . 9 i i l . -I.~ | ~ . 1 4 t t - O i 4 . ~14 y t ' - I t l il ° t l l i t . - i l I J . U 4 b t -# l l J ° U!/tl~.*.) I J • I 44 t . *0 I J * 4 4 4 / ' q l J . Jl~ I L - * J I J . l t / : )~. - ' i I J° ~9o) . - l l I 4 . u J J t -+11 t l i d J l~ -O I 4 . 5 4 u i . - d l 4 ° I l l j l : - I l l b . I i J i . - n l ~l. 1 5 4 F . - 0 I b . e b ~ * u i ~ . JJ* .k** l i o . i j J i ' * O j / . ~ 5 4 1 : * n l

f l . J l l i E - , I I I t . l l t l l l - , i I I . u J l t ' i l l t I . I l l i t i l e I . l l i t f i lm I . i l i t . t ~ i l I . l~ lb l . t - lu

I lll~i I l l i . h l I . l i ~ l i ~ i I ' . / t t F . t i,u I o l i t 4 l . i I l l I . l ~ i i t i l l i l . u l l t . i .lu 4 ° i / J&'f I l l I . i i IP. tI+*/ I . l '|0~ i l I u i . I I l t . i ' - I t l l . i U l r f l l v l * d l i ~ i O l 1 . I I l t ' l ' l l

J e ~ V - - ' I 0

S l i l l i u

Uh/ l l l ) ~ l i i | l . l ; u i i l I-llf. ll,l~lr:l~ I ) l l l l - # . , i n [ , l t l l i~r / l~dLlrb

i . / u ' I r . - u ! i l . ~i | t i t t i l l . I ,.~ I J t .=~ / S. II l l l r .o l , I I . I ' . J l . -d | l . l l i i l e , i u | . l . ] ji-.-b~[ ~ ,1~4 i l l .olt j i * l J iL-*O I Je~14Ut, t l °1 • | . ) ' / I k - b ~ qe 4~)OL-U| l . , ) i ' J ~ - u l ~. !) J ~t. i* l~ I . I ' l r . i . - b & t o J 4 b t - u l I . J I 4 r . - u l ) . ~)l~t. l , ) v 1 . 4 1 J f , * u d 4 . J b l t . * b l

l ° i l 3 L - U l 4. ~. i l~. i i l u 4 . ?'J~*~.-U d 4 . 1 1 d t . - U I

~ ° ' l l l l . - v l l l . 44a f . * . ,U J , l l l l U r . - I ~ 4 , 1 T T L - u l

l . ' P l : l . ' u I +P i Ji P~.~. * t TM , ~l. 4Ol ik -~ ~ ~ . b l l ~ - O i

S . l u l b - U l 2 . 2 b 4 r , i ' u - . l ~ 4 t - u ] b . o i l l , . b l 5. '11.~r.-u I I . i t *b l . t i lU 1 . 0 4 0 b - u l T . l l S F - t , i

T . J l f ~ - I l l I °VJOF *IIU i . h ~ i i i - u i l l . b ~ J i - G I ~. ~i 151- - u I I . l l / h i . t b u I . d J 4 L - I ; I I c Y 4 J l * *UI I . l ~ l ~ * u l I . / 8 1 t * , u ~ . l b l L * f l ~0 ~ J S s ' - O I 8 . f i U ~ - u l I . I l d t f i .u 1 , IIs~*l~-U I I I . I O O I - U I i l . li~ i L - i l I I . o i v k eQb ~. lli~/IP -U I ~l. I)ll d k * l l I i i . i ~ J L - U I I o * . l ~4 r . t i l l i . l U l l * U | ~l.O DV[*O| 9 . O u i ~ . - . I l . s h 4 i * l ib J . o g ~ l l - u i I . I O / F - U I 9 , 2& Jl~-O| I ° J d i I . i U U 4,SOUL-@I I , vUi l~. l l lU I I . J~luL-U| l , J l J f : t U u b , l u i c - U I | 01~1 j k t U U ~).51 I i - U I 1 , 4 ] g i . i u u $ , t l t h l " P l I , U l i t . * u u ! i f / U l i ' ~ l i I . l ~ / ~ t L b ~ , ~ O ~ k - U I I , b l ] l L i t i b q o H I l ~ * i l l I . u b l t tUU o° | S I L - U I I ,OGS~ . iOp I .OilS* iuU ~. / I ' J l . -u I i ° O l l l l l f l i d I o t / l l L . i l l I o d l / L i U u tt . t f ) l k ' - b I I . l | ~ l L f U U t . ) J i i . - U l I .UJOL*O l l e J , t jd~ - , I I I . I / ~ l i / i l l . t l i l - U i

, I . , 1 j )¢, IUI) l . ~ l~4 r - b I I .bS~ i~ iuU i ° t l J t - I l l | (*~hll/LiLI II l i l l ~ l l • --hi | . I l l ) l i t i Ull t e t i~ l l e . . l l I I . , i l i ~ * ~ u I% I@l t - I I l . l l l l * U , l . t l ' / b - ' l l I . I)oU~ *U ,I e . f h b t - . ' l 4 . 7a.Jf.fCb . ~t. ~ i fbb--Ui I e'l"*'ll- t ' i l l S . ~ l q ) - . , l $° | J l i . i t l U I /° ~ g l , -IJ I I l ub , l L l u l l ~ ) , / l ~ r - I . I J o Io.IIr. lus~ 11, VI lOL. I I I I . e / J L i U S I ~ l . f l U t -o; l ~,o041~lGt~. l . t l t [ - - l i I I . i l l i b i U U t . 4 ' ) l t - i l I i . i ~ l i ~ [ , UU t ° t l l t . ' O I I . , i l l ~ f @ ) b . l ' * ~ , - i ' l t . l J l l * u u t . t l l t ' l i i | . t l l Y i *u l i 4 . t n l l - U l ~ . ~ u i t l u * l ~ l ° t l i l el. I I . , l l . i ~ I b,I i . a t i l t - , i I l . / u : ) l , i l l ¥ o i ~ / t ' l . I I . l l l l l t l l l l 1 . I ~ 1 . . , , I i . ~ . 14 i l i t j , i . i # t L . , l l | . f i l l IL#I* I i 4 . l l i i i - . . . I 4 i ~lll /1~ l l l l l ~,l. I . l l i l lL. U I I * ' lO . IL *U *1 4 . o l l t - v l b . l u J / f U l l t . ~libk.'*ll I | e till l l " IUU I ' l l I h l " i l l I'l ° I IUi- tl#lLI t i t l U l . ' l l i I * lilt l i- tll#) I • OIl~)" " l ' I *l * Ir f i l l t i t i ~l. ~ l J l l t ' l l |

J .ObbL -O? J . J s J ~ * U ~ J , V U b L - b ~ 4 . d ~ b L - O 2 6 . J U J L ' U 3

| e | l b ~ - b | | , I I O L - U | I . b ~ V L - u l

] , i i ~ L - u l J . / ~ / L = U I J e i b | l . - O I J e S U q L - u l

4 . ~ g b L - u l 4 . u O u b - u l S . | | o L - U I § . ¥ u / L * G i G , ~ g q L - U | O . / ~ f L - - U I

l e l l u L - O I 9 , f U U L - U I | . U J / L t u O

| , f q u L e U ~ I , J ~ 2 L e u t ! 1 . 4 1 1 L t O I . l e b l h L t V U I . I ~ u L f u I I I . b b l L f u O I . ~ & ' * L I U ( I 2 . d ~ l b i U U ~ . U ~ l t i u f l ~ l | ~ l l f u l l ) e L ~ I~ f u l l

' e l " i ~ i U I| l * J~dt f~ l l ~ , J~U~fU¢l

do44~£fUIJ

SAHPLE 3. Continued

Page 55: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

P i l l • ft IZ

~ 5 , 0 7 . 9 ~

- O , O

U~..i • I l k l , 2 . ~) J / l ~ - O I I t | I~;Ll.e -- 1 . 9 4 h L - U | IN I~F-i .* ,s J . J ? 4 r - ¢ w J I | |

I - ~ i ) = 4.4111JLt l)4 P £ k | N

VAl,mlkS A I u e L T A

PPU : J . u 4 o ~ t O u v S | A h i t : J . V J J ~ L t u 4 TD s J . I ' D ~ F t U L U~b k TTn • i . J i i r , 4 j b L b H U| l n J . 4 ~ l [ * b J | T / S L C

HI,UU • I . ~ S g k - O J L b N I F T ] k u l l u b • 4 . $ 4 b ~ i O d bbNFSLC-W?2

HbTU • ~ . S U U ~ - u l Lb~-S(CIFT~ G I T T u = V . ~ b 4 t ~ G I B T U / L u n L A L I U m I . S T b L t U 4 PLB I N

E

U'I , i--a

SAHPLE 3. Concluded

Page 56: 19e@ II II IIIIIIII II III II IIIII IIIII I IIIIIIIII I ... · EBAR " ERM$ ETA ITTD ITTL ITWL LRE NOMENCLATURE Angle of attack, deg Model configuration designation Anemometer heating

U' l

hU II l i i l l i u / i , | li. i P4"illt I

U A i A T i i+ l . i i l l i i , l i, - ' . I I I I I IC ! l i t l + l , l l l ~ i l l l l r,s

I A t ~ i l l r , l i , I I l l ) i I '+,il I

I I S o l O i +f i 4 , I l l i i I I . . , l~l l i i l ol)U~, ,I ~l ill1 i 5111~ Ii

I / b . t , 0 7 u o l a . 6 u l l I+ "l il+bl+il u

I t , I + +, I~,O& IP l l l l . l p l , l I I 1 5 . 9 4 1 , i, l i I 4 . ~ i ) ] I. 11 I I . 4 1 4 li I I I I I . I ] Y II I h i1 . . i J.O l ' I I b e l J ~ ! II I + 4 . 4 4 v 0

21i I b . q 4 4 !l-3 I I 1 5 . 9 4 4 l e u 24 I S . # 4 u ~111 I I 1 4 . 9 4 d 90 2.1 1 ~ . ' 1 4 1 IlJO ~b 1 4 . q I l l i l i l l u 1~.419 j i l l /

I C l U l

VI, I o u . U I l i ¢ f l i I i l i .Oi l l

A I,¥i4/+ ; IP.,) P i l l I l l ,J i - 5 l +

I '~. t - / i 5 ~ b l A) 0 . 1 1 s~" I . , I I i+i

l l . l ] l l ; . j i +qq v . l , i n l l I . I t . , . I I I . 1 4 1 1 ?. .17 l.i,

~ . I ) l , i I . I* . /t~

# + l i o . 4 . 1 1 Y l

Ill. I Jm+i, +~o 'o ' . l II .I l + l 7 . + I:l.~

IIo h l , i ! 1 . 1 ,1 / , . P . I l b ' / t , l o i /

I l l | i iv / l l I l i l } l , l l

u . I l l . , l . l - l l

u . I+l+tl l o i ' , l t

i i . 11'14 h i l 5 1

I ( l i lb + li 11" l + I L i l

I 'T • .% I o . V l i P • 1 1 1 1 . 7

P -" u . u b q % l.P. m

PT4 :

P 3 L A bet+ li PSIK

b . Z l G / i o , b p ~ I t . 4 . U l ~ P S I A

ill411 I. h lill l'IC.ll I~ A 1 Ip,,, I(1:. ~ l / d u k h 1 I ~'L h l .COI l l , t U I i N + I.iI~4pbre.o l-lilhjl.l,~'r llll i

~Lil . IPlb$ m- . l ,mr l -U+ . t : ¢'Ul, k IHol i ue i lq l l i . J ]I -'i ]P ill • l ie plo l l l .

| C q v J 9 1 o . 5 0 . 1 T L l U 4

i

d U u . o l u

l u - d u L - ~ o

U + l | l B o U ]

-, ..... ,,,,,+- i i~ SAHPLE 4. Hodel Surface Heasurements (Type 2)