53
Greschik Gyula: Anyagmozgató gépek Tankönyvkiadó, Budapest, 1981 21. oldal 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI Az anyagmozgató gépek – néhány különleges emelő- és szállítógéptől eltekintve – az általánosan ismert gépelemekből építhetők fel. Mégis vannak olyan gépelemek, amelyek anyagmozgató gépelemeknek is nevezhetők túlnyomóan anyagmozgató gépekben kerülnek felhasználásra. Ezek szerkezeti kialakításakor, méretezésekor az anyagmozgató gépek üzemében megkívánt különleges követelményeket kell kielégíteni. Ilyen elemek a kötelek, láncok, hevederek vagy az anyagmozgató gépekben fontos szerepet betöltő szerkezetek, a fékek, futókerekek, teherfüggesztő és - megfogó szerkezetek. Ezeket a gyakrabban alkalmazott szerkezeti elemeket kiemelten, külön tárgyalom az anyagmozgató gépek ismertetése előtt. Az anyagmozgató gépeknél használatos hajlékony vonóelemek a kötelek, láncok és a hevederek. A vonóelemek csak húzóerő átvitelére alkalmasak. 2.1. KÖTELEK 2.11. Sodronykötelek előállítása és szerkezete A feljegyzések szerint hazánkban először Albert bányatanácsos alkalmazott l834-ben aknaszállításhoz acélkötelet. A Felten-Guilleaume Rt. gyártott először géppel sodrott drótkötelet 1837-ben, Kölnben. Ugyanebben az évben már Selmecbányán is készült géppel sodrott drótkötél. Azóta az acélkötelek gyártása óriási fejlődésen ment át, és az utóbbi években az acélkötelet vonó- és tartószerkezeti elemként mind nagyobb területen alkalmazzák. Nemcsak a bányászatban, az ipar többi ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly, az alkalmazható nagy munkasebesség (20 m/s), nem érzékeny a lökésszerű terhelésre, és zajtalan üzemű. Az emelőgépeknél alkalmazott sodronykötelet (R m =1570 ... 1960 N/mm²) vékony (δ=0,4-2,mm ø) acélhuzalok sodrásával állítják elő. Az acélhuzalok 10-12mm-es hengerelt huzalból, hidegmegmunkálással (dróthúzással) készülnek. Húzás közben az anyag mechanikai tulajdonságai javulnak, felülete keményebb és szakítószilárdsága nagyobb lesz. A kötél gyártása sodrógépen (kötélverőgépen) történik (2.1. ábra). A járomban elhelyezett orsókról (1) lecsévélendő huzalokat (elemi szálakat) sodrórózsán (2) keresztül vezetve a sodrópontban (3) a sodrógép hossztengelyében átvezetett középponti szál köré (4), egyirányban, egy vagy több sorban sodorják. Az így nyert huzal- 2.1. ábra. A kötélverőgép vázlata 1 - járomban elhelyezett orsók; 2 - sodrórózsa; 3 - sodrópont; 4 - középponti szál

2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

  • Upload
    others

  • View
    47

  • Download
    2

Embed Size (px)

Citation preview

Page 1: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

21. oldal

2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI Az anyagmozgató gépek – néhány különleges

emelő- és szállítógéptől eltekintve – az általánosan ismert gépelemekből építhetők fel. Mégis vannak olyan gépelemek, amelyek – anyagmozgató gépelemeknek is nevezhetők – túlnyomóan anyagmozgató gépekben kerülnek felhasználásra. Ezek szerkezeti kialakításakor, méretezésekor az anyagmozgató gépek üzemében megkívánt különleges követelményeket kell kielégíteni. Ilyen elemek a kötelek, láncok, hevederek vagy az

anyagmozgató gépekben fontos szerepet betöltő szerkezetek, a fékek, futókerekek, teherfüggesztő és -megfogó szerkezetek. Ezeket a gyakrabban alkalmazott szerkezeti elemeket kiemelten, külön tárgyalom az anyagmozgató gépek ismertetése előtt.

Az anyagmozgató gépeknél használatos hajlékony vonóelemek a kötelek, láncok és a hevederek. A vonóelemek csak húzóerő átvitelére alkalmasak.

2.1. KÖTELEK

2.11. Sodronykötelek előállítása és szerkezete

A feljegyzések szerint hazánkban először Albert bányatanácsos alkalmazott l834-ben aknaszállításhoz acélkötelet. A Felten-Guilleaume Rt. gyártott először géppel sodrott drótkötelet 1837-ben, Kölnben. Ugyanebben az évben már Selmecbányán is készült géppel sodrott drótkötél.

Azóta az acélkötelek gyártása óriási fejlődésen ment át, és az utóbbi években az acélkötelet vonó- és tartószerkezeti elemként mind nagyobb területen alkalmazzák. Nemcsak a bányászatban, az ipar többi ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly, az alkalmazható nagy

munkasebesség (20 m/s), nem érzékeny a lökésszerű terhelésre, és zajtalan üzemű.

Az emelőgépeknél alkalmazott sodronykötelet (Rm =1570 ... 1960 N/mm²) vékony (δ=0,4-2,mm ø) acélhuzalok sodrásával állítják elő. Az acélhuzalok 10-12mm-es hengerelt huzalból, hidegmegmunkálással (dróthúzással) készülnek. Húzás közben az anyag mechanikai tulajdonságai javulnak, felülete keményebb és szakítószilárdsága nagyobb lesz.

A kötél gyártása sodrógépen (kötélverőgépen) történik (2.1. ábra).

A járomban elhelyezett orsókról (1) lecsévélendő huzalokat (elemi szálakat) sodrórózsán (2) keresztül vezetve a sodrópontban (3) a sodrógép hossztengelyében átvezetett középponti szál köré (4), egyirányban, egy vagy több sorban sodorják. Az így nyert huzal-

2.1. ábra. A kötélverőgép vázlata 1 - járomban elhelyezett orsók; 2 - sodrórózsa; 3 - sodrópont; 4 - középponti szál

Page 2: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

22. oldal

2.2. ábra. Kétszer sodrott kötél

2.3. ábra. Jobbmenetű hosszsodrás

2.4. ábra. Jobbmenetű keresztsodrás

nyalábot pászmának nevezik. Több (6-8) pászmát egy központi mag, rendszerint kenderbél köré sodorva, készül a kétszer sodrott kötél (2.2. ábra).

A sodrás lehet jobb, vagy bal irányú. A kétszer sodrott kötélnél az elemi szálak sodrása pászmává és a pászmák sodrása kötéllé azonos sodrási irányban történhet (jobb és jobb vagy bal és bal). Az így előállított kötelet hosszsodrású kötélnek (2.3. ábra), ha pedig az elemi szálak pászmává és a pászmák kötéllé sodrási iránya ellentétes, a kötelet keresztsodrású kötélnek nevezzük (2.4. ábra).

E különböző szerkezeti felépítésű kötelek különböző üzemi tulajdonságokat mutatnak. A hosszsodrású kötél hajlékonyabb, hornyokban és a kötél belsejében nagyobb a huzalok felfekvése, ezért kisebb a kopás és nagyobb az élettartam, viszont nagyobb a kisodródási hajlam és a hurokképződés. A keresztsodrású kötélben az egyes elemi szálak lefogása sűrűbb, a kötél merevebb, de kevésbé nyílik ki, ellenkező irányú hajlításra, valamint szálszakadásra kevésbé érzékeny. Hajtótárcsán a kötél súrlódása kisebb, ezért erőátvitele kedvezőtlenebb.

A kétszer sodrott kötelek közül a hosszsodrású köteleket ott alkalmazzák, ahol a kötél két vége lefogott, és állandó feszítése biztosított, tehát ahol a kötél kisodródására vagy csomó képződésére lehetőség nincsen. Például: kötélpálya vonókötele, aknaszállító kötél. Darukhoz a keresztsodrású kötelet alkalmazzák, amely a kötél kellő merevségét biztosítja, és szerelése egyszerű.

Az egyszer sodort kötél abban különbözik a

pászmától, hogy az egymásra sodort rétegek ellentétes sodrásirányúak. Az egyszer sodort kötelek általában kevesebb elemi szálból készülnek (i=19-37 db), olyan esetekben alkalmazzák, amikor a kötél hajlítgatásra kevésbé van igénybe véve, vagy pedig ha a kötél nedvesség vagy gázok korrodáló hatásának van kitéve, amelynek a nagyobb huzalvastagság következtében jobban ellenáll. Például: kötélpálya vagy kábeldaru tartókötele, árbocdaru kikötőkötele. Az egyszer sodrott köteleknél a külső huzalokat Z keresztmetszettel is készítik, melyek egymáshoz illeszkedve a kötél külső felületén teljesen zárt, sima hengerfelületet képeznek (2.5. ábra).

Készítenek háromszor sodort kötelet is. Kétszer sodort köteleknek mag köré sodrásával készült szerkezet a kábelkötél. Igen hajlékony, és nagy kötélerők esetén aránylag kisebb kötélkorongok alkalmazását teszi lehetővé. Daruknál nem használják a kis élettartam és a költséges gyártástechnológiája miatt.

Abban az esetben, amikor nagy emelősebesség mellett kikötői hajórakodó és portáldaruknál egy kötélágon emelik a terhet, jól beváltak a forgásmentes pászmaspirális acélkötelek (2.6. ábra). Forgásmentes kötelet kell választani akkor is, ha a teher több kötélágon függ, a teheremelés magassága nagy, és a szerkezet nem akadályozza meg a terhelt kötélág forgását.

Az ábra egy középső kenderbetéttel készült pászmaspirális acé1kötél-szerkezetet mutat, amelynél a legbelső pászmák sodrása jobbmenetű keresztsodrással, a második réteg balmenetű hosszsodrással, míg a külső réteg jobbmenetű keresztsodrással készül.

A sodronykötél előállításakor a huzalok hajlítást és csavarást szenvednek. A kész kötélben ezen igénybe-

2.5. ábra. Zárt kötél

Page 3: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

23. oldal

2.6. ábra. Pászmaspirális kötél

vételek következtében a huzalok külső terhelés nélkül is feszültség alatt állnak. Különleges gyártási eljárással e gyártási feszültségek csökkenthetők. Az így előállított kötelet kitekeredés- (szétbomlás-) mentes kötélnek nevezzük. A kitekeredésmentes kötél sodrása ugyancsak sodrógépen történik, azzal a különbséggel, hogy a huzalokat hidegen előre spirális alakra hajlítják, és azokat rendezve pászmába sodorják. A kitekeredésmentes kötél hajlékonyabb és élettartama nagyobb, üzemben azonban a kötél gondos ellenőrzést kíván, mert huzaltörés esetén a kötél felületén a huzalvégek nem ugranak ki - nem tüskésedik a kötél -, hanem az elszakadt huzalvégek eredeti helyzetükben maradnak, s így a száltörés nehezen állapítható meg.

Különleges szerkezetű kötelek. Az eddig ismertetett kötelek ún. klasszikus pászmaszerkezetű kötelek. Ezekben a huzalok általában pontszerű felületen fekszenek fel egymáson. A huzalok és pászmák egyenlő terhelésének feltételét ezeknél a köteleknél a huzalok egyenlő hosszúsága (azonos sodrási szöge) biztosítja. Ennek pedig az a feltétele, hogy minden újabb réteggel növelt palástra a huzal vagy pászma felsodrása meghatározott mérettel növelt sodrathosszban (emelkedéssel) történjék. A különböző emelkedéssel egymásra sodort huzalok vagy pászmák hegyesszögben kereszteződnek, így szükségképpen pontszerű az érintkezésük. Pontszerűen érintkeznek még a spirális szerkezetű köteleknél az egymás fölé sodort huzalok is.

Újabban ettől eltérő kötél-, ill. pászmaszerkezeteket alkalmaznak. E kötelekben a huzalok palástjuk egy-egy vonala mentén teljes hosszukban fekszenek fel egymáson. Ennél a kötélnél mind az egymás mellett, mind az egymás felett levő huzalokat egyenlő sodrathosszban sodorják. E huzalhosszak szükségképpen nem egyenlőek. Az egyes huzalok azonos terhelését az egymáson

és egymás mellett való jó illeszkedésük biztosítja, a terhelőerőnek az összes huzalra való egyenletes elosztásával.

Az ilyen vonalérintkezésű kötelek közül a következő kötélszerkezetek használatosak:

A Seale-kötél pászmáinak külső rétegében az alatta levővel azonos számú, de nagyobb átmérőjű huzal van. Ilyen kötelet láthatunk a 2.7. ábrán, amelynek szerkezete 6(1x2,8+9x1,3+9x2,2)+ kenderbetét.

A Warrington-kötél pászmáinak külső rétegében az alatta levővel azonos számú, de váltakozva nagyobb és kisebb átmérőjű huzal van.

A vonalérintkezésű kötél pászmáiban a különböző átmérőjű huzalokat egyszerre sodorják, azonos menetemelkedéssel, így biztosítják a külső huzalok alátámasztását a kötél teljes hosszában, és így eltekintenek az egyenlő huzalhossztól, és elkerülik a huzalok

2.7. ábra. Seale-szerkezetű kötél

pontszerű érintkezését. Ezért a vonalérintkezésű kötelek jól bírják a felületi nyomó igénybevételt, a külső rétegben alkalmazott vastagabb huzalok következtében az acélkötél kopásállóbb. Az üzemi tapasztalat szerint a vonalérintkezésű (Seale-, Warrington-) acélkötelek élettartama a klasszikus szerkezetű, pontérintkezésű kötelekhez képest lényegesen nagyobb

2.12. A kötelek igénybevétele A sodronykötelek üzemben bonyolult igénybevételt

szenvednek. Fő igénybevétele a húzás és kötélkorongon átfutáskor a hajlítás. Ezenkívül az elemi szálak külső felületén a koronggal érintkező pontokon a kötél hossztengelyére merőleges irányú nyomást kapnak, és a kötélen belül az egyes huzalok között felületi nyomás ébred.

Aszerint, hogy e két fő igénybevétel a húzás és a hajlítás okozta feszültségek aránya milyen, beszélünk futó és álló kötélről

Page 4: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

24. oldal

A futó kötelekben a hajlításból származó feszültség

a húzófeszültséghez képest számottevőbb. Ilyenek a kötélkorongra, kötéldobra ismételten (üzemszerűen) ráhajlított, húzásra terhelt kötelek. Ide tartoznak a daru-, a felvonó-, a csörlőkötelek, és általában a kötélvontatások vonókötelei.

Az álló kötelekben a hajlításból származó feszültség a húzófeszültséghez képest alárendeltebb. Ilyenek azok a kötelek, amelyeken nyugvó vagy mozgatott terhek függenek. Ide tartoznak a kötélpályák, a kábeldaruk, hidak hordozó- (tartó-) kötelei, oszlopok stb. lehorgonyzókötelei.

A kötél bonyolult felépítése következtében a kötélben

ténylegesen fellépő igénybevételek pontosan nem számíthatók Durva közelítésként a kötelet párhuzamosan elhelyezett huzalnyalábként fogva fel, a kötél két fő igénybevételre, húzásra és hajlításra méretezhető.

Húzó igénybevételből: 1h

TA

σ =

ahol T a kötélerő, Ah a kötél hasznos keresztmetszete.

2

4hA iδ π= , ahol i az elemi szálak száma.

Hajlító igénybevételből a kötélkorongra hajlított elemi szál külső élén ébredő húzófeszültség

2 2MIδσ =

ahol M a korongra hajlított elemi szálban fellépő nyomaték, I a keresztmetszet másodrendű nyomatéka.

A hajlított rúd görbületi sugara a szilárdságtanból ismert

összefüggés szerint 1 ,MR IE=

ahol R=D/2 a kötélkorong sugara, E az acélhuzal rugalmassági tényezője, így

2 ,EDδσ =

és a kötélben fellépő számított húzófeszültség

1 2h

T EA D

δσ σ σ= + = +

lenne. (Releaux-képlet.) A valóságban a kötélben fellépő feszültség általában kisebb. Bach a kötelekkel végzett szakítókísérleteinek eredményeként

megállapította, hogy a fenti képlettel meghatározott szakítóerőnél nagyobb terhelés alatt szakadtak el a kötelek. (Bach szerint

23 ,8

EDδσ = ) A legújabb kötélélettartam-vizsgálatok pedig

kimutatták, hogy az emelőgépekhez használt, a szokásosnál nagyobb elemiszál-számú kötelek élettartama rövidebb, annak ellenére, hogy a hajlító igénybevétellel arányos D/d viszonyszám kisebb. E vizsgálatok szerint a kötél élettartamára jellemzőbb a D/d viszonyszám (d a kötélátmérő), ill. a kötél és a korong érintkezési felületén keletkező felszínnyomás.

A tervezői gyakorlatban mind a futó, mind az álló

kötelek méretezése a kötél terelőelemeire előírt minimális korongátmérő (D) alkalmazása mellett csak húzó igénybevételre történik, a hajlító és egyéb járulékos igénybevételek figyelembevétele nélkül. A húzó igénybevételt viszont a tényleges biztonságnál nagyobb biztonsági tényezővel (β) veszik figyelembe.

A biztonsági tényező nagyságát és az alkalmazandó legkisebb kötélkorong-, dob-, kiegyenlítőkorong-átmérő méretét kötélélettartam-vizsgálatok és üzemi tapasztalatok alapján határozták meg, és azt az egyes országok szabványaikban rögzítették.

A biztonsági tényező a kötél tényleges szakítóereje és a nyugalmi helyzetben levő kötélre ható erő (terhelés) hányadosa. A kötélre ható erő megállapításakor a kötél tömegét is figyelembe kell venni.

A kötél szilárdsági jellemzőjeként megadott szakítóerő különböző értelmezéssel szerepel az irodalomban.

A vonatkozó előírások, szabványok a számított szakítóerőt (Fsz) adják meg. A számított szakítóerő a kötélhuzalok névleges keresztmetszetéből, névleges szakítószilárdságából és a terhelt huzalok számából számított érték.

Használják még a megállapított szakítóerőt (Fm), amely a huzalok szakítással megállapított szakítóerejének összege. És végül a tényleges szakítóerőt (Ft), amely a kötél elszakításával kapott erő.

A kötél tényleges szakítóereje mindig kisebb a kötélben levő huzalok megállapított szakítóerejének összegénél. A különbséget sodrási veszteségnek (Vs.) nevezzük, és ennek a megállapított szakítóerőhöz viszonyított százalékos különbsége

100 %m ts

m

F FVF−

=

2.13. A darukötél üzemviszonyai A daruk gépelemeinek, acélszerkezetének

tervezésekor, méretezésekor figyelembe kell venni a daru várható üzemviszonyait. Könnyen belátható, hogy egy erőmű gépházának szerelődaruja, amely ritkán van üzemben, és rendszerint a daru teherbírásának egy kis töredékével terhelten, kis sebességgel dolgozik, másképpen méretezendő, mint egy kohászati Üzemben működő daru, amely éjjel-nappali üzemben, túlnyomóan

Page 5: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

25. oldal

a daru teherbírásának teljes kihasználásával, nagy mozgási sebességekkel dolgozik. A daruba beépített gépelemek, szerkezeti anyagok, sodronykötelek, mozgató művek stb. különböző mértékben vannak igénybe véve. A daruk gépészeti egységeit eltérő üzemviszonyaik alapján hat üzemi csoportba soroljuk (MSZ 9750-78).

A daru gépészeti egységeinek üzemi csoportszámát a működési időfokozat és terhelésfokozat ismeretében a 2. táblázat szerint kell meghatározni

2. táblázatA daru gépészeti egységeinek üzemi csoportszáma

MSZ 9750-78. Terhelés fokozat

B1 B2 B3 B4 Működési időfokozat Üzemi csoportszám

A1 1 1 2 3 A2 1 2 3 4 A3 2 3 4 5 A4 3 4 5 6 A5 4 5 6 6 A6 5 6 6 6

Izzó, folyékony fémet vagy salakot, mérgező,

robbanásveszélyes, radioaktív anyagot mozgató daruk emelő- és gémbillentő műveinek üzemi csoportszáma legalább 5. Kivétel lehet az a segédemelőmű, amelyik nem vesz részt a felsoroltak mozgatásában.

A működési időfokozatot a gépészeti egységek

(mozgató művek) órákban kifejezett, átlagos napi működési ideje alapján a 3. táblázatból kell kiválasztani.

A terhelésfokozatot a gépészeti egységek (mozgató művek) átlagos üzemi terhelése és a terhelési tényező (K) alapján a 4. táblázatból kell kiválasztani.

3. táblázat

Működési időfokozat

Működési fokozat Átlagos napi működési idő, h

A1 1-ig A2 1 felett 2-ig A3 2 felett 4-ig A4 4 felett 8-ig A5 8 felett 16-ig A6 16 felett

4. táblázat

Terhelés szerinti besorolás Terhe-lésfo-kozat

A viszonylagos terhelésfokozat üzemi

jellemzői

Terhelési tényező

k B1 A névlegesnél lényegesen

kisebb terhelésekkel és a ritkán, névleges terhelésekkel való üzemeltetés

0,5-ig

B2 A közepes és a névleges terhelések kel folyó üzemeltetés

0,5 felett 0,63-ig

B3 Főleg a névleges és a névlegeshez közeli terhelésekkel való üzemeltetés

0,63 felett 0,8-ig

B4 Állandó üzem, a névleges és a névlegeshez közeli terhelésekkel

0,8 felett

A terhelési tényező az alábbi képlet alapján

határozható meg: 3

1 max

ni i

i i

P tKP t=

⎛ ⎞= ⎜ ⎟ Σ⎝ ⎠∑

ahol: Pi a szerkezetre ti idő alatt ható terhelés, Pmax a daru számított legnagyobb terhelhetősége, ti a Pi terhelés hatásának időtartama, ti a szerkezetre ható terhelések össz. időtartama

Page 6: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

26. oldal

Az üzemi csoportszám számításához szükséges

adatok hiányában különböző darufajták gépészeti egységének üzemi csoportszáma az 5. táblázatból választ-

5. táblázat Néhány darufajta gépészeti egységének üzemi

csoportszáma Kivonat az MSZ 9720-78-ból Gépészeti egységek

Emelőm

ű (fő)

Segé

dem

előm

ű

Mac

ska

hala

dómű

Dar

u ha

ladó

Forg

atóm

ű

Gém

bille

ntőm

ű

Egyé

b em

előm

ű

A daru megnevezése és rendeltetése

Üzemi csoportszáma HÍDDARUK Kézihajtású daru Függődaru, általános

rendeltetésű Egy- és kétfőtartós daru

villamos emelődobos futó- macskával, általános rendeltetésű

Gépházi szerelődaru, ritka használatú

Üzemi daru, gépipari üzemű és raktári

Öntődaru Kovácsdaru Edződaru Emelőmágneses daru,

folyamatos üzemű Markolós daru, folyamatos

üzemű Berakó daru martin-

kemencéhez Konténerdaru

2 3 3 3 4 5 5 5 6 5 6 5

1 – – 3 4 5 5 5 4 – – –

1 3 3 3 4 5 5 5 6 5 6 4

1 3 3 3 4 5 5 6 6 6 6 4

– – – – – – – – – 6 4

– – – –

– –

– – – – – – 61 – – 6² 5³ 44

GÉMES DARUK Rakodóhíd, horogüzemű,

szerelő Rakodóhíd, horogüzemű,

rakodó Markolós, folyamatos üzemű Portáldaru, horogüzemű,

szerelő Markolós, rakodó,

folyamatos üzemű Toronydaru, építési és

szerelő Úszódaru, álló gémes Úszódaru, forgó gémes

3 5 5 4 5 4 4 5

3 4 – 4 – 3 4 4

3 5 5 – – 3 – –

4 4 4 3 4 3 – –

3 5 5 4 5 3 3 3

4 4 5 4 5 3 – 4

– – 6² – 6² 35 – –

1 Forgatószerkezet 2 Nyitó-zárómű 3 Adagolókar forgatómű, edényrögzítő szerkezet 4 Konténer megfogó és rögzítő szerkezet 5 Kúszómű, ill. daruszerelő-emelőmű (csörlő)

ható. Részletesebben lásd az MSZ 9750-78 szabvány mellékletében.

Az emelőgépekhez használatos sodronykötelek választéka az MSZ 9745/1 szabvány szerint:

Nem forgásmentes kötelek: Pontérintkezésű kötél. Sodronykötél T 6X37+A0 szerkezettel, 222

huzalból (MSZ 2646), adatait lásd a 6. táblázatban. Vonalérintkezésű kötelek: Sodronykötél WS 6x31 +A0 Warrington-Seale

szerkezettel, 186 huzalból (MSZ 15828). Sodronykötél WS 6X36+A0 Warrington-Seale

szerkezettel, 216 huzalból (MSZ 15841). Sodronykötél WS 6X41 +A0 Warrington-Seale

szerkezettel, 246 huzalból (MSZ 15829). Forgásmentes kötelek: Sodronykötél T 18 X 7 + A0 pászmaspiráhs

szerkezettel, 126 huzalból (MSZ 15839). Sodronykötél T 6 X 19 + 12 X 7 + A0

pászmaspirális szerkezettel, 198 huzalból (MSZ 15840).

Valamennyi kötélszerkezet egy középső rostos

betéttel készül. Választható rostos betét helyett acél betét is.

A kötelet alkotó huzalok anyaga 1570 N/mm², 1770 N/mm² vagy 1960 N/mm² névleges szilárdságú ötvözetlen szénacél.

Nedves környezetben való használathoz célszerű horganyzott kivitelű kötelet választani.

A darukötelek keresztsodrásúak legyenek. Valamennyi kötélszerkezet választható előformáltan (kitekeredésmentes kivitelben) is.

2.14. Az emelőgépek sodronyköteleinek méretezése

A sodronykötelek méretezésére az MSZ 9745/1-77

szabvány és a kötélkorongok és -dobok kiválasztására pedig az MSZ 9745/2-77 szabvány nyújt felvilágosítást. A darukötelet húzó igénybevételre kell méretezni. A kötélkorongon átvetett, ill. kötéldobra csévélt kötélben fellépő hajlító és egyéb járulékos igénybevételt a szabványban előírt legkisebb kötélkorong, ill. dobátmérő előírásával vesszük figyelembe.

A darukötelet tehát a huzalanyag "R", szakítószilárdságához viszonyított, üzemi csoportszámtól függő β biztonsági tényezővel (lásd 7. táblázatot) húzásra

Page 7: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

27. oldal

6. táblázat

Sodronykötelek darukhoz

Kötél- szerkezet

Névleges kötélátmérő

(mm)

Névleges huzalátmérő

(mm)

Az összes huzalok közelítő kereszt- metszete

(mm²)

Zsírozott kötél

tömege (kg/m)

160 kp/mm' névleges huzalszakító szilárdságnál a kötél számított szakítóereje

kp* 8 9

10 II 12

0,38 0,40 0,45 0,50 0,55

25,1 30,6 35,3 43,5 52,7

0,24 0,29 0,33 0,41 0,50

4000 4850 5600 6950 8400

14 16 18 20 22

0,63 0,75 0,85 0,90 1,00

69 98

125 141 174

0,65 0,93 1,18 1,34 1,65

II 000 15500 20000 22500 27500

25 28 32 36 40

1,15 1,3 1,5 1,7 1,8

230 294 392 503 564

2,18 2,78 3,72 4,80 5,35

36500 47000 62500 80000 90000

T 6x

37+A

0 sze

rkez

ette

l 222

huz

albó

l, eg

y kö

zépső

rost

os b

etét

tel M

SZ 2

646-

69

45 50 55 63

2,0 2,4 2,6 2,8

697 1000 1180 1360

6,6 9,5

11,2 12,9

110000 160000 185000 215000

* A táblázat kp-ban megadott értékei hozzávetőlegesen megfelelnek a daN-ban (dekanewtonban) kifejezett értékeknek. A daN-ra való átszámításkor a kp értéket 0,981-del kell megszorozni.

7. táblázatBiztonsági tényező értékei

MSZ 9745/1-77. Biztonsági tényező, β Üzemi

csoportszám (MSZ 9750)

Nem forgásmentes kötél

Forgásmentes kötél

1 4 5 2 5 6 3 6 7,5 4 7,5 9 5 9 11 6 11 14

méretezzük, és a szabványban előírt korong-, ill. dobátmérőt alkalmazzuk

2 2

, ,4 4m h

h

T dR A iA

δ π πβ χ= = =

ahol α a kötél teljes keresztmetszetére vonatkoztatott kitöltési tényező, mely az emelőgépeknél használatos kétszer sodrott köteleknél közel állandónak vehető. Ah-t behelyettesítve:

2

4m

TRd

βχ π

= .

A kötélátmérő min max max4

m

d T k TRβ

χπ= = (mm),

ahol Tmax a kötélerő N-ban. A horoggal felszerelt emelőgépek Tmax értékének

megállapításakor a statikus erő 10 %-át meg nem haladó dinamikus erőt, továbbá emelőmű esetében a névleges

Page 8: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

28. oldal

teher 5 %-át meg nem haladó tömegű horogszerkezetet. figyelmen kívül lehet hagyni.

Markolóval felszerelt emelőgépekre: - ha a rendszer lehetővé teszi a felemelt teher egyenletes

elosztását, a

maxa teher és a markoló tömegének erőhatása0,66

a függesztő vagy záró kötelek számaT =

- ha a rendszer nem teszi lehetővé a felemelt teher egyenletes elosztását, függesztőkötelekre, a

maxa teher és a markoló tömegének erőhatása0,66

a függesztő kötelek számaT =

zárókőtelekre, a

maxa teher és a markoló tömegének erőhatása

záró kötelek számaT =

A kerekített k tényező, Rm = 1570 N/mm² névleges szilárdságú darusodronykötélre számított értékei a 8. táblázatból kiválaszthatók.

8. táblázat

A k tényező értékei Rm = 1570 N/mm² névleges szilárdságú daru-

sodronykötélre számítva k [mm/N]

Nem forgásmentes Forgásmentes

Üzemi csoportszám (MSZ 9750) kötél

1 0,08 0,09 2 0,09 0,10 3 0,10 0,11 4 0,11 0,12 5 0,12 0,13 6 0,13 0,15

Az így meghatározott kötélátmérő (d) mellett

alkalmazható legkisebb kötéldob, ill. kötélkorong átmérőt (D) ezek viszonya határozza meg. A D/d viszonyának megengedhető legkisebb értékeit lásd a 9. táblázatban.

9. táblázat

D/d megengedhető legkisebb értékei Üzemi

csoportszám (MSZ 9750)

(D/d)min

Nem forgás-mentes

Forgás-mentes

kötelek Kötéldob Terelő-

korong

Kiegyen-lítő-

korong

1 - 15 16 14 2 1 18 20 14 3 2 20 22 15 4 3 22 24 16 5 4 24 26 16 6 5 26 28 18 - 6 28 30 18

* A (D/d)min értékét kettővel kell növelni: - ha egy Kötélszakasz kettőnél több korongon

fut át - ha egy kötélszakasz két irányban hajlítva van. A nem forgásmentes, Rm = 1570 N/mm²

huzalszilárdságú darukötelekben, különböző üzemi csoportokban megengedett legnagyobb kötélerői és e kötelekhez alkalmazható kötéldobok (Dd), kötélkorongok (Dk) és kiegyenlítő kötélkorongok (De) legkisebb átmérői a 10. táblázatban láthatók. Az Rm = 1770 és 1960 N/mm² huzalszilárdságú darukötelek, valamint a forgásmentes kötelekhez tartozó hasonló adatok az MSZ 9745/2-77 szabvány függelékében megtalálhatók.

A kötéldob, ill. korong átmérőjét a kötélközepektől kell számítani.

Megengedett a markolószerkezetekben alkalmazott kötélkorongok átmérőjének - a szerkezet méreteinek csökkentése végett - az 1. üzemű csoportszám szerinti megválasztása.

A felvonók függesztőköteleinek méretezése elvben egyezik a darukötelek méretezésével, azonban a személyszállítás miatt megkívánt nagyobb biztonság érdekében szigorúbb előírásokat tartalmaz. Ismertetését lásd a 4.6. fejezetben.

Page 9: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik G

yula: A

nyagmozgató gépek

Tankönyvkiadó,Budapest,1981

10. táblázat

Nem forgásmentes kötelek. Kötéldobok és korongok megengedett legkisebb átmérője MSZ 9745/2-77.

A kötél névleges átmérője,

d

Megengedett legnagyobb kötélerő N-ban, ha Rm=1570 N/mm2

A kötéldobok és –korongok megengedett Legkisebb átmérője, ha

A kötél szabványszáma és huzalainak száma

Üzemi csoportszám 14d 15d 16d 18d 20d 22d 24d 26d 28d

1 De Dd Dk 2 De Dd Dk 3 Dk 4 Dk 5 Dk

MSZ

264

6 22

2 sz

ál h

uzal

ból

MSZ

158

28

186

szál

huz

albó

l M

SZ 1

5829

24

6 sz

ál h

uzal

ból

MSZ

158

41

216

szál

huz

albó

l

6 Dk 8 8 - - 10000 7900 6400 5300 4400 3800 112 120 128 144 160 176 192 208 224 9 9 - - 12600 10000 8100 6700 5600 4800 126 135 144 162 180 198 216 234 252

10 10 - 10 15600 12300 10000 8200 6900 5900 140 150 160 180 200 220 240 260 280 11 11 - 11 18900 14900 12100 10000 8400 7100 154 165 176 198 220 242 264 286 308 12 12 - 12 22500 17700 14400 11900 10000 8500 168 180 192 216 240 264 288 312 336 14 14 - 14 30600 24200 19600 16200 13600 11600 196 210 224 252 280 308 336 364 392 16 16 - 16 40000 31600 25600 21100 17800 15100 224 240 256 288 320 352 384 416 448 18 18 - 18 50600 40000 32400 26800 22500 19200 252 270 288 324 360 396 432 468 504 20 20 - 20 62500 49400 40000 33000 27800 23600 280 300 320 360 400 440 480 520 560 22 22 - 22 75600 59700 48400 40000 33600 28600 308 330 352 396 440 484 528 572 616 25 25 - 25 97600 77100 62500 51600 43400 37000 350 375 400 450 500 550 600 650 710 28 28 - 28 122500 96800 78400 64800 54400 46400 392 420 448 504 560 616 672 728 784 32 32 32 32 160000 126400 102400 84600 71100 60600 448 480 512 576 640 704 768 832 896 36 36 36 36 202500 160000 129600 107100 90000 76700 504 540 576 648 720 792 864 936 100840 40 40 40 250000 197500 160000 132200 111100 94700 560 600 640 780 800 880 960 1040 112045 45 45 45 316400 250000 202500 167300 140600 119800 630 675 720 810 900 990 1080 1170 126050 50 50 50 390600 308600 250000 206600 173600 147900 700 750 800 900 1000 1100 1200 1300 140055 - 55 55 472600 373500 302500 250000 210000 179000 770 825 880 990 1100 1210 1320 1430 154063 - 63 63 620100 490000 396900 328000 275600 234800 882 945 1008 1134 1260 1386 1512 1638 1764

29. oldal

Page 10: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

30. oldal

2.15. A sodronykötelek élettartamának növelése

A kötél élettartamának lehető növelése érdekében

igen fontos a kötéllel kapcsolódó szerkezeti elemek kialakításánál az alábbi szempontok figyelembevétele.

Üzemi tapasztalat igazolta, hogy a kötél rövidebb idő alatt megy tönkre, ha a kötél ellenkező irányú hajlítást is szenved (2.8. ábra).

Tervezésekor gondosan ügyelni kell a helyes kötélvezetésre. A kötélterelő korongok megfelelő elhelyezésével rendszerint elkerülhető a kötél kétirányú hajlítása. Keresztfonású kötélnél egy ellenkező irányú kötélhajlítás kb. 1,5 ... 2,5-szeres egyirányú kötélhajlítási élettartam rövidítő hatásával egyenértékű.

A kötélhorony kialakítása (2.9. ábra). A kötél élettartama szempontjából a legkedvezőbb a kötélhez simuló, r=0,5d legömbölyítésű horony. A kötél gyártásánál megengedett kötélátmérő-méreteltérés következtében azonban valamivel nagyobb legömbölyítési sugarat kell alkalmazni.

Ha r sokkal nagyobb mint d/2, vagy r=∞ (henger-felület), a kötél csak kevés ponton támaszkodhat a korongra és nagy felületi nyomással, amelynek következtében a kötél keresztmetszete eltorzul. Az ebből keletkezett többlet-igénybevételek a kötél élettartamát rövidítik. Még kedvezőtlenebb a kötélre az r<d/2 horonyalak,

Helytelen Helyes

2.8. ábra. Kötélvezetés

2.9. ábra. A kötélhorony kialakítása

amikor a kötél az ékhatás következtében még nagyobb támasztóerőket kap.

Kötélkorong bélelése lágy anyaggal (fa vagy alumínium) a nagy felszínnyomással felfekvő, kis pászmaszámú keresztfonású vagy pászmaspirál szerkezetű kötelek élettartamát növeli. A gyakorlatban azonban nem terjedt el a bélésanyag gyors kopása miatt. Újabban kopásálló kemény poliamid műanyag, metamid bélés alkalmazásával igen jó eredményt értek el. A kötelek élettartam-növekedése az acélkorongon vezetettekhez képest 7...8-szoros. [27]

A kötél anyagának szakítószilárdsága. Ugyanazon terhelés és kötélátmérő mellett az elemi szálak szakítószilárdságának Rm = 1300-ról 1600 N/mm²-re való növelése esetén a kötél szakadás elleni biztonsága arányosan nő, azonban sokkal kisebb mértékben nő a kötél élettartama. Rm = 1600 N/mm²-ről tovább növelve a kötél anyagának szakítószilárdságát, a kötél élettartama már csökken. A kötél méretezési előírásai ezért általában Rm = 1600 N/mm² szakítószilárdságú kötelet vesznek alapul.

A sodronykötél kenése. A sodronykötél gyártásakor tartósságának növelése érdekében a középső kenderbetétet olajjal itatják és a kötelet kívül zsírozva szállítják. Üzemben, különösen a szabadban működő daruk köteleit sav- és kreosolmentes ásványi zsírral gondosan kenni kell. A karbantartáskor gondosan zsírozott kötél kb. 4...7-szer nagyobb élettartamot ér el a zsírtalan kötélhez képest.

2.16. Kötélvégrögzítés A kötél vége vagy kötélhez, vagy

csatlakozóelemhez (pl. kötélkarmantyú) rögzíthető. Kötélhez csak pászmás kötelet lehet kötni. Az erőátadást a kötelek pászmáinak, huzalainak összefonása biztosítja.

A kötél végének csatlakozóelemhez való rögzítésére leggyakrabban az alábbi megoldásokat alkalmazzák:

A kötélvégen kialakított sodronykötélcsülök. A kötél végét a 2.10. ábrán látható kötélszívre (MSZ 9714-70) hajtjuk. A visszahajlított kötélvéget pászmáira felbontjuk, a kötélbe befűzzük, eldolgozzuk, és végül a befont kötélrészt lágy kötözőhuzallal lekötjük (2.11.ábra) A sodronykötélcsülök készítésmódját az MSZ 9715-70 sz. szabvány írja elő részletesen. Csak pászmás köteleknél használható.

A 2.12. ábrán a kötelet acélék körül vezetik, s a húzott kötél hatására a kötél a karmantyúba szorul.

A 2.13. ábra a kötél végének kúpos kötélkarmantyúba

Page 11: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

31. oldal

2.10. ábra. Kötélszív

2.1 ábra. Kötélcsülök 2.12. ábra. Kötélék

2.13. ábra. Kötélkarmantyú

2.14. ábra. Szorítókengyel

2.15. ábra. Szorítókengyellel rögzített kötélhurok

való bekötését mutatja. A kötél végét a kúpos nyíláson átfűzve, felbontva és szétnyitva, az egyes huzalok végeit gondosan megtisztítják, és a kúpos üregben szabadon maradt teret alacsony hőmérsékleten olvadó ötvözettel kiöntik.

Ahol az előbb ismertetett kötélvégrögzítés nem alkalmazható, vagy ahol a kötés ideiglenes jellegű, a sodronykötelek hurokképzésénél a 2.14. ábrán látható szorítókengyelt alkalmazzák. Az első szorítókengyelt közvetlenül a kötélszív mellett kell elhelyezni. A szorítókengyelek számát a terhelés, a dinamikus igénybevétel és a balesetveszély figyelembevételével kell megállapítani, de számuk 3-nál kevesebb nem lehet (2.15. ábra). A szorítókengyel csavaranyáit biztosítólemezzel vagy rugós alátéttel biztosítani kell.

2.17. Kenderkötél A kenderkötelek gyengébb mechanikai

tulajdonságúak, ezért függesztőelemként csak alárendelt jelentőségű vagy ideiglenes jellegű emelőszerkezethez, kisebb terhek emelésére használják. Igen hajlékony, azonban mechanikai sérülésekre és légköri behatásokra

Page 12: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

32. oldal

2.16. ábra. Kenderkötél

érzékeny. Rendszerint 3 pászmából fonjak (2.16. ábra). A kötél hasznos keresztmetszete a teljes kör keresztmetszetének kb. 2/3-ára vehető

A kender szakítószilárdsága

Rm = 120 ... 140N/mm² Méretezése csak húzó igénybevételre, D≥10d

kötélkorong-átmérő esetén 8-szoros biztonsággal történik.

így 120 15

8mρ = = N/mm², és a d (mm) átmérőjű

kenderkötél 2 22 104 3 4m

d dT π πρ= = N-nal

terhelhető. A kenderkötelet átnedvesedés elleni védelem

céljából gyakran kátránnyal itatják. A kátránnyal itatott kötelek szilárdsága mintegy 15 %-kal csökken.

2.2. LÁNCOK

A láncok csuklósan egymás után kapcsolódó

viszonylag rövid hosszúságú tagokból készülnek, és csak húzóerőt visznek át. Javításkor az egyes tagok könnyen cserélhetők, kopásra, korrózióra nem érzékenyek, hőállóak. Ezen előnyei miatt széles területen alkalmazhatók.

Az anyagmozgató gépeknél hajlékony függesztő és vonóelemként, a gép üzemviszonyaitól és szerkezetétől függően sokféle, egymástól szerkezeti kialakításban és anyagában is különböző lánctípust alkalmaznak. A gyakrabban használt lánctípusok méreteit és terhelhetőségét országos szabványban fektették le. A szabványosított láncok három nagy csoportba: a teherláncok, a hajtóláncok és a vonóláncok csoportjába sorolhatók.

A teherláncok darabáruk felfüggesztésére, az emelőgépeknél terhek emelésére szolgálnak. Igénybevételükre jellemző a szakaszos üzem, a kis emelési sebesség.

A hajtóláncok szerepe a forgó tengelyek közötti energiaátvitel. Osztásuk általában kicsi, a 100 mm-t nem haladja meg.

A vonóláncok folyamatos működésű szállítógépeknél a szállítóelemek vontatására vagy az áru továbbítására szolgálnak.

Szerkezeti kialakítás szerint megkülönböztetünk szemes, hevederes és szétszedhető láncot.

2.21. Szemes lánc A szemes lánc körszelvényű acélból hegesztett,

ovális alakú szemekből áll (2.17. ábra.). A szemek hossza szerint megkülönböztetünk rövid szemű teherláncot (MSZ 5501-63), ha a láncszem osztása t≤3d (szélessége b≤3,5d), és hosszú szemű vonóláncot (MSZ 5512-63), ha t> 3d. Anyaga jól hegeszthető és nyújtható C 15 K MSZ 61.

Az egyes láncszemek méretpontossága szerint megkülönböztetünk ellenőrzött méretpontosságú, kalibrált, jele K, és nem ellenőrzött méretpontosságú (nem kalibrált), jele N, egyszerű láncot.

Emelőgépeknél rövid szemű kalibrált láncot alkalmaznak.

A szemes láncok előnye a nagyfokú hajlékonyság, az olcsó előállítás, a szállított anyaggal szembeni érzéketlenség, könnyű szerelhetőség, a szállító- és továbbítóelemek egyszerű felerősítési lehetősége.

2.17. ábra. Szemes lánc

Page 13: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

33. oldal

Hátránya a viszonylag nagy tömege, érzékenysége

a lökésszerű terhelésre (hirtelen szakadás) és az egyes láncszemek kis felületen történő kapcsolódása miatt a nagymértékű kopás.

Emelőelemként ma már csak kézi hajtású emelőszerkezeteknél kb. 50 kN láncterhelésig alkalmazzák. Kézi hajtás átvitelére húzóláncként d=5,5 mm ø kalibrált láncot szoktak alkalmazni, v=0,6...0,75 m/s láncsebesség mellett (MSZ 5523). Szállítógépekben vonóelemként a hosszú szemű vonólánc gazdaságosabb, mert tömege azonos terhelhetőség esetén kisebb, ugyanakkor a szállítóelemek felerősítése a rendelkezésre álló nagyobb hely miatt könnyebben megoldható. A vonóláncok megengedhető sebessége súrlódó hajtás esetén vmax=1,2...1,5 m/s, míg lánckerékkel történő hajtásnál legfeljebb v=0,75 m/s.

A szemes láncot csak húzásra méretezzük, figyelmen kívül hagyva azt, hogy a láncszem tulajdonképpen hajlításra és húzásra igénybe vett görbe rúd.

A láncban megengedhető húzóerő: 2

,2 24m m m

dF A πρ ρ= =

d (cm) a láncszem anyagának átmérője. A megengedett feszültség (σm) értékét igen

óvatosan kell felvenni, egyrészt az előbb említett hajlítás, másrészt a szállított anyaggal való érintkezés következtében előálló nagymértékű kopás és a gyakran fellépő lökésszerű terhelés miatt. Az általában szokásos C15 K minőségű acélra kézi hajtás esetén

σm = 60 N/mm² gépi hajtás esetén

σm = 25,..30 N/mm² A szabványos szemes láncok méreteit és

szakítóterhelését az MSZ 5501 és 5512 tartalmazza. A láncok szakítóterhelés alapján történő méretezése:

kézi hajtás esetén β>4, gépi hajtás esetén β= 10 ... 20

biztonsággal történjék. szm

FFβ

= (N).

A szállítóelemek felerősítése a szemes láncokra kétféleképpen történhet: vagy rövid, 7, 9, 11, de mindig páratlan láncszemből álló láncszakaszokat alkalmaznak, s ezeket különleges kiképzésű, a szállítóelemek felerősítésére alkalmas szemekkel, az ún. kengyelekkel kapcsolják össze (2.18. ábra), vagy pedig a folytonos, megszakítás nélküli láncra hegesztéssel vagy csavarokkal erősítik fel. A láncvégek összekapcsolását, végtelenítését csavarokkal összeerősített kapcsolószemmel végzik.

2.18. ábra. Szemes kengyel

2.22. Hevederes lánc Csapokkal összekötött hevederekből áll.

Emelőgépeknél a csapos (Gall-) láncot használják (2.19. ábra). A hevederek száma 2...12 db. A hevederek rögzítése a csapon a csapvég szegecsfejjé alakításával vagy nagyobb méretű lánc esetén alátéttárcsával és sasszeggel történik.

A heveder anyaga A 60 (MSZ 500), a csapé A 60 H.

A csapos láncok méretei, szakítóterhelései és műszaki előírásai a MSZ 5505-74 számú szabványban találhatók.

A csapos lánc előnye a szemes lánccal szemben, hogy megbízhatóbb (nincs hegesztve), és a láncok csuklóiban keletkező súrlódás kisebb a heveder és csap érintkezőfelületeinek megmunkálása következtében. Hátránya, hogy a láncot a láncheveder mozgási síkjától eltérő erővel nem lehet terhelni, és lényegesen drágább.

A csapos láncokat kézi hajtású, nagy teherbírású emelőszerkezeteknél emelőelemként alkalmazzák, ma már azonban itt is inkább az acél sodronykötél kerül

2.19. ábra. Csapos teherlánc

1 - külső végszem ; 2 - felfogó csap

Page 14: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

34. oldal

2.20. ábra. Peremes-futógörgős hevederes

vonólánc'

beépítésre. Gépi hajtásnál minimálisan 5-szörös a biztonság a hevederes lánc szakítóterhelésére számítva, amelyet a gyári katalógus, ill. szabvány megad (lásd MSZ 5505-74 szabványban). A lánc sebessége nem haladhatja meg a 0,3 m/s-ot.

A lánc végének csatlakozószerkezethez rögzítése rendszerint egy könnyen kiszerelhető csap közvetítésével történik. Mind a szemes, mind a csapos láncnál az utolsó láncszem kiképzése a felfüggesztő csap méreteihez igazodik (2.19. ábra).

A folyamatos működésű szállítógépek vonóelemeként hevederes vonóláncokat használnak (2.20. ábra). Szerkezeti kialakítása az emelőgépeknél alkalmazott csapos, ún. Gall-féle láncokhoz képest jelentős eltéréseket mutat, amely főleg az emelőgépek és a szállítógépek egymástól eltérő üzemviszonyaira vezethető vissza. Az emelőgépeknél alkalmazott láncok szerkezeti kialakításánál a lánckerekek lehető legkisebb átmérőjének elérése a cél. Ezért ezeket a láncokat rövid osztással és a csapok átmérőjének csökkentése végett esetleg több, párhuzamos hevederrel készítik. A folyamatos működésű szállítógépek vonóelemeinél a hevederes vonóláncok súly- és árcsökkentése s ezzel együtt az egész berendezés könnyítése és olcsóbbá tétele érdekében nagy átmérőjű lánckerekeket építhetnek be, amelyek egészen nagy osztású, 1 m-es láncok alkalmazását is lehetővé teszik.

A 2.21. ábrán a gördülőcsapágyas, peremes görgős vonólánc csuklójának metszete látható. A lánc szerelési egysége két tagból áll, egy külső hevederes és egy belső hevederes lánctagból. A belső hevederek (1) mindig a hüvelyhez (3), a külső hevederek (2) pedig a csaphoz (4) vannak rögzítve. Ennek következtében a lánckerékre felfutó lánccsuklóban a lánctagok viszonylagos elmozdulásakor súrlódás csak a lánccsap és a

hüvely között ébredhet. A lánchüvelyre kívülről csatlakozik a láncgörgő (5). A belső hevederek és a hüvely elfordulásmentes illesztését a hüvely két szélének lelapolásával és a hevederben ehhez csatlakozó párhuzamos oldalakkal kisajtolt lyukakkal lehet elérni. A csap és a külső heveder elmozdulását vagy az előbb leirt módon, vagy a csap kiálló részébe kétoldalt bemart, párhuzamos síkú hornyokba kapaszkodó éklemezek, biztosítófülek (6) segítségével akadályozzák meg.

2.21. ábra. Gördülőcsapágyas lánccsukló

1 - belső heveder; 2 - külső heveder; 3 -lánchüvely; 4 -lánccsap; 5 -láncgörgő; 6 – biztosítófül

2.22. ábra. Hüvelyes hevederes vonólánc

Page 15: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

35. oldal

2.23. ábra. Görgős hevederes vonólánc

2.24. ábra. Futógörgős hevederes vonólánc

2.25. ábra. Kardáncsuklós vonólánc

1 - heveder; 2 - vezetőgörgős-golyóscsapágyak

A láncokhoz kapcsolódó szállító elemeket és egyéb

szerelvényeket a külső vagy belső hevederekre rácsavarozzák, vagy hozzáhegesztik. Esetleg a heveder anyagából kihajlított füleket alkalmaznak. Két párhuzamosan futó vonóelemág esetén a lánccsapok egy darab átmenő acélrúdból készülnek. A lánccsapok a két láncág pontos együtt futásán kívül a szállítóelemek felerősítésére is szolgálnak.

A hevederes vonóláncok a csuklók szerkezeti kialakítása szerint lehetnek hüvelyes (2.22. ábra), görgős (2.23. ábra), futógörgős (2.24. ábra), peremes futógörgős (2.20. ábra) vonóláncok. E láncok osztását (t=40...1000 mm), szakítóterhelését (20...900 kN) az MSZ 5515-71 számú szabvány tartalmazza.

Térben vezethető hevederes, görgős vonóláncok kardáncsuklóval készülnek (2.25. ábra).

A hevederes vonólánc a nagy teljesítményű szállítógépek vonóeleme, előnye a pontos osztás, a

csuklók kenhetősége; hátránya, hogy a lánccsap nagyszámú megmunkált és hőkezelt alkatrészből áll, ezért igen költséges.

2.23. A hevederes lánc méretezése A hevederes láncok méreteinek megválasztásánál

döntő tényezőként jelentkezik a lánccsuklók kopása. Ennek figyelembevétele gyakran azt eredményezi, hogy a lánc terhelhetőségét lényegesen kisebbre vesszük, mint amennyit a szilárdsági méretezés alapján megengednénk.

A csuklók kopása elsősorban a csap és a persely között ébredő felszínnyomás (k) nagyságától függ, de a gép munkakörülményei és a lánccsuklók kenési viszonyai is jelentősen befolyásolják. Az állandó és megfelelő zsírkenés csökkenti, de emellett a szállított áru tulajdonságára is figyelemmel kell lenni a kenés

Page 16: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

36. oldal

megválasztásakor. Például az igen koptató ércport vagy kvarchomokot szállító gépek vonóláncait sok esetben a csuklók kenése nélkül, "szárazon" üzemeltetik, mert a kenőanyagban megkötött por a kopás mértékét még csak növelné. A lánccsuklók méretezésekor megkülönböztetjük a csukló normális és különleges igénybevételét.

A lánccsuklók normális igénybevétele a külső és belső hevederek által közvetített húzóerő hatására ébred (2.26. ábra). A külső hevederek a csappal, a belsők a persellyel kapcsolódnak, ez esetben a lánccsap főleg nyírásra van igénybe véve.

A lánccsukló különleges igénybevétele a hajtólánckerék fogával való kapcsolódásakor áll elő (2.27. ábra). A csukló perselyének külső palástjára a fognyomás közvetlenül vagy a láncgörgő közvetítésével, nagyjából egyenletesen megoszló erőként hat. Ez az erő a külső hevederekkel bíró csukló kapcsolódásakor a perselyt és a benne levő csapot hajlításra is igénybe veszi, emellett a persely végénél a csap nyírást is szenved.

2.26. ábra. Lánccsukló normális igénybevétele

2.27. ábra. Lánccsukló különleges igénybevétele

Szabványos hevederes vonólánc alkalmazása esetén

a lánc méretezése egyszerű, mert a szabvány a lánc szakítóterhelését rögzíti. A lánc szakítóterhelésének (Fsz) és a megengedhető legnagyobb vonóerőnek

(Fmax) viszonya a biztonsági tényező (β). maxszFFβ

= .

E láncoknál tehát a méretezés lényegében a várható

üzemi körülményeknek megfelelő biztonsági tényező megválasztásából áll.

A biztonsági tényező dinamikus hatásoktól mentes vonóláncoknál β=4...5. Lökésszerű terhelések és 0,5 m/s-nál kisebb láncsebesség esetén β=8 ... 12, 0,5 m/s és nagyobb lánc sebesség esetén β=15 ... 20. Egyedi tervezésű hevederes vonólánc akkor kerül

beépítésre, ha szabványos lánc a szállítógép szerkezeti kialakítása vagy egyéb követelmények miatt nem alkalmazható. Ebben az esetben a lánc egyes elemeit szilárdságra és a csuklót felszínnyomásra ellenőrizzük.

A csapok és hüvelyek keménysége HRC 48-55 legyen.

A megengedhető legnagyobb felszínnyomás a lánccsap és persely között:

acélcsap és temperöntvény persely esetén kmeg= 10 ... 14 MPa

acélcsap és bronzpersely esetén kmeg= 20 ... 25 MPa

acélcsap és acél persely esetén kmeg= 16 ... 25 MPa

ötvözött hőkezelt acélcsap és acélpersely esetén kmeg= 40 ... 45 MPa

2.24. Szétszedhető vonóláncok Könnyű és nehéz kivitelben, öntve, sajtolva vagy

kovácsolva gyártják. Szerszám nélkül szerelhetők szét.

Öntött vonóláncok egyszerű szerkezeti felépítésük és olcsó előállításuk miatt nyernek alkalmazást. Anyaguk Tö.40 minőségű temperöntvény, nagyobb terhelésnél esetleg acélöntés is lehet.

E lánctípusok előnye olcsóságukon kívül még a könnyű szerelhetőség, a szállító- és továbbítóelemek felerősítésére szolgáló tagok tetszőleges kialakítási lehetősége, valamint az abrazív és korrozív hatásokkal szembeni nagy ellenálló képesség. Ezért főleg nedves, savas, gőzös, poros helyiségben működő szállítógépek vonóelemeként használatosak.

Mindezen előnyeik mellett alkalmazásuk ma már egyre jobban háttérbe szorul, amit a nagy fajlagos súly, a kis üzemi sebesség, valamint az öntvények kevésbé megbízható volta indokol.

Page 17: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

37. oldal

2.28. ábra. Temperöntésű csuklós lánc

2.29. ábra. Temperöntésű lánc szétszerelése

Temperöntésű csuklós (Ewart-) lánc. Egyszerű

szerkezetű, egyetlen alkatrészből képzett lánc (2.28. ábra). A lánc össze- és szétkapcsolása a lánc tehermentesítése után a két szomszédos láncszem - a 2.29. ábrán vázolt - egymással hegyesszöget bezáró helyzetében történik. Ebben az üzem közben elő nem álló helyzetében az első láncszem horgos vége a láncszem szárában levő ék alakú bemetszésben oldalirányban elmozdítható, szétkapcsolható. A két láncszem minden más, üzem közbeni helyzetében szétbonthatatlan.

Csuklós acélcsapos lánc. A temperöntésű láncszemeket acélból (A 60 HG) készült csapok kapcsolják össze (2.30. ábra). A csap egyik, négyszögletes fejjel ellátott végét a külső villában

elfordulás ellen rögzítik, a másik végét pedig sasszeggel biztosítják.

2.30. ábra. Csuklós acé1csapos lánc

Kovácsolt (sajtolt) vonólánc. A kovácsolt

vonóláncok alkalmazása az utóbbi időben került előtérbe főleg a nagy szállítótávolságú berendezéseknél. E lánctípusnál is a könnyű szerelhetőség és a vonóerőre vonatkoztatott minél kisebb önsúly elérése a cél. A 2.31. ábrán vázolt lánc a legkülönbözőbb folyamatos működésű szállítógépek vonóelemeként használatos. A lánc két szemből álló egységekből tevődik össze. Az egyik szem egy darabból készült belső tag, a másik pedig két darabból álló külső tag. A láncszemeket két végén szimmetrikusan sajtolt acélcsapok kapcsolják össze.

A lánc szétszerelésekor a külső tagokat a bennük levő csappal együtt a lánc tengelyvonalához képest 90˚-kal elfordítva a belső láncszem vékonyabb részéhez csúsztatják. így a két külső tag egymáshoz közelíthető, s közben a csap fejei a külső tagokban levő hornyokból kiszabadulnak. A csapot megfelelően elfordítva, az a külső és belső láncszemek hosszúkás nyílásain át kivehető. Az összeszerelés fordított sorrendben végezhető.

A 2.32. ábra hasonló módon szerelhető, könnyebb kivitelű, laposacélból sajtolt hevederekből összeállított láncot mutat be.

A szétszedhető láncok nagy előnye, hogy térben is könnyen vezethetők. A lánctagok megfelelő kiképzésével az egyes lánccsuklóknál 2...2,5˚-os iránytörés is megengedhető, ebben az esetben azonban a csap csak a belső lánctag furatának egyik sarkán fekszik fel, s így meglehetősen nagy felszínnyomás áll elő, ami a lánc

Page 18: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

38. oldal

2.31. ábra. Kovácsolt vonólánc

2.32. ábra. Sajtolt hevederes vonólánc

terhelhetőségét korlátozza. A sajtolt és kovácsolt

szétszedhető láncok további előnye, hogy a szállító- és továbbítóelemek igen könnyen felerősíthetők. A lánc különösebb gondozást, kenést nem igényel.

Hátránya, hogy gyártása az előállításhoz szükséges szerszámok miatt csak nagy sorozatban gazdaságos. A láncok anyaga A 60 (MSZ 500) vagy annál jobb minőségű szén acél. A lánc méretezése a hevederes láncokéhoz hasonlóan történik, a biztonsági tényező β= 10. A lánc sebessége v= 1,0 m/s, az osztása általában t=100...160 mm, szakítóterhelése Fsz= 12,5...250kN.

2.3. HEVEDEREK

A hevederek legáltalánosabb alkalmazási területe

az ömlesztett anyagokat szállító gépek csoportja. Anyaguk és szerkezeti kialakításuk szerint szövet- ,és acélbetétes gumihevedert, acél- és acélsodrony hevedereket különböztetünk meg.

2.31. Gumihevederek Gumihevedernek nevezünk minden, a

szállítószalagok vonó- és szállítóelemeként szolgáló olyan hevedert, amely gumival, műgumival bevont és összevulkanizált pamut, műszál, szövetbetétrétegekből, acélhuzal betétekből és szükség szerint alkalmazott borító gumirétegből áll. A gumiheveder szerkezetét a 2.33. ábra tünteti fel. Méreteit, anyagát, szilárdsági értékeit országos szabvány írja elő. (Gumiheveder szállítószalagokhoz MSZ 2527-75).

A heveder erőt átvivő elemei a pamut-, műanyag-, szövetbetét vagy acélhuzal betét (2.34. ábra). A külső gumiborítás a betétszövetnek a szállított anyaggal,

valamint a dobokkal és görgőkkel való súrlódása folytán előálló kopását, ezenkívül a külső nedvesség beszivárgását hivatott megakadályozni.

2.33. ábra. Szövetbetétes gumiheveder

keresztmetszete 1 - felső borítógumi; 2 - alsó borítógumi; 3 - szállító oldal;

4 - alsó oldal; 5 - szélgumi ; 5 - szövetbetét

2.34. ábra. Acélhuzal betétes gumiheveder

Page 19: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

39. oldal

A szövetbetéteket a rajtuk s köztük levő, a gyártás

folyamán összevulkanizált gumibevonat egyesíti nagy húzóerő átvitelére alkalmas hevederré.

A betétek műszaki szövetek, melyek minőségét 1cm szélességre eső szakítószilárdságuk határozza meg. A húzóerő átvitelén túlmenően a betétek feladata még a heveder olyan mértékű merevségének biztosítása, amely az alátámasztások között a kívánt vályús vagy sík alak megtartását eredményezi.

A műszaki szövetek anyagának jelölésére az alábbi betűk szolgálnak: B pamut, R viszkóz selyem, P poliamid szál, E poliészter szá1. A szövet jelölését az alábbiak határozzák meg: Ha mind a lánc- mind a vetülékirányú fonal anyaga

azonos, csak egy betűt használnak. Ha a láncfonal anyaga nem azonos a vetülékfonal

anyagával, akkor az első betű a lánc, a második a vetülék anyagát jelöli.

Ha a fonalrendszeren belül is többféle anyag van bedolgozva, akkor a jelölés a fonalrendszer többségét kitevő anyag jele szerinti.

A szövetbetét szilárdsági fokozatait a "típusjel" fejezi ki, amelynél az anyagminőséget a betűjel, a szövet láncirányban mért, 1 cm szélességére számított szakítóerőt (daN) a számjel fejezi ki. Az értékek az R10 sor (MSZ 1700) szerintiek: 100, 125, 160, 200, 250, 315 stb.

A heveder szélességi méretsorát szabvány rögzíti. Névleges hevederszélesség: 300, 400, 500, 650,

800, 1000, 1200, 1400, 1600, 1800, 2000 (mm). A borítógumi minősége négyféle lehet:

Jele B10 B15 B20 B25 Keménysége(Sh°) 65±5 Szakítószilárdsága (daN/cm²) min. 100 150 200 250

Szakadási nyúlása (%) min. 300 350 400 450

Dinamikus erőhatásoknak kitett heveder készülhet

párnázószövet-betéttel, amely egy vagy több rétegben a szövetváz és a borítógumi közé kerül. A párnázóbetétet a heveder húzószilárdsága szempontjából -a betétszám meghatározásánál- nem szabad számításba venni.

A szerkezeti elemek vastagságmeghatározásánál a párnazóbetétet úgy kell tekinteni, mint a borító gumi egy részét, tehát a borítógumi vastagságának mérésénél együtt kell mérni az esetleges párnázóbetét

rétegeket is. A párnázóbetét vastagságát ezért a borítógumi vastagsági előírásánál kell figyelembe venni. A heveder felső és alsó borítógumi-vastagsága 1...6 mm lehet.

A gumizás tapadásszilárdsága minimálisan (daN/cm) B R,E Jelű

szövetbetéteknél

Két szövegbetét közt 3,5 4,5 Szövetbetét és a borítógumi közt 1,5 mm borítógumi vastagságig 2,5 3,5 2 mm és vastagabb borítógumi esetén

3,0 4,0

A különféle minőségű betétekből gyártható

hevederekre vonatkozólag az alkalmazható betétszámokat a 11. táblázat adja meg.

11. táblázat

A szilárdsági típusoknak megfelelő hevederminőségek

MSZ 2527-75 szerint Fajlagos

szakító erő (kp/cm)

(daN/cm)

Betétszámok

B63 R125 EP125

R160 EP160

EP250 R250 Hossz

-irány Kereszt-irány

betétminőségeknél 100 40 2 125 50 2 160 63 3 200 80 4 250 100 4 315 125 3 400 160 4 3 500 4 630 5 4 3 800 5 4

1000 4 1250 5 1600 M

egál

lapo

dás

szer

int

* A betűjel az anyagminőséget. a számjel a szövet

láncfona1irányban mért, l cm szélességre számított szilárdságát jelöli (daN)

Page 20: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

40. oldal

A hevedernyúlás értékei:

Szövetbetét B R,E Jelű

Szakadási nyúlás min. (%) 10 10 Megnyúlás a szakítóerő névleges értéke 10%-ának megfelelő terheléskor max. (%)

4 2,5

A betétminőségek tájékoztató vastagsága a kész

hevederben, közbenső gumizással együtt: Betétminőség jele: B 63 R 125 EP 125 EP 160 R 160 EP 250 R 250 Vastagság (mm): 1,4 1,2 1,0 1,2 1,3 1,3 2,0

±0,2 ±0,2 ±0,2 ±0,2 ±0,2 ±0,3 ±0,3 A heveder vastagságát a szövetbetétek és a

borítógumik vastagságának összege adja. A szabványos borítógumival készített hevederrel -

25 °C és +60 °C hőmérsékletű anyagok szállíthatók. Hőálló borítógumi alkalmazása esetén a hőmérséklet 100 °C-ot elérhet. Műanyag borítású, azbeszt szövetbetétes hevederrel pedig 140 ... 160 °C-os anyagok is továbbíthatók.

Nagy húzóerők felvételére betétként acélkötelet alkalmaznak (2.34. ábra), melyet nagy szilárdságú gumiburkolatban helyeznek a hevederbe. A kötél beépítésével a hevederszélességre számított szakítószilárdság 10...70 kN/cm-re növelhető.

2.32. A hevederek méretezése A kötelekhez hasonlóan, a heveder terelőelemeire

előírt minimális dobátmérő mellett, csak húzó igénybevételre történik a méretezés. A számított húzóerő és a heveder számított szakítóereje között általában β= 8 biztonságnak kell fennállnia.

A biztonsági tényező értékében a heveder hajlításból, indítási és fékezési tömegerőkből, anyagfeladásból, mángorlásból származó igénybevétele, valamint a heveder végtelenítésénél jelentkező szakítószilárdság csökkenés van figyelembe véve.

A heveder hajtó- és terelődobjainak átmérője az alkalmazott heveder betétszámától, a heveder igénybevételétől és a dob szerepétől függően változik.

A hajtódobok min. átmérője pamutbetétnél általában (B) Dh = 100…150 z, műanyag betétnél (R, E) Dh=150…270 z

A terelődobok min. átmérője pamutbetétes

hevedernél általában Dt=40…100 z, műanyag betétnél Dt=60…140 z. A heveder számított szakítóereje

(N)10sz

KBzF =

K a hevederbetétek szakítószilárdsága (N/cm), B a heveder szélessége (mm), z a hevederbetétek száma. A hevederben megengedhető húzóerő nagysága

pedig a 8-as biztonsági tényező figyelembevételével

10 80mKBz KBzTβ

≤ = .

Adott B szalagszélesség esetén a szükséges hevederbetétek száma (12. táblázat)

max80TzKB

= ,

ahol Tmax a hevederben fellépő legnagyobb húzóerő.

12. táblázat Betétminőség- és betétszám-választék az egyes

hevederszélességekhez

MSZ 2527-75 szerint Betétminőség

B63 R125, EP125 R160, EP160

R250 EP250

Heveder-szélesség

mm Szövetek száma 300 2 – – 400 3,4 3 – 500 3,4 3 – 650 3,4 3,4,5 – 800 3,4 3,4,5 3,4

1000 3,4 3,4,5,6 3,4,5 1200 – 3,4,5,6 3,4,5,6 1400 – 4,5,6 4,5,6

Ha a legjobb betétminőség alkalmazásával is a

megengedettnél nagyobb betétszámot kapunk, akkor nem marad más választás, mint vagy a hevederszélesség

Page 21: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

41. oldal

növelése, vagy a hevederhajtás megváltoztatásával (kétdobos hajtás, gumibevonat alkalmazása a hajtódobon stb.) a hevederben ébredő igénybevétel csökkentése.

A gumihevederek toldása, végtelenítése az üzemi kívánalmaknak megfelelően vulkanizálással (oldhatatlan kötéssel) vagy kapcsos és horgos toldással (oldható kötéssel) végezhető.

A vulkanizálás a tökéletesebb megoldás (erős, tisztán tartható, az anyag nem hull át rajta, hosszú élettartamú), egyetlen hátránya, hogy a hevederbetétek átlapolása nagy hevederhosszat igényel, és ezért a hevederek kismértékű rövidítése csak nehézkesen hajtható végre.

A végtelenítésnél a betétek végét 45° alatt vágják le, és az egymás folytatását képező betétek eltolva, lépcsőzetesen csatlakoznak.

A horgos, ún. "nylos"-kapoccsal a szétszedhető, bányabeli szalagok hevedereit kapcsolják össze. A heveder két végébe a 2.35. ábrán vázolt kapcsokat erősítik,

2.35. ábra. Gumiheveder toldása nyloskapoccsal

s a hevederből kiálló hurkos részeket egymás mellé helyezve, bélhúrral, acéldróttal vagy sodronnyal erősítik össze. Ez a megoldás biztosítja a heveder keresztirányú hajlékonyságát s a kismértékű rövidítés lehetőségét, de hátránya, hogy az ömlesztett anyag a kapcsok között áthull, s hogy a kapcsok a hevederből könnyen kiszakadnak.

A gumihevederek élettartama a szállítógép üzemviszonyaitól, a szállított anyag tulajdonságaitól, a karbantartástól, a szalag méretezésétől, a szerkezet kialakításától, a szerelés és beállítás pontosságától, a heveder minőségétől és kivitelezésétől nagymértékben függ. Kedvező üzemviszonyok között a hevederek élettartama 8-10 évet is elérhet.

2.33. Acél- és acélsodrony hevederek Az acélheveder szénacélból vagy rozsdamentes

acélból 0,4...1,6 mm vastagságban, legfeljebb B=800 mm szélességben hidegen hengerelve készül. Mindkét acélminőség szakítószilárdsága

Rm = 1100...1200 N/mm2 Az általános használatra nagy szilárdságánál fogva

általában megfelel, meglehetősen korrózióálló, s így nedves anyagok szállítására is alkalmas. 400...500 °C hőmérsékletig alkalmazható. A megengedett igénybevétel σm =25 N/mm²

A rozsdamentes (krómnikkel) acélhevedert főleg az élelmiszer- és vegyiparban használják. Meleg, magas hőfokú (700...800˚C) anyagok szállítására kiválóan alkalmas. A megengedett igénybevétele

σm = 20 N/mm² A hevederek párhuzamos összeszegecselésével

vagy más módon való toldásával B=3...4 m széles szalag is előállítható. A hevederek hosszanti toldása, végtelenítése is hasonlóképpen történik.

A hevederben a dobokon és a görgőkön való hajlítás közben az átmérővel arányos feszültség lép fel:

hs ED

σ = (N/mm2),

ahol s a heveder vastagsága (mm), D a dob vagy görgő átmérője (mm), E 180...205 kN/mm2 az acélheveder anyagának

rugalmassági modulusa. Mivel az acélheveder merevebb a gumihevedernél,

a görgők és dobok átmérőjét is nagyobbra kell választani.

A hevederdobok szokásos átmérője D= 800...1200s (mm).

Az acélheveder előnye a külső hatásokkal (koptatás, rozsdásodás stb.) szembeni nagyfokú érzéketlenség, nagy hőálló képesség és a heveder könnyű tisztántartási lehetősége, ezzel szemben igen költséges. Hazánkban acélhevedert ez idő szerint még nem gyártanak.

A sodronyhevedereket acél- vagy fémszálakból fonják rugalmas, hőhatással és kopással szemben meglehetősen érzéketlen vonóelemmé. Szénacélból készült sodronyhevederek 600 °C-ig, különleges acél anyagú hevederek 1200 °C-ig használhatók.

A heveder szerkezete a gyártási eljárás szerint a legkülönfélébb lehet. Legegyszerűbbek a kerítéssodronyhoz hasonló jobb vagy bal menetes spirálisokból álló hevederek, azonban ezek hátránya, hogy hajlításkor

Page 22: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

42. oldal

2.36. ábra. Sodronyheveder

a spirálisok oldalirányú mozgást végeznek, s a heveder a dobon oldalirányban elvándorol. Ezért inkább a váltakozva jobb, illetve bal menetű spirálokból összeállított; ún. kiegyenlített hevedert alkalmazzák. Ennek szerkezetét a 2.36. ábra tünteti fel. A hosszanti szálak általában vékonyabbak, az ezekből készült spirálisokat előre meggörbített vastagabb keresztszálak fűzik össze. A huzalok átmérője 1...6 mm, anyaguk általában Rm=500...600 N/mm² szakítószilárdságú szénacél, de szükség esetén rozsdamentes acél, alumínium, réz, bronz stb. huzalokból is készülhet heveder. Ez utóbbiakat élelmiszerek vagy az acélt vegyileg erősen megtámadó anyagok továbbítására alkalmazzák. A hevederek szélessége a B=2...3 m-t is eléri. Általában sík hevederként alkalmazzák, de ha nagyobb szállítóképesség vagy az áru oldalirányú legurulásának meggátolása szükséges, oldalperemekkel ellátható. A hevederek szakítószi1árdsága anyaguktól, kialakításuktól függően Fsz=2...10 kN/cm. A megengedhető terhelés β=4...6 biztonsági tényezővel számítható.

2.34. A hajlékony vonóelemek összefoglalása

A sodronykötél vonóelem nagy előnye a

szakítóerőre vonatkoztatott kis fajlagos tömeg, amely különösen emelőgépeknél, nagy szállítótávolságú berendezéseknél jelentős. A sodronykötéllel nagy vonóerő vihető át, térben jól vezethető, karbantartása egyszerű és olcsó. A jól méretezett s megfelelő szerkezetű kötél élettartama hosszú.

Mindezek a kétségtelenül jelentős előnyök sem tudják mindig ellensúlyozni azokat a kellemetlenségeket,

amelyeket a súrlódóhajtás esetén szükséges nagy átmérőjű korongok és tárcsák, valamint a nagymértékű előfeszítés okoznak. Szállítógépeknél a kényszerkapcsolat útján mozgatott kötél nyúlása és végtelenítése jelent nehézséget. A szállítóelemek felerősítése is sok problémát okoz. Mindezen nehézségek ellenére az utóbbi időben, főleg a nagy szállítótávolságú szállítóberendezéseknél a kötélvonóelem alkalmazása előtérbe került.

A láncvonóelem nagy vonóerők átvitelére alkalmas.

A lánccsuklók megfelelő kialakításával térben könnyen vezethető, azaz mindkét síkban hajlítható. Hőhatásra meglehetősen érzéketlen, a nyúlása igen kicsi. Hajtása általában a hajtólánckerék és a lánccsuklók közti kényszerkapcsolattal történik, ugyanakkor egyes típusok, amennyiben szükségessé válik, súrlódókapcsolattal is mozgathatók. Szerelése egyszerű, hibásodás esetén gyorsan és könnyen javítható. A szállítóelem felerősítése nehézség nélkül megoldható. További előnye, hogy igen hajlékony, tehát kis átmérőjű kerékre, dobra ráhajlítható, ezekkel terelhető. Így a szállítógép méretei és helyszükséglete lényegesen csökkenthetők.

Ezzel szemben állnak a lánc hátrányai, mégpedig egyes, különösen poros anyagok szállítása esetén fellépő nagymértékű kopás, egyes lánctípusoknál a lánccsuklók kenésének szükségessége, a viszonylag nagy fajlagos tömeg, valamint a nagyosztású láncoknál szükséges sebességkorlátozás.

A hevederek előnyös tulajdonsága a nagy működési sebesség, a zajtalan, nyugodt járás, a szállítóteljesítményre vonatkoztatott kis fajlagos tömeg. Igen gyakran a szállítóelem szerepét is betölti. Nincs szükség a vonóelem kenésére, s így karbantartása igen egyszerű. Az acél- és sodronyhevederek magas hőfokú anyagok szállítására is alkalmasak, általában a szállított anyag okozta koptatásnak jól ellenállnak. A hevederek hajtása egyszerűen, súrlódókapcsolat útján történik.

A heveder hátrányos tulajdonságai között említhetjük, hogy a textilbetétes gumiheveder külső hatásra könnyen megsérül, javítása és szerelése nehézkes és hosszadalmas. A szállítóelemek felerősítése sok nehézséget okoz. A szállítóhevederek általában igen drágák. A súrlódás útján történő hajtás nagy e1őfeszítést igényel, ami a heveder szakítószilárdságára vonatkoztatott hasznos vonóerőt nagymértékben csökkenti. A gumiheveder a hőhatásra érzékeny, 60°C-nál nagyobb hőmérsékletű anyag szállítására csak különleges gumiból készített heveder alkalmazható. Ugyancsak a gumiheveder kellemetlen tulajdonsága a viszonylag nagy nyúlás.

Page 23: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

43. oldal

2.4. A HAJLÉKONY VONÓELEM VEZETÉSÉNEK ELLENÁLLÁSA

A vonóelem általában egyenes és íves

szakaszokból összetett pályán mozog. Az anyagmozgató gépek vonóeleme a szállítási távolságtól s a gép szerkezeti kialakításától függően különböző módokon lehet alátámasztva, vezetve.

2.41. Egyenes pályán mozgó vonóelem vezetése

Szokásos megoldások: A vonóelem vezetéken csúszik (2.37. ábra). A vonóelem vezetéken gördül (2.38. ábra). A vezetőgörgők ez esetben a vonóelemre, láncra

vannak szerelve (pl. csuklótagos vagy kaparószalagoknál), vagy a vonóelem futóművekre van függesztve, ugyanezen futóművekre vannak a szállítóelemek is felerősítve (pl. függőkonvejoroknál. 2.39. ábra).

A vonóelem helyben maradó görgőkkel van alátámasztva, azokon gördül (pl. gumihevederes szállítószalag, ferde gumihevederes elevátor esetén, lásd 2.40. ábrán).

Ha a vonóelem vezetéken csúszik, a vontatási ellenállás lejtős pályaszakaszon (2.37. ábra):

( ) ( )0 0

0

cos sincos sin N

Z q gl q glq g

µ δ δµ δ δ

= ± =

= ±

Itt q0 (kg/m) a vonóelem tömege, l(m) a pályaszakasz hossza, µ a vonóelem és a vezeték közötti súrlódás tényezője, és 15 a lejtős pálya vízszintessel bezárt hajlásszöge. A második tag előjele a vonóelem mozgásirányától függően értelem szerint választandó.

A vontatási ellenállás vízszintes pályaszakaszon (δ =0) :Z=mq0gl (N).

A külön pályán mozgó mérsékelt kenéssel is ellátható láncvonóelem súrlódási tényezője m=0,15...0,25, amely a pálya nagymértékű szennyeződése, hozzáférhetetlensége vagy egyéb kedvezőtlen esetben még növelhető.

Az anyagtovábbításra szolgáló, kenéssel el nem látható vályúban a lánc- és kötélvonóelem ellenállástényezője µ=0,35...0,4 értékre vehető.

A lecsiszolt fa- vagy fémlapon csúszó textil- és gumitextil heveder vontatási ellenállása µ=0,15...0,2 értékkel számítható.

Anyaggal terhelt vonóelem ellenállása

hasonlóképpen számítható, ez esetben a vonó- és szállítóelem valamint a rajtuk levő anyag együttes tömege veendő figyelembe.

2.37. ábra. A vonóelem vezetéken csúszik

2,38. ábra. A vonóelem vezetéken gördül

2.39. ábra. Futóműre függesztett vonóelemvezetés

2.40. ábra. A vonóelem helyben maradó görgőkre

támaszkodik

Page 24: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

44. oldal

Kaparó és csúsztató rendszerű szállítógépeknél, ahol az anyag nem a vonóelemre támaszkodik, hanem azzal együtt közös vezetékben csúszik, a számítás biztonsága érdekében úgy járunk el, hogy a vonó- és szállító elem tömegét az anyag tömegéhez hozzáadjuk, és az így megnövelt mozgó tömeg súrlódási ellenállását számítjuk ki az anyag és a csatorna anyaga közti súrlódási tényezővel.

Ha a vonóelem vezetéken gördül (2.38. ábra), a gép szerkezeti kialakítása szerint az alátámasztó görgőket vagy vonóelemre szerelik, és azok azzal együtt haladnak (2.39. ábra) (pl. görgős vonóláncok), vagy pedig helyben maradnak, és rajtuk gördül a vonóelem [pl. gumiheveder vagy kötél (2.40. ábra)]. A vontatási ellenállás mindkét esetben lejtős pályaszakaszon :

( )( )0cos sin ,zZ q q glµ δ δ= ± + ahol q0 (kg/m) a vonó- és szállítóelem tömege,

q(kg/m) a szállított anyag tömege, l (m) a pályaszakasz hossza, δ a pálya emelkedési, illetve lejtési szöge, és µz a vontatási ellenállás tényezője gördülő alátámasztásnál.

A vonóláncok futógörgőinek, valamint a szállítóelemekre szerelt és azokkal együtt haladó támaszgörgőknek vontatáskor fellépő ellenállása: a gördülő ellenállás, a csapsúrlódás és a sínpálya egyenetlenségéből származó ellenállás. A gördülő ellenállás és a csapsúrlódás vontatási ellenállás-tényezője a 2.41. ábra jelölései szerint

2 sz

f dDµµ +

= értékkel számítható.

Itt D (cm) a futógörgő átmérője, d (cm) a görgő csapátmérője, f (cm) a gördülőellenállás karja, amelynek értéke a görgő és a vezetősín felületének minőségétől, valamint a sínre szóródó szennyezés mértékétől függően f = 0,05...0,1 cm. (Lásd még a 2.6. fejezetet). µs a futókerék csapsúrlódási tényezője.

A szállítógépek mostoha üzemviszonyai között µs értéke tág határok között változhat; függ a szerkezeti kialakítástól, a kenőanyagtól, a karbantartástól, a szállított áru tulajdonságaitól, az üzemeltetési körülményektől stb. Két szélső esetként lehet

2.41. ábra. A láncgörgő vontatási ellenállása

szembeállítani a tiszta, pormentes darabáruraktárban üzemelő, gondosan karbantartott függőkonvejor futóművének görgőit a kőbányában szabadban dolgozó csuklótagos adagoló szalag porban, sárban és hólében, esetleg hosszú téli időn át zsírozás, karbantartás nélkül futó, gyakran összerozsdásodott, berágódott vonóelemgörgőivel. A kedvezőtlen körülmények között üzemelő vagy nem kellően karbantartott szállítógépek futógörgőinek egy része gyakran nem is gördül, hanem csúszik a vezetéken.

A gördülőcsapágyazású futógörgők ellenállás-tényezőjének (µg) nagy részét az általában alkalmazott labirinttömítések alkotják.

Az előzőek figyelembevételével a csúszócsapágyazású futógörgők csapsúrlódási tényezője µs =0, 15...0,3; a gördülőcsapágyazásúaké pedig a tömítési ellenállást is beszámítva, µg=0,005...0,04 értékek között választható.

Előzetes számításokhoz az általában alkalmazott D/d =4...5 esetében a µz vontatási ellenállás-tényező értéke az alábbiak szerint vehető fel:

csúszócsapágyazású görgőknél µz =0,03…0,07, gördülőcsapágyazású görgőknél µz =0,01…0,03. Megjegyezendő, hogy peremmel ellátott

futógörgők karimasúrlódása különösen az alsó-felső vezetékben futó görgőknél további járulékos ellenállást okoz, ezért ilyen esetekben célszerű µz értékét µp=0,01...0,015 peremsúrlódási tényezővel megnövelni.

A helyben maradó alátámasztó görgőkön futó heveder vontatási ellenállásában a már ismert gördülési, csapsúrlódási és tömítési összetevőkön túlmenően nagy szerepet játszik a görgők között belógó heveder hajlítási ellenállása. Ezzel a kérdéssel a gumihevederes szállítószalagoknál, az 5.2. fejezetben fogunk részletesebben foglalkozni. Tájékoztatásul annyit, hogy a gumiheveder vontatási ellenállás tényezője, amit µf-fel jelölünk; csúszócsapágyazású görgőknél µf=0,045, gördülőcsapágyazású görgőknél µf = 0,020...0,025.

2.42. Irányváltoztatás forgó terelőelemmel

A vonóelem irányváltoztatása kötélkorongok,

lánckerekek vagy hevederdobok beiktatásával oldható meg.

A kötél terelőeleme a kötélkorong. A kötéllel érintkező horony felülete mindig megmunkált. A horonyprofil kialakítására az MSZ 9720 szabvány ad utasítást.

Page 25: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

45. oldal

A kötélkorong átmérőjét a kötél méretezésekor

állapítjuk meg. A kötélkorong anyaga általában Öv 20. Kisebb

önsúly elérése céljából vagy nehéz üzemi viszonyok között dolgozó, ütődésnek kitett korongok acélöntvényből vagy hengerelt acélból hegesztett kivitelben készülnek (2.42. ábra).

Jobb kötélvezetési hatásfok és egyszerűbb karbantartás elérésére gördülőcsapágyas kivitelt alkalmaznak. Szokásos beépítési módját a 2.43. ábra mutatja. Alárendelt jelentőségű, ritkán használt helyen az alacsony korongfordulat miatt a korong furatát bronzpersellyel látják el, vagy Öv korong persely nélkül is alkalmazható. Egy csapra szerelt több korong esetén minden egyes korong kenését egymástól független zsírozófurattal és zsírozószelencével kell ellátni.

A láncok terelését a lánc típusától függően változó kialakítású korongok, lánckerekek végzik.

A szemes lánc terelésére lánckorongot használnak. A fogazás nélküli horonyprofilokat a 2.44. ábra

tünteti fel.

2.42. ábra. Hegesztett

kötélkorong

2.43. ábra.

Gördülőcsapágyas Öv kötélkorong

Legegyszerűbb a 2.44/a ábra szerinti horony,

amelyben a lánc felfekvése tetszés szerinti, azonban a láncot a legjobban igénybe veszi. Nagyobb láncsebesség esetén a 2.44/b és c ábrák szerinti horonyprofilokat használják, amelyek a lánc jó vezetését biztosítják.

A korong láncközépátmérője D≥20d, ahol d a láncacél átmérője.

A lánckorong anyaga Öv 20 vagy 25. Csapos lánc mozgatására és terelésére megmunkált

fogakkal készült lánckereket használnak (2.45. ábra). A lánc jó vezetése céljából a fogszélesség kb. 2

mm-rel kisebb mint a hevederek közötti távolság, és a fogszélesség a fogfej felé keskenyedik. Szerkesztéskor ügyelni kell arra, hogy a lánckeréken a lánc áthaladásakor a hevedertag a kerékaggyal ne érintkezzék, nehogy a heveder hajlítást szenvedjen. Görgős hajtólánchoz való lánckerék fogazását az MSZ 790 írja elő. Anyaga Öv 20, Aö vagy A 50.

A láncra szerelt futógörgők esetében, valamint a szorosan egymás mellett fekvő hevederű vonóláncoknál a 4...5, de legfeljebb 6 oldalú, síklapokkal határolt

2.44. ábra. Szemes lánc terelőkorongjának

horonyprofiljai

2.45. ábra. Lánckerék csapos lánchoz

Page 26: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

46. oldal

2.46. ábra. Motolla

motollát alkalmazzák (2.46. ábra). Ennél a lánchevederek a sokszög oldalára, a síklapokra fekszenek fel, melyeket a lánc lecsúszását és visszaugrását megakadályozó ütközőfogakkal és oldalperemekkel látnak el. A motollák főleg a nagy osztású vonóláncok hajtásánál előnyösek, mert a kis fogszám következtében kis átmérőjű, kis tömegű hajtó- és terelőelemek alkalmazhatók.

A hevederek terelését hengeres alakú dobok végzik. Ezek szerkezeti kialakításával a szállítószalagoknál foglalkozunk.

A forgó terelőelemek ellenállása. A kötélkorongok, lánckerekek, hevederdobok ellenállása (S), melyet a korong kerületére redukálva számítunk ki, két részből tevődik össze: a csapágyazásnál ébredő csap súrlódási ellenállásból (S') és a felfutó s lefutó vonóelem hajlítási ellenállásából (S").

A csapsúrlódási ellenállás (S'). Ha a körülfogás szöge a (2.47. ábra), a csapágynyomás T1 és T2 erő vektoriális összegezésével számítható:

( ) ( )1 2 sin N .2

k

k

dS T TD

αµ′ = +

Feltételezve, hogy a két erő közel egyenlő (T1 ~ T2), a csapsúrlódási ellenállás:

( )12 sin N2

k

k

dS TD

αµ′ =

S' akkor a legnagyobb, ha a vonóelem (kötél vagy

heveder) α= 1800 ívben fogja körül a terelőkorongot. Ez esetben a korong csapjára ható erő a két vonóelemágban ébredő húzóerők (T1 és T2) összegéből adódik. A csapsúrlódási ellenállásnak a terelőkorong kerületére redukált értéke

( ) ( )1 2 N .k

k

dS T TD

µ′ = +

Itt: Dk a terelőkorong átmérője (cm), dk a terelőkorong csapátmérője (cm), T2 a lefutó vonóelemágban ébredő húzóerő (N), T1 a felfutó vonóelemágban ébredő húzóerő (N), µ a terelőkorong csapsúrlódási tényezője; csúszócsapágyazásnál µ =0,1...0,2; gördülőcsapágyazásnál µ=0,01...0,03. (A korong tömegét figyelmen kívül hagyjuk.) A vonóelem hajlítási ellenállása (S"). A kötél

korongra hajlításakor fellépő ellenállást egyrészt az egyes huzalok rugalmas merevsége, másrészt a kötélben az egyenesből a görbületbe való haladáskor (vagy fordítva) a huzalok elmozdulásából adódó súrlódás okozza.

Page 27: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

47. oldal

2.47. ábra. Forgó terelőelem vázlata

A kötél korongra futásakor a huzalok rugalmas

merevségének legyőzésére fordított munka a korongról való lefutáskor csak részben térül vissza. A kötél belső súrlódása következtében a korongra felfutó kötél nehezen veszi fel a korong görbületi sugarát, a lefutó ágban pedig a korongon már felvett görbület kiegyenesedését a kötél belső súrlódási ellenállása fékezi. A sodronykötél e belső súrlódási ellenállása okozta veszteség miatt a hajlításhoz szükséges deformációs

munka nem térül vissza teljes egészében. Hasonlóan viselkedik a heveder is.

A hajlítási ellenállás értéke a hajlítási ellenállástényező bevezetésével számítható:

S" = k(T1 + T2) (N). Acél sodronyköteleken végzett kísérleti mérések

szerint a hajlításból származó veszteség nem haladja meg a kötél erő 1 %-át. Ennek alapján a képletben szereplő ellenállás-tényező k=0,003...0,005 értékkel vehető fel.

A vonólánc hajlítási ellenállása (S") az alábbi meggondolás alapján számítható (2.48. ábra).

A lánckerékre felfutó lánc 1 jelű csuklójának mozgását megfigyelve megállapítható, hogy a

lánckerék egy fogosztásának megfelelő 2zπα =

szöggel való elfordulásakor az A jelű láncszem a B jelűhöz képest ugyanakkora szöggel fordul el. A lánckerékről lefutó láncszem csuklójában pedig

ugyanakkora 2zπα = - szögelfordulás kell a lánc

kiegyenesedéséhez. Ennek alapján felírható, hogy:

( )1 2 ,2 2

k ll

D dS T Tµ′′ = +

És ebből

( ) ( )1 2 Nll

k

dS T TD

µ′′ = +

µl a lánccsukló csapsúrlódási tényezője, dl a lánccsukló csapátmérője (cm), Dk a lánckerék osztóköre (cm).

2.48. ábra. Láncterelés vázlata

Page 28: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

48. oldal

A µl súrlódási tényezőt igen óvatosan annak

figyelembevételével kell megválasztani, hogy a lánccsuklóban csak kismértékű szögelfordulás megy végbe, és az sem folyamatosan, hanem időszakonként, a lánckerékre való fel- és lefutáskor. Ezenkívül a lánccsapok kenési viszonyai is igen rosszak, ezért µl=0,25...0,4.

Bevezetve a ll

k

dkD

µ= jelölést, előző

egyenletünket az alábbi egyszerűbb alakra hozhatjuk: ( ) ( )1 2 NS k T T′′ = + .

A k ellenállás-tényező értéke általában 0,005...0,08 között van, esetenként pontosan számítható.

A gumihevedereknél az ellenállás-tényező k=0,005...0,01 nagyságrendű.

A 180°-os átfogású terelőkorongon áthaladó vonóelem teljes ellenállása (tömegének figyelmen kívül hagyásával)

( ) ( )

( )

1 2 1 2

1 2

k

k

k

k

dS S S T T k T TD

d k T TD

µ

µ

′ ′′= + = + + + =

⎛ ⎞= + +⎜ ⎟⎝ ⎠

Feltételezhető, hogy a terelőkorong ellenállása nem nagy, ezért a számítás egyszerűsítése érdekében felvehető, hogy T1 = T2 ; ezzel

( )1 12 Nk

k

dS k T cTD

µ⎛ ⎞

= + =⎜ ⎟⎝ ⎠

A k hajlítási ellenállás-tényező mindhárom vonóelemfajtánál alkalmazható. A csap- és korongátmérő szokásos dk/Dk=1/6...1/7 viszonyát felvéve, gördülő- csapágyazású terelőkorongoknál c=0,01...0,02, csúszócsapágyazású terelőkorongoknál c=0,03...0,08 értéke vehető figyelembe előzetes számításokhoz

A 90°-os körülfogású terelőkorongon áthaladó vonóelem teljes ellenállása, ha T1 = T2 és a csapágyat 1,4T1 erő terheli :

( )

1 1

1

1, 4 2

1, 4 2 N

k

k

k

k

dS T k TD

d k TD

µ

µ

= + =

⎛ ⎞= +⎜ ⎟⎝ ⎠

Világosabb képet kapunk a vonóelem vezetésekor fellépő ellenállásokról, ha a terelőelem hatásfokát állapítjuk meg. A bevezetett és hasznosított vonóerő különbsége helyett a hasznosított és bevezetett erő viszonyát vizsgáljuk:

1 1

2 1t

T TT T S

η = =+

, melynek értéke kötélre

siklócsapágy esetén µt = 0,96, görgőscsapágy esetén µt =0,98. A fenti értékek 180°-os korong-körülfogási szögre

érvényesek. Amennyiben kisebb a körülfogási szög, akkor a csapsúrlódásból eredő veszteség csökken a csapra jutó terhelés csökkenése arányában. A kötél hajlításából keletkező veszteség nagysága azonban változatlan, mert kisebb körülfogási szög esetén is bekövetkezik a kötélnek a korongra hajlítása és kiegyenesedése.

A kötélcsigasor az emelőszerkezetekben igen gyakran alkalmazott szerkezet, ezért ennek veszteségével és hatásfokával részletesebben foglalkozunk a következő fejezetben.

Példa. t=400 mm osztású görgős vonóláncot egy z=6 fogú

lánckerék α= 180°-kal eltérít. A csapátmérő d, =40 mm, a felfutó láncágban a húzóerő T1 = 800

N, a kerék csúszócsapágyazású, csapátmérő dk = 100 mm. Mennyi a kerék ellenállása?

A lánckerék osztóköre Dk=2t=0,8m. A lánc hajlítási ellenállás-tényezője:

4,00,3 0,01580

lt

k

dkD

µ= = = .

A keréken áthaladó vonóelemben keletkező ellenállás (kerékcsapsúrlódás, lánchajlítás) :

( )

12

102 0,12 0,015 800 2*0,03*800 48 N80

k

k

dS S S k TD

µ⎛ ⎞

′ ′′= + = + =⎜ ⎟⎝ ⎠

⎛ ⎞= + = =⎜ ⎟⎝ ⎠

A lefutó láncágban a húzóerő:

( )2 1 800 48 848 NT T S= + = + =

2.43. .Kötélcsigasorok Vizsgáljuk meg álló (helyben maradó) korong esetén a

teheremeléskor és a tehersüllyesztéskor fellépő veszteségeket.

Emeléskor (2.49. ábra) a felfutó ágat a Q teher feszíti: 1

12 2

; tT QT QT T

η= = = ,

a veszteség: 21 t

t t

QS T Q Q Q ηη η

−= − = − =

Süllyesztéskor (2.50. ábra) a Q teher mozgat. A teher süllyesztése csak akkor lehetséges, ha a

Page 29: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

49. oldal

2.49. ábra. Teheremelés álló koronggal

2.50. ábra. Tehersüllyesztés álló koronggal

korongra felfutó kötélágat feszítő erő kisebb mint a korongról lefutó kötélág terhelése:

1 1

2t

T TT Q

η′ ′

= =′

,

a veszteség: ( )2 1 1t tS T T Q Q Qη η′ ′ ′= − = − = − .

S> S', tehát teheremeléskor a fellépő veszteség nagyobb, mint süllyesztéskor.

Kötélvezetés hatásfoka mozgó korong esetén (2.51. ábra).

Emeléskor a kötélvezetés hatásfoka (µk) mozgó korong esetén egyenlő a hasznosított munkának a

bevezetett munkához való viszonyával.

2 22 2kQH QT H T

η = = ,

A korong hatásfoka

2t

TT

η = .

Az egyensúlyi ( )2 1 2 2 2 1t tQ T T T T Tη η= + = + = + ,

ezzel ( )2

2

1 12 2

t tk

TTη ηη

+ += = ;

tehát a mozgó korong kötélvezetésének hatásfoka jobb az álló korongénál. Ha pl. µt=0,96, akkor µk=0,98.

Az álló koronghoz hasonlóan, kimutatható, hogy tehersüllyesztéskor a mozgó korong vesztesége kisebb, mint emeléskor.

Emelőgépeknél a terhet gyakran több kötélágra függesztik. A kötélágak számának növelésével csökken az egy kötélágra eső terhelés, ezáltal kisebb méretű kötél, kisebb átmérőjű dob alkalmazható.

2.51. ábra. Teheremelés mozgó koronggal

Page 30: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

50. oldal

2.52. ábra. z kötélágú teherfelfüggesztés vázlata

Állapítsuk meg egy z kötélágas teherfelfüggesztésű

kötélvezetés hatásfokát. A kötélelrendezést a 2.52. ábra mutatja.

A kötél méretezéséhez mértékadó legnagyobb (Tz) kötélerőt az egyes korongok µt hatásfokának figyelembevételével számíthatjuk:

1 2 1 12 3 42 3

11

; ; ;

.

t t t t

z zt

T T T TT T T

TT

η η η η

η −

= = = =

=

Az egyensúly feltételéből következik, hogy 1 2 3

1 1 1 11 2 3 1 .

z

zt t t t

Q T T T TT T T TTη η η η −

= + + + + =

= + + + + +

kiemelve 11z

t

Tη − -et:

( )1 2 111 1z

t t tzt

TQ η η ηη

−−= + + + +…

A legnagyobb kötélerő 1

max 1

2 1

1 ,1 1

z zt

tz z

t t t t

TT T

Q Q

ηη

η η η η

= = =

−= =

+ + + + −…

mert a mértani sor összege

2 1 11 .1

zz t

t t tt

ηη η ηη

− −+ + + + =

−…

A kötél vezetés hatásfoka pedig:

( )1 ,

1

zt

kz t

Q QzT z Q

ηηη

−= =

ill.

max

11 .1

zt

kt

Qz zT

ηηη

−= =

Ha ismert µk akkor egyszerű kötélcsigasor esetén a legnagyobb kötélerő :

max .zk

QT Tzη

= =

Egyszerű kötélcsigasorok kötél vezetésének hatásfoka sikló-, ill. görgőscsapágy esetén

Csapágy Hordkötélágak száma (z)

2 3 4 5 6 Kötélvezetés hatásfoka (µk)

sikló- 0,98 0,96 0,94 0,92 0,905 görgős- 0,99 0,98 0,97 0,96 0,95

A 2.52. ábrán vázolt csigasor Tz jelű kötelének

kötéldobra csévélésekor a kötél vízszintes irányban vándorol, amelynek következtében a horog emeléskor vagy süllyesztéskor nem függőlegesen, hanem ferdén emelkedik, ill. süllyed. A horognak e kismértékű vízszintes irányú mozgása a daru használatakor zavarólag hat. E hátrány kiküszöbölésére az emelőgépekben két, egymás mellett elhelyezett egyszerű kötélcsigasort, ún. ikercsigasort alkalmaznak (2.53. ábra). )

2.53. ábra. Iker-kötélcsigasor vázlata

Page 31: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

51. oldal

2.54. ábra. Négy kötélágas teherfelfüggesztés

2.55. ábra. Nyolc kötélágas teherfelfüggesztés Emeléskor az ikercsigasorból kihúzott két kötélágat

jobb és bal menetű dobra csévélve, a kötelek vízszintes irányú vándorlása kiegyenlítődik. Az ikercsigasorba befűzött kötél közepét pedig rögzítés helyett egy kisebb átmérőjű korongon (kiegyenlítő kötélkorong) vetik át, a két csigasorban esetleg előálló kötélerők, ill. kötélnyúlás különbségének kiegyenlítésére. További előnye az ikercsigasor alkalmazásának a tehernek két csigasorra való eloszlása következtében előálló kötélméret-csökkenés. Tehát ikercsigasor esetén

max .2 k

QTzη

=

Az előzőekben a több kötélágas egyszerű kötélcsigasorok kötélvezetésének hatásfokát adtuk meg különböző

hordkötélágak számára (z=2-6). Iker-kötélcsigasorok alkalmazása esetén a kötélvezetés hatásfoka egyenlő az összes hordkötélágak számának felére megállapított hatásfok értékével. Ezáltal tehát a táblázat a 4-12 kötélágas ikercsigasorok hatásfokait is megadja. Pl. 8 kötélágas ikercsigasorral való felfüggesztés esetén a hatásfok azonos a 8/2=4 kötél ágú egyszerű csigasor hatásfokával (µk=0,94, ill. 0,97).

A dobon fellépő veszteséget külön kell figyelembe venni, és azt az álló korong veszteségévei vehetjük egyenlőnek.

Az emelőgépeknél gyakrabban használatos 4, 8 összkötélágas kötélvezetés-elrendezés a 2.54., 2.55. ábrákon látható. Mindegyik felfüggesztést ikercsigasorként képezték ki. Ez biztosítja a horog függőleges irányú mozgását és a kötélkorongokon átfutó kötél ellentétes irányú hajlításának elkerülését.

2.44. Az íves pályaszakaszok ellenállása A pályaíveken a vonóelem a szerkezeti

kialakításától függően csúszva vagy gördülve haladhat végig, esetleg pályáját helyben álló terelőgörgők jelölik ki. Az íves szakaszon áthaladva, a vonóelem hajlítása, valamint a csúszó vonóelem súrlódása vagy a görgők gördülő ellenállása és csapsúrlódása okoz ellenállást.

Íves pályán csúszó vonóelem ellenállása (2.56. ábra). A vonóelemben ébredő erő a pályaív elején T1 az ívre ráfutó s közben elhajló vonóelemben S”1 =kT1 hajlítási ellenállás ébred, Úgyhogy az ív kezdetén 1 vonóelemben levő tényleges erő

( )1 1 1 1 1 11T T S T kT k T′ ′′= + = + = + , ahol k a vonóelem hajlítási ellenállás-tényezője.

A kötélsúrlódás ismert képlete alapján a pályaív végén a mozgó vonóelemben ébredő erő

2 1T T eµα′ ′=

2.56. ábra. Íves pályán csúszó vonóelem vázlata

Page 32: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

52. oldal

ahol e a természetes logaritmus alapszáma, µ a vonóelem és a vezeték közti mozgó súrlódási tényező, α pedig a pályaív középponti szöge.

Az ívből kifutó vonóelem (lánc) kiegyenesedésekor újabb S2” hajlítási ellenállás jelentkezik, úgyhogy a vonóelemben az ívelhagyásakor ébredő erő

( )2 2 2 2 2 21T T S T kT k T′ ′′ ′ ′ ′= + = + = + , végeredményben

( )2 11T k T eµα= + . Az irányeltérítés ellenállása, vesztesége

( )22 1 1 1 1S T T T k eµα⎡ ⎤= − = + −⎣ ⎦ .

Ez a számítás a csuklós láncokra nézve pontos eredményt ad, heveder és kötél esetében azonban csak közelítő eredményt kapunk. Ennek az oka abban keresendő, hogy a heveder és kötél hajlításakor befektetett munka nagy része a kiegyenesedéskor visszatérül, ennek következtében a hajlítási ellenállás teljes értéke az ív elején jelentkezik, tehát ott T’1= (1 + 2k)T1 értékkel kellene számolnunk.

Íves pályán gördülő vonóelem ellenállása (2.57.

ábra). Hasonlóképpen számítható, csak a µ súrlódási tényező helyett µz vontatási ellenállás-tényezőt kell alkalmazni:

( )21 1 1zS T k eµ α⎡ ⎤= + −⎣ ⎦

Példa. Az előző példában szereplő láncot R=Dk/2=1,0 m sugarú α= 90°-os ívben kell vezetni. Megvizsgálandó, hogy az irányeltérítés ellenállása a különböző terhelési lehetőségeknél hogyan alakul.

A lánc hajlítási ellenállás-tényezője 40

0, 3 0, 006.200

l

l

k

dk

Dµ= = =

a) Lánckeréken (Dk=2,0m) terelt vonóelem ellenállása

( ) ( )

11, 4 2

10, 01, 4 * 0,12 2 * 0, 006 800 16, 3 N

200

k

k

dS k T

Dµ ′= + =

= + =

⎛ ⎞⎜ ⎟⎝ ⎠

2.57. ábra. Íves pályán gördülő vonóelem vázlata

b) íves pályán csúszó lánc ellenállása

( )2

2 1 11 1 .zS T T T k eµ α= − = + −⎡ ⎤⎣ ⎦

Ha µ=0,35 és α=90°=Π/2, Akkor ema=1,733.

( )

( )

2800 1 0, 006 1, 733 1, 0

800 * 0, 753 602, 4 N

S = + − =

= =

⎡ ⎤⎣ ⎦

c) Íves pályán gördülő lánc ellenállása A lánc futógörgőjének átmérője D=130mm, a csapátmérő

d=60mm; µ=0,25, és f=0,05cm. A vontatási ellenállástényező 2 2 * 0, 05 0, 25 * 6, 0

0,12,13

z

f d

D

µµ

+ += = =

és 1, 207,zeµ α =

( )

( )

( )

2

1

2

1 1

800 10, 006 1, 207 1, 0

800 * 0, 2214 177,12 N .

zS T k eµ α= + − =

= − =

= =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

Page 33: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

53. oldal

2.5. VÉGTELENÍTETT HAJLÉKONY VONÓELEM MOZGATÁSA A vonóelem és a vonóelemet mozgató

hajtógépelem között az erőátadó kapcsolat lehet súrlódó kapcsolat vagy kényszerkapcsolat.

2.51. Súrlódóhajtás A súrlódóhajtással átvihető kerületi erő nagysága a

kötélsúrlódás ismert alapegyenletéből kiindulva határozható meg (2.58. ábra):

1max 2 ,T T eµα= ahol T1 a hajtóelemre felfutó vonóelemben ébredő húzóerő, T1max a megcsúszás határán ébredő húzóerő a felfutó vonóelemben, T2 a lefutó ágban ébredő húzóerő, e a term. log. alapszáma, µ a vonóelem és a súrlódó felület közti súrlódási tényező, α a hajtóelem átfogási szöge.

A kerületi erő, tehát a hasznos vonóerő, a vonóelem merevsége következtében fellépő ellenállást elhanyagolva:

1 2.kF T T= − Természetesen a kerületi erő nem lehet nagyobb a

tárcsa felületén fellépő súrlódóerőnél, melynek határértéke:

( )2 1 , kS T e és F Sµα= − <

E feltételekből az Fk kerületi erő átadásához szükséges feszítés mértéke, azaz a lefutóágban megkívánt erő nagysága is számítható:

2 .1

kFTeµα=

2.58. ábra. A kötélsúrlódás diagramja a megcsúszás

határán

A legkisebb feszítés nagyságát a hajtótárcsás vonó

elemen mozgatás biztonságos üzeméhez szükséges 1

2

T eT

µαψ= ≤ , szabja meg, ahol ψ a hajtógép típusára

jellemző áthúzási tényező. A megcsúszás elleni biztonság:

( ) ( )2

1 2

1 11,

1k

T e eSF T T

µα µα

βψ

− −= = = ≥

− −

és az előírt β biztonság eléréséhez szükséges áthúzási tényező

1 .eµα βψβ− +

=

Az előbb közölteket vizsgáljuk meg a 2.58. ábrán. A nyílirányban hajtott tárcsán átvett hajlékony vonóelemet a T1 és T2 erő terheli. Ha a vonóelem éppen a megcsúszás határán van, akkor a T1max és T2 között a vonóelemben fellépő erő változását egy logaritmikus csigavonallal ábrázolhatjuk, amely az A ponttól a B pontig terjed.

A két pont közötti C pontban az erő nagyság 1

2 2T T eµα′ = , ahol α1 és A és C pontok közötti átfogási szög.

A tárcsa kerületén minden pontban más a vonóelemben ébredő erő nagysága. Ez az erőeloszlás nem függ a fordulat irányától.

Ha a nagyobbik terhelés T1’ értékre csökken, ehhez a terheléshez nem szükséges a vonóelem felfekvése az α átfogási szögnek megfelelő íven (2.59. ábra), hanem csak α' átfogási szögnek megfelelő íven. Ebben az esetben

2.59. ábra. A kötélsúrlódás diagramja csökkentett

terhelés (T’1) emelésekor

Page 34: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

54. oldal

a vonóelemben a C pontig csigavonal szerint változik a húzóerő. Itt már akkora az erő, mint a csökkent terhelés, tehát a C ponttói a B pontig a húzóerő nem nő tovább. A tárcsának ez a része nem működik hajtótárcsaként, csak irányeltérítést végez.

Ha a forgásirány ellentétes és a vonóelem-súrlódás változatlan, a vonóerő-diagram ugyanolyan lesz, mint előbb (2.60. ábra). Ha a T1 terhelés T1’-re csökken, akkor ismét α' átfogási szög szükséges ahhoz, hogy a T2 erő a csökkentett másik oldali erőt egyensúlyban tartsa. Az α' szöget attól a ponttól kell mérni, ahol a kötél a hajtótárcsáról lefut (2.60. ábra).

Ha a körülfogott ív szöge akkora, mint a szükséges szög, akkor a súrlódás éppen elég a csúszásmentes induláshoz, S = Fk.

A hajtóelem kerületén átvezetett vonóelem igénybevétele különféle okokból folyton változik. A hajlékony vonóelem (kötél, heveder) rugalmas szerkezet, ezért nagyobb terheléseknél megnyúlik, kisebbnél megrövidül. Ez a hosszváltozás okozza azt, hogy a vonóelem a hajtóelemhez képest elmozdul, elkúszik.

A vonóelemben ébredő legnagyobb erő, ha S=Fk, ill. β= 1:

max 1 2 .1 1

k kk k

F F eT T T F Fe e

µα

µα µα= = + = + =− −

Az egyenleteket vizsgálva, megállapíthatjuk, hogy a vonóelem igénybevétele ugyanazon kerületi erő átadásakor csökken, ha µ és α értéke növekszik. Tehát a vonóelem gazdaságos kihasználása érdekében mind a hajtóelem körülforgási ívének, mind a vonó- és hajtóelem közti súrlódási tényezőnek a növelése kívánatos.

A körülfogási ív nagysága egy hajtóelemen általában α=180...240°, további növelése a hajtóelemek

2.60. ábra. A kötélsúrlódás diagramja csökkentett

terhelés (T’1) süllyesztésekor

2.61. ábra. Két hajtóelemes vonóelemhajtás

számának emelésével lehetséges. Két hajtóelem alkalmazásakor a hajtási viszonyok a következő módon alakulnak. A 2.61. ábra jelöléseivel felírható :

1 1 2 21 2, ;x xT T e és T T eµ α µ α= =

ebből ( )1 1 2 21 1 2 2

1 2 2 ,T T e e T e µ α µ αµ α µ α += = Ha µ1=µ2, azaz a két hajtóelemen a súrlódási

tényező azonos, akkor ( )1 2

1 2 2 ,T T e T eµ α α µα+= = ahol α=α 1+α 2

Tehát a két hajtóelemes hajtás azonos súrlódási tényező esetén úgy számítható, mintha egy, nagy körülfogási szögű hajtóelemünk lenne.

A két hajtóelem között ébredő vonóe1em-

húzóeruből (Tx) kiindulva, az első hajtóelemen átadott kerületi erő

( )11 1 1 ,x xF T T T eµα= − = −

a második hajtóelemen átadott erő 2

22 21,x x

eF T T Te

µα

µα

−= − =

közvetlenül felírható, hogy ..

( )1 2

2

1

2

1,

1e eF

F e

µα µα

µα

−=

és ha α 1=α 2=α /2,

1 2 21 2

2

, .F e azaz F F eF

α αµ µ= =

A teljes kerületi erő

2 21 2 2 2 2 1 .kF F F F e F F e

α αµ µ⎛ ⎞= + = + = +⎜ ⎟

⎝ ⎠

Kötélhajtásoknál az α átfogási szögeket és ennek megfelelő szokásos hajtókorong-elrendezéseket a 2.62.

Page 35: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

55. oldal

ábra tünteti fel. Hevederhajtásnál a hajtódobok elrendezését lásd az 5.19. ábrán [18].

A µ súrlódási tényező a hajtóelem felületének anyagától, simaságától és üzemi állapotától függ, értéke nagyobb súrlódási tényezőjű anyagok (gumi-, szövet vagy fabevonat) alkalmazásával növelhető (2.63. ábra).

2.62. ábra. Hajtókorong-elrendezések

1 - egyhornyú hajtókorong; 2 - kéthornyú hajtókorong

2.63. ábra. Súrlódást növelő betéttel ellátott

hegesztett hajtókorong metszete

A súrlódási tényező értékeit különböző anyagokra

a 13. táblázat, az ezekhez tartozó ema. értékeket a 14. táblázat tartalmazza.

13. táblázat

A µ súrlódási tényező értékei különböző anyagok alkalmazása esetén

A dob felülete A vonó-elem

anyaga

Üzemi állapot fém gumival

bevon fával

bevont

acél száraz zsírozott

0,15-0,20 0,1 – –

gumi

száraz nyirkos v.poros vizes v. nagyon poros

0,25-0,30 0,2-0,25 0,1-0,15

0,40 0,20 0,15

0,35 0,20 0,15

textil száraz 0,2-0,25 0,4 0,25 A hajtótárcsán átadható kerületi erő növelhető a

horony alakjának célszerű kialakításával. A kötél és a tárcsa között fellépő súrlódóerőt

növelhetjük, ha ék alakú hornyot alkalmazunk (2.64. ábra

2.64. ábra. Ék alakú kötélhorony metszete

14. táblázatAz ema értékei az átfogási szög és a súrlódási tényező függvényében

µ α 0,1 0,15 0,2 0,25 0,3 0,35 0,4

90 180 210 240 270 300 360 420 480

1,17 1,37 1,44 1,52 1,60 1,68 1,87 2,07 2,30

1,26 1,60 1,73 1,87 2,02 2,19 2,57 2,98 3,49

1,37 1,87 2,07 2,30

2,56 2,84 3,51 4,30' 5,32

1,48 2,29 2,50 2,84 3,24 3,70 4,81 6,20 8,00

1,60 2,57 2,98 3,40 4,10 4,80 6,59 8,93

12,18

1,73 3,00 3,60 4,32 5,17 6,23 9,02

12,86 18,54

1,87 3,51 4,30 5,32 6,55 8,10 12,35 18,54 28,21

Page 36: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

56. oldal

A súrlódóerő az ékhoronynál 2A/N arányban

megnövekszik.

0

2 sin / 2 ,2 1 , ,

sin / 2 sin / 2

A NA és így

N

γµµ

γ γ

=

= =

ahol µ0 a súrlódási tényező a kötél és a tárcsa között, µ a látszólagos, azonban a hajtóképességre mértékadó súrlódási tényező.

Az ékhoronyban a kötél két vonal mentén fekszik fel, a vonalak kopás után felületekké alakulnak, a kötél fészket koptat. Hosszú ideig tartó kopás után a kezdeti nagy központi szög kisebbedik, és ennek következtében a súrlódóerő csökken, az erőátvitel romlik (2.65. ábra). Nem változik a horony alakja és ezzel az erőátvitel, ha alámetszett hornyot alkalmazunk (2.66. ábra). Ekkor, a hajtóképességre mértékadó súrlódási tényező [42]

01 sin / 24 .

sinβµ µ

π β β−

=− −

2.49. ábra. Teheremelés álló koronggal

2.50. ábra. Tehersüllyesztés álló koronggal

A súrlódóerő növelhető a hajtótárcsa kerületébe

beépített fogókkal. A horonyba befekvő, illetve az

2.67. ábra. Karlik-rendszerű ollós fogó a) zárt; b) nyitott

onnan kiemelkedő kötél önműködően zárja, nyitja a fogókat. A 2.67. ábra Karlik-rendszerű ollós fogót összeszorított és oldott helyzetben ábrázol.

Példa. Súrlódóhajtással Fk = 1000 N vonóerőt kell a

hajtódobról a vonóelemre átszármaztatni. A hajtódob körülfogási szöge α=180°. Megvizsgá1andó, hogy lánc és gumitextil heveder alkalmazásakor mekkora a vonóelemben ébredő legnagyobb erő, és milyen feszítőerő szükséges.

Rövid szemű teherlánc esetén µ=0,15, ema = 1,6. A láncban ébredő legnagyobb erő

( )

11,61000

1 1,6 1,01,61000 2666 N .0,6

l keT F

e

µα

µα= =− −

= =

A feszítőerő nagysága

( )21000 1666 N

1 1,6 1,0k

lFT

eµα= = =− −

Ha gumihevedert alkalmaznak, akkor µ=0,3; ema =2,57. A legnagyobb erő:

( )

12,571000

1 2,57 1,02,571000 1637 N .1,57

l keT F

e

µα

µα= =− −

= =

A feszítőerő pedig

( )21000 637 N

1 2,57 1,0k

lFT

eµα= = =− −

Amint látható, gumiheveder alkalmazásával ugyanakkora vonóerő 2,5-szer kisebb feszítéssel származtatható át és a vonóelem igénybevétele is kb. 1000 N-nal kevesebb.

Page 37: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

57. oldal

2.52. Kényszerkapcsolat A hajtóelem és vonóelem közti

kényszerkapcsolattal általában a végtelenített vonóláncok hajtását végzik. Előnye a súrlódóhajtással szemben, hogy a hajtó lánckerékről lefutó láncágban aránylag igen kis láncfeszítésre van szükség, tehát ugyanakkora vonóerő kisebb szakítószilárdságú vonóelemmel vihető át, ezért nagy vonóerők esetén is gazdaságosan használható. Ezzel szemben főleg a kis fogszámú lánckerékkel történő hajtás sebessége nem egyenletes, aminek következtében a láncban -főleg nagyobb sebesség esetén- nem elhanyagolható dinamikus igénybevételek lépnek fel.

A vonólánc sebességi és gyorsulási viszonyai (2.68. ábra). A lánccsuklók a hajtó lánckerékre felfutással az éppen kapcsolásban levő fog által rájuk kényszerített mozgást veszik át, amíg a lánckerék egy fogosztásnak megfelelő központi szöggel el nem fordul s a következő kerékfog lép kapcsolódásba.

Hajtómotolla alkalmazása esetén a lánccsuklók a motollasokszög csúcsain helyezkednek el, és mozgásuk is megegyezik a motollasokszög csúcsainak mozgásával. A lánccsuklók mozgástörvényei mindkét hajtóelemnél (a lánckeréknél és motollánál) azonosak.

A lánc sebességviszonyainak vizsgálatánál abból az alapvető feltételből indulunk ki, hogy a hajtóelem szögsebessége állandó, ebből következik, hogy a fogak vagy motollacsúcsok kerületi sebessége is állandó, azaz v0= r0 w= állandó.

Itt r0 a t osztású láncot hajtó motolla vagy lánckerék osztókörének sugara (2.68. ábra).

0 ,2sin

2

tr π=

2.68. ábra. Láncmozgatás vázlata

A hajtó lánckerékre felfutó lánccsukló mozgása az

AB ív mentén a végtelen hosszú hajtórudas forgattyús hajtómű mozgásához hasonlítható. A lánc sebessége akkor a legnagyobb, amikor a lánccsuklóhoz tartozó középponti sugár a lánc haladási irányára merőleges (C pontban)

( )0 0 m/saxv r vω= =

A legkisebb láncsebességet pedig φA = 90°-a/2, ill. φB = 90°+α/2-szöggel jellemzett A, ill. B pontokban, azaz a lánccsukló kapcsolódásba lépésének időpontjában észleljük, amikor is

( )min 0 0 0sin cos cos m/s .2Av v v v

zα πϕ= = =

A közbeeső AB ív menti pontokban a lánc sebessége 0 0sin sinxv v rϕ ω ϕ= =

ahol φ szög φA = 90°-α/2 és φB = 90° + α/2- értékek között változhat.

A lánc ostorzó mozgását jellemző kilengés nagysága

( )0 0 0cos 1 cos m .u r r rz zπ π⎛ ⎞= − = −⎜ ⎟

⎝ ⎠

A lánc sebességének középértéke (vk) az időegység alatt áthaladt lánccsuklók számából határozható meg.

( )m/s .60 2kznt ztv ω

π= =

A lánchajtás egyenlőt1enségi foka (δ) pedig a sebességi viszonyokból számítható:

0 0max min

cos 1 cos2 2 .

sin2 2

k

r rv vztv z

π πω ω πδ πωπ

− −−= = =

A sebességváltozás következtében a lánccsuklóban gyorsulások is fellépnek. A hajtókeréken átforduló csap centripetális gyorsulása

( )2 20 m/s ,ca rω=

ennek a lánc haladási irányába eső vetülete az AB ív φ szöggel jellemzett pontján

20cos cos .x ca a rϕ ω ϕ= =

A gyorsulás legnagyobb értékét az A pontban éri el, ahol

90 ,2Aαϕ = °−

és ( )2 2 20 0cos 90 sin m/s .

2Aa r rz

α πω ω⎛ ⎞= °− =⎜ ⎟⎝ ⎠

Page 38: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

58. oldal

A B pontban a gyorsulás nagysága ugyanekkora,

csak szükséges munka ellentétes irányú. aA = -aB = amax .

A láncban ébredő legnagyobb gyorsulás értéke számítás szempontjából egyszerűbb alakra hozható, ha az

2max 1 sina r

zπω= egyenletbe

02sin

2kvtr és

z z tπ πω= = értékét

helyettesítjük be. Ennek alapján

( )2 2

2max

2 2 m/s2

kk

vta vz t t zπ π⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

A lánc sebességének és gyorsulásának időbeli változását a 2.69. ábra mutatja. Minden új láncszem bekapcsolódásakor a láncgyorsulás -amax értéktől ugrásszerűen +amax értékre változik, majd csaknem lineárisan csökken újra -amax értékre.

A nagy osztású 4 vagy 5 oldalas motollával hajtott vonóláncoknál a lánc járása igen egyenlőtlen, s az ebből adódó dinamikus terhelések is jelentősek. A dinamikus terhelés a lánc és a vele együtt mozgó részek tömegének periodikus, ütemes gyorsulásából és lassulásából adódik.

A gyorsulással együtt változik a láncban ébredő tehetetlenségi erő is. Nagysága K=ma (N) legnagyobb értéke

( )2

max max2 N ,k

mK ma vt z

π⎛ ⎞= = ⎜ ⎟⎝ ⎠

ahol m=G/g (kg) a gyorsított láncág, a vele együtt mozgó szállító elemek s a bennük levő áru tömege.

Meg kell jegyezni, hogy a lánc mozgási energiája megnövekszik, majd a lassulás időszaka alatt a gyorsításra fordított energia visszatérül. Mint minden munkafolyamatnál, itt is vannak veszteségek, ezért a gyorsításra fordított munka nem teljes egészében térül vissza. Az m tömegű láncág egyszeri felgyorsításához

2.69. ábra. A lánc sebességének és gyorsulásának időbeli változása

szükséges munka:

( ) ( )2 2 2

2 2max min1 0 2 J ,

2 2v v mL m r rω−

= = −

mivel ( ) ( )22 2 10 2

2/ 2 ,kvr r t és sz tπω −− = =

( )2

1 J .2 kmL v

zπ⎛ ⎞= ⎜ ⎟⎝ ⎠

A gyorsítómunkából a lassítás alatt visszatérül L2=ηL1 (J).

A veszteség Lv.=L1=La=(1-h)L1=vL1 (J), ahol v=1-η veszteségtényező, és η az energiavisszatérítés hatásfoka (η=0,7 ... 1,0).

Mivel L veszteség egy láncosztásnak megfelelő t hosszúságú út befutása alatt áll elő, e munkaveszteséget okozó ellenállás középértéke e

periódus alatt: ( )2

N2

vk

L v mS vt t z

π⎛ ⎞= = ⎜ ⎟⎝ ⎠

A gyorsító ellenállás és a tehetetlenségi erő legnagyobb értékét összehasonlítva azt találjuk, hogy

( )max N .4vS K=

A lánc szilárdsági méretezése szempontjából a Kmax. erőt figyelembe kell venni, úgyhogy a terhelés (Tmax), az állandó vonóerő (Z), és a dinamikus, pillanatnyilag fellépő tehetetlenségi erő (Kmax) összege:

Tmax. = Z+Kmax (N). A vonóelem hajtásának energiaszükséglete,

valamint a lánccsukló kopását befolyásoló felszínnyomás számításánál viszont a gyorsítási ellenállást kell alapul venni, A vonó elem összes vontatási ellenállása

Zm = Z+S. Mivel a gyorsítási ellenállás nagysága normális

esetben a vonólánc állandó vontatási ellenállása mellett eltörpül (S<<Z), a számításokban elhanyagolják.

Példa. Egy vízszintes, láncvonóelemes, L=50m szállítótávolságú szállítógép q0=70kg/m tömegű, t=0,3 m osztású görgős vonólánccal működik.

A kívánt láncsebesség vk=2,3 m/s, az állandó vonóerő Z=5kN. Kiszámítandó a lánchajtás egyenlőtlenségi foka, valamin t a lánc legnagyobb gyorsulása.

z=6 fogú lánckereket alkalmazunk, ennek osztókörátmérője Dt=0,6 m; r0=0,3 m.

A lánckerék fordulatszáma:

( )160 60 * 0, 310 min .

6 * 0, 3k

vn

zt−= = =

Page 39: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

59. oldal

A lánckerék szögsebessége :

( )-12 2 *101, 045 s .

60 60

nπ πω = = =

A lánc sebességének maximális értéke: ( )

max 00, 3 *1, 045 0, 314 m/s .v rω= = =

A láncsebesség minimuma:

( )180cos 0, 314 cos 0, 272 m/s .

6min max

v vz

π= = =

A lánchajtás egyenlőtlensége:

max0, 314 0, 272 0, 042

0,14.0, 3 0, 3

min

k

v v

− −= = = =

A lánc ostorozása:

( ) ( )

( ) ( )

01 cos 0, 3 1 0, 886

0, 0402 m 40, 2 mm .

u rz

π= − = −

= =

A lánccsap centripetális gyorsulása:

( )2 2 2

00, 3 *1, 045 0, 327 m/s .

ca rω= = =

A lánc legnagyobb gyorsulása:

( )2 2

max 0sin 0, 327 sin 30 0,163 m/sa r

z

πω= = ° =

Példa. Meghatározandó a lánchajtás egyenlőtlenségi foka (δ)

és legnagyobb gyorsulási értéke (amax) az előző példában szereplő vonólánc z= 3 ... 8 fogú lánckerékkel való hajtása esetén.

A számítás eredményét összefoglalva a 15. táblázat adja. A z=3 oldalú lánckerék egyenlőtlensége a 60%-ot is meghaladja, ezért nem is alkalmazzák. A z=4 is kedvezőtlen, de ezt alacsony sebesség esetén használják (kotrók vederláncmozgatása).

A vonóláncok kényszerkapcsolattal történő

hajtásának egyik különleges fajtáját a segédlánc vagy hajtólánc segítségéve! való hajtást (2.70. ábra) akkor alkalmazzák, ha a láncvonóelemes szállítógép nyomvonala,

15. táblázat

Adatok lánckerék számításhoz Fogszám (z) 3 4 5 6 7 8 (m) (min-1) (s-1) (m/s) - (m) (m/s2) (m/s2)

Dt n ω vmax δ u ac amax

0,346 20 2,095 0,362 0,606 0,086 0,755 0,655

0,424 15 1,57 0,333 0,327 0,062 0,522 0,369

0,510 15 1,255 0,32 0,204 0,049 0,400 0,235

0,6 10 1,045 0,314 0,140 0,040 0,327 0,163

0,691 8,6 0,900 0,311 0,103 0,035 0,280 0,142

0,784 7,5 0,786 0,308 0,078 0,030 0,242 0,093

2.70. ábra. Segédlánchajtás 1 - hajtó lánckerék; 2 - feszítőlánckerék; 3 - hajtólánc; 4 - továbbítókar (kos); 5 - vezetősín; 6 -

támasztógörgők; 7 - hajtott vonólánc

Page 40: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

60. oldal

pályakialakítása a hajtó lánckerék beiktatását nem teszi lehetővé, vagy igen hosszú, egyenes pályaszakasz középső részén kell a vonóelemet hajtani.

Szerkezetileg a hajtólánc egy rövid tengely- távolságú, kis osztású hevederes lánc, amelyre továbbítókarokat erősítenek fel. Ezek a vonólánc csuklóival a lánckerék fogaihoz hasonlóan kapcsolódnak. A kis láncosztás következtében viszonylag nagy fogszámú lánckerékkel történhet a segédlánc hajtása. Ez azzal az előnnyel jár, hogy a lánc sebessége egyenletesebbé válik.

2.53. A vonóelem feszítése A vonóelem feszítésének feladata a hajtáskor a

vonóerő átadásához szükséges előfeszítés létrehozása, a kopás és nyúlás következtében előálló hosszúságnövekedés kiegyenlítése, valamint a vonó- és szállító elem alátámasztási helyei között jelentkező túlzott, és a szállítás szempontjából kedvezőtlen belógás csökkentése. A súrlódó heveder-, kötél- és lánchajtásoknál általában nagyobb, a kényszerkapcsolatú fogaslánckerékhajtások esetén lényegesen kisebb vonóelem-feszítést kell alkalmazni.

A vonóelem-feszítés, szerkezeti kialakítása és a működési módja szerint lehet mechanikus vagy súlyműködtetésű.

A mechanikus feszítőszerkezet (2.71. ábra) általában kézi működtetésű, s a vonó elemet húzott csavarok, fogaskerék- és fogasléc-kilincsművek felhasználásával feszíti. A feszítőerő nem állandó, hanem a meghúzás pillanatában a legnagyobb, s a gép működése közben a kopás és egyéb okokból előálló vonóelemnyúlás következtében fokozatosan csökken.

A súlyfeszítésű szerkezet (2.72. ábra) a vonó- elemnek a működés közben sem változó feszítését biztosítja. Ezzel szemben hátrányos a nagyobb helyszükséglete és tömege, láncvonóelemnél való alkalmazása esetén pedig fennáll annak a veszélye, hogy a feszítősúly a láncjárás egyenlőtlensége következtében lengésbe jön.

A lánc vonóelemű anyagmozgató gépeken, ahol a feszítés a kényszerkapcsolású hajtás következtében rendszerint nem nagy, általában mechanikus működtetésű feszítőszerkezeteket alkalmaznak. Néha a láncjárás egyenlőtlensége miatt rugókat is közbeiktatnak.

A nagyobb mértékű feszítést kívánó heveder- és kötél-vonóelemes szállítógépeken, az alárendelt jelentőségű esetektől eltekintve, súlyfeszítés használatos. Különösen a nagy távolságokra szállító

2.71. ábra. Csavarfeszítés

2.72. ábra. Súlyfeszítés

gépeknél, amelyeknél a vonóelem szilárdsága rendszerint teljesen ki van használva, jelentkezik a súlyfeszítés előnye, mert a mechanikus feszítőszerkezetek alkalmazásával elkerülhetetlenül együttjáró túlfeszítés a gép üzembiztonságát, a vonóelem szakítóereje és a megengedett igénybevétele közti biztonsági tényező mértékét csökkenti.

A feszítőszerkezetet a vonóelem valamelyik terelési pontján szokták beépíteni, legalkalmasabbak azok a terelési pontok, ahol a vonóelem igénybevétele kicsi, s az eltérítési szög 180°.

A feszítőszerkezetek működési hosszát, a "feszítés útját" a szállítógép vonóelemének hossza és típusa szabja meg, a feszítés helyét és kialakítását az egyes gépek sajátosságai nagymértékben befolyásolják. Általánosságban megállapítható, hogy heveder és kötél vonóelemű anyagmozgató gépeknél a feszítési út a szállítótávolsággal együtt arányosan növelendő, hiszen a heveder és a kötél nyúlása annak hosszával együtt növekszik. Például gumihevederes szál1ítószalagoknál a feszítés útja a dobtávolság 1…1,5 %-a, azonban szerelési és beállítási okokból a rövid sza1agoknál sem lehet 500...600 mm-nél kevesebb. Lánc vonóelemű anyagmozgató gépeknél ezzel szemben rendszerint egy láncpár hosszánál valamivel nagyobb távolság elegendő.

Page 41: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

61. oldal

2.54. Véges vonóelem mozgatása Anyagmozgató gépekben alkalmazott véges

hosszúságú (nyitott) hajlékony vonóelemet (kötelet, láncot) dobbal vagy hajtótárcsával mozgatunk.

A dobok szerepe az anyagmozgató gépek üzemében kettős (2.73. ábra). Egyrészt a hajtómű forgó mozgását alakítják át a hajlékony függesztőelem haladó mozgására, másrészt a dobokon a hajlékony függesztőelemet tárolják. A kötél a dobpalástra csavarvonal mentén csévélődik fel. Gépi hajtású emelőszerkezetnél a kötél kímélése érdekében a menetek egy rétegben és megmunkált horonyban helyezkednek el. A kötélhorony méretét és menetemelkedését az MSZ 9703-70 szabvány rögzíti. A kötéldob horonyszelvényét lásd a 2.73. ábrán.

Balesetelhárítás céljából a dobpalást végén legalább 2,5-szeres kötél átmérő magasságú peremet kell alkalmazni, nehogy helytelen kezelésből eredő ferde irányú kötélhúzás esetén a kötél a dobról leessen, megsérüljön és elszakadjon.

A kötéldobot általában hengerelt acélból, hegesztett kivitelben készítik (2.74. ábra). Öntött vasat annak nagyobb tömege miatt - csak kisebb átmérőjű dobokhoz használnak, nagy darabszám gyártása esetén.

A dobpalást és a dob homloklemez-vastagsága közelítő számítással határozható meg a kötéldob bonyolult igénybevétele miatt. Az egymás mellett fekvő kötélmenetek átfogása helyi nyomó- és hajlító igénybevételeket okoz a dobpalástban, amelyhez még a teljes kötéldobra hajlító és csavaró igénybevétel járul. A gyakorlatban megelégszünk a dobpalást és homloklemez vastagságának közelítő számítás útján történő meghatározásával.

A dobra egy rétegben csévélt kötél felfutási helyén fellépő maximális igénybevétel (nyomófeszültség) Ernst [37] szerint:

max1 0,5 ,T

vpσ =

és egy erre merőleges irányú feszültség hajlításból:

42 max 2 6

10,96TD v

σ =

ahol D a dobátmérő, p és v méretét lásd a 2.73. és a 2.74. ábrán. Hegesztett dobok esetén a két feszültség összege nem haladhatja meg az acéllemez anyagára megengedett feszültséget: σ1+ σ2≤ σm Öntöttvas doboknál Öv 20-ra 200...250 daN/cm2 .

A homloklemez vastagsága (s) hegesztett dob esetén az alábbi összefüggésből ellenőrizendő:

2

21,44 1 ,3

am

D VD s

σ σ⎛ ⎞= − ≤⎜ ⎟⎝ ⎠

ahol V vízszintes erő a dobról lefutó kötelek ferde húzásából származó erő, amely a kötél erő 10%-ával vehető figyelembe. Da agyátmérő, lásd a 2.74. ábrán. Öntöttvas doboknál a homloklemez vastagsága a dobpalást falvastagságával egyenlőnek vehető. A kötéldob minimális átmérőjét a kötél méretezésekor állapítjuk meg.

A dob hossza a fe1csévélendő kötél hosszától függ. Legyen az emelési magasság H, a kötélcsigasor módosítása z. A dobra felfutó egy kötélág hossza h=z·H.

Egy kötélág elhelyezésére szükséges menetszám két tartalék menettel együtt:

2,zHnDπ

= +

ehhez tartozó palásthossz:

2 ,kzHl np pDπ

⎛ ⎞= = +⎜ ⎟⎝ ⎠

ahol p a kötélhorony menetemelkedése. A tartalék menetek a horog legalsó állásában is a

dobon maradnak, és ezek a kötélvég dobhoz rögzítését súrlódás útján tehermentesítik.

A kötél végét úgy kell rögzíteni a dobhoz, hogy kötélcsere esetén a szerelés könnyen elvégezhető legyen. Jól bevált és gyakran alkalmazott rögzítést tüntet fel a 2.73. ábra (MSZ 9704-70).

Szerkezeti okokból sok esetben nem lehet a fel vagy lefutó kötélágat a korong síkjában vezetni, hanem attól el kell téríteni.

A csigasorra függesztett horogszerkezet felső véghelyzetét a korong síkjától eltérített kötél megengedhető eltérítési szöge szabja meg. Szerkesztéskor gondosan ellenőrizni kell, hogy a ferdén futó kötél nem támaszkodik-e a dob vagy a koronghorony külső élére; ez ugyanis a kötél kiugrását okozhatja. Az eltérítés legnagyobb mértéke általában 4° (1:15), mely értéknél azonban a tényleges viszonyokat szerkesztéssel ellenőrizni kell.

Emelőgépeknél a teherlánc mozgatására fogazással ellátott lánckereket használunk. Szemes lánc esetén a lánckorong kerületén a láncszem alakjának megfelelő üregeket és bordákat helyezünk el (2.75. ábra).

A lánc a koronghoz képest elmozdulni nem tud, és erőátadásra alkalmas. Az így kialakított korongot lánckeréknek, kis fogszám z~10 fog esetén láncdiónak nevezzük.

Kézi hajtású szerkezeteknél a kéziláncon kifejtett húzóerőt lánckerékkel alakítjuk át forgó mozgássá.

Page 42: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

62. oldal

2.73

. ábr

a. K

ötél

dob

1-

hor

onyk

ifutá

s kez

dete

; 2 -

mar

adó

köté

lmen

et k

ezde

te; 3

– d

aruk

ötél

vég-

rögz

ítő (M

SZ 9

704)

; 4 -

foga

zott

kapc

soló

agy;

5 -

foga

zott

kapc

soló

; 6 -

hajtó

mű:

7 -

csap

ágyh

áz; 8

- sz

ámlá

lóműv

es v

égál

lásk

apcs

oló

Page 43: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

63. oldal

2.74. ábra. Hegesztett kötéldob

2.75. ábra. Láncdió

A teherlánc mozgatására pedig láncdiót

alkalmazunk. A kis fogszám következtében az erőátadás kis sugáron történik, ezzel kis forgatónyomaték áll elő. (Kézi hajtású emelő csigasor.) Hátránya a rossz hatásfok (η=0,92) és az erős kopás.

A lánckerék anyaga Öv, a láncdió a fellépő nagyobb erők miatt Aö-ből készül. A fogak nem megmunkáltak, ezért a beöntött üreg valamivel nagyobbra készítendő, mint a láncszem.

A lánckerék osztókörátmérője: 2 2

,90 90sin s2 2

t dDco

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟

= +⎜ ⎟ ⎜ ⎟° °⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

ahol t és d a lánc osztása és átmérője (lásd 2.17. ábra), z a lánckerék fogszáma.

Csapos lánc mozgatására a megmunkált fogakkal készült lánckereket használják (2.45. ábra). A legkisebb fogszám általában 7...8 fog. A hevederes lánc lánckerekének osztóköre:

180sin

tD

z

Véges hosszúságú (nyitott) kötél súrlódókapcsolattal is mozgatható. A felvonók köteleit nagyrészt hajtótárcsával mozgatják. Ugyancsak súrlódókapcsolattal történik a spilldobon (2.76. ábra) átvetett kötél mozgatása. A spilldobra a kötelet néhányszor (n=2...4) körülcsévéljük. A lefutó kötélágat T2=150....250N erővel kézzel megfeszítjük, így a felfutó ágban maximálisan T1 = T2ema húzóerő léphet fel. α= 2Πn.

Tmax=T1=100...1000daN. A spilldobnál a kötél tengelyirányú vándorlását a

dobpalást kialakítása akadályozza meg. A kötél ismételten visszacsúszik egy középhelyzetbe, amint a kötél a spilldobon olyan helyre ér, ahol a dobpalást emelkedési szöge nagyobb mint a kötél és a dobpalást érintkezésénél ébredő súrlódási tényező szöge (ρ) (2.76. ábra).

2.76. ábra. Spilldob

Page 44: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

64. oldal

2.55. A vonóelem-mozgatás teljes ellenállása

A végtelenített vonóelem teljes ellenállását, azaz a

mozgatáshoz szükséges vonóerőt úgy határozzuk meg, hogy a vonóelem legkisebb igénybevételű pontjáról kiindulva a haladási irány szerint a vonóelempályát körüljárjuk, és közben a fellépő ellenállásokat szakaszonként összegezzük. A legegyszerűbb vonóelemvezetés esetében a pálya két egyenes és az ezeket összekapcsoló kétíves szakaszból tevődik össze (2.77. ábra). A szállítás az A ponttól a B pontig a felső, úgynevezett szállítóágon bonyolódik le, az alsó ágon a vonóelem anyag nélkül tér vissza (üres vagy visszatérő ág).

A 2.77. ábra grafikusan is feltünteti a vonóelemben ébredő húzóerő változását a vonóelem különböző pontjain. Az ábrán vastag vonal jelöli a vonóelemet, a forgásiránnyal jelölt kör a hajtóelemet, az üres kör pedig a terelőelemet. A vonóelemet jelölő vonalra merőlegesen mért távolságok a vonóelemben fellépő húzóerő nagyságát mutatják. E távolságok végpontjait összekötő burkolóvonalak által határolt felületek közül a fehéren hagyott a vonóelem előfeszítését, a merőlegesen csíkozott a vonó- és szállítóelem tömegéből adódó húzóerőt, a ferdén csíkozott pedig a vonóelem mozgása közben fellépő ellenállásokat jelöli.

A 2.78. ábrán feltüntetett vízszintes elrendezésnél a hajtódob a szállítóág végén helyezkedik el. A vonóelemben a legnagyobb húzóerő a hajtóelemre felfutás, a legkisebb a lefutás helyén ébred. Amint látható, az utóbbi az előfeszítéssel egyezik, és akkora, hogy a hajtóelem a fel- és lefutó húzóerők különbségéből adódó vonóerőt a vonóelemmel üzembiztosan közölni tudja. Az előfeszítés, amely álló vagy mozgó vonóelemben egyaránt ébred, a pálya minden pontján azonos, a vonóelem vontatási ellenállása pedig az egyes szakaszakon egyenletesen, az anyagterheléssel és a vonóelem tömegével arányosan növekszik. A vízszintes pálya következtében a vonóelem tömege a húzóerőt nem növeli.

Példa. A 2.78. ábrán vázolt elrendezésű szállítógép dob távolsága

L=20 m. A vonólánc tömege: q0=25 kg/m, a felső ágon szállított anyag tömege: q=15 kg/m, a vonóelem vontatási ellenállás-tényezője legyen µz = 0,1, az α=180°-os irányeltérítés ellenállás-tényezője c=0,05. A vonólánc hajtása fogaslánckerékkel történik, a feszítést felvesszük T0 = 1000 N nagyságúra. A vonóláncban a legkisebb igénybevétel a hajtóelem elhagyásakor a 2 pontban ébred, nagysága T2=T0=1000 N. Az alsó üres ág végén, a 3 pontban a húzóerő:

T3 = T2+Zn. = T2.+mzq0gL = = 1000+0,1•250•20 = 1000+500 = 1500 (N).

2.77. ábra. Húzóerő-diagram emelkedő

vonóelemes elrendezés esetén

2.78. ábra Húzóerő-diagram vízszintes

vonóelemű elrendezés esetén

2.79. ábra. Húzóerő-diagram függőleges

vonóelemű elrendezés esetén

Page 45: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

65. oldal

A terelőkorongról lefutó láncban (a 4 pontban) a húzóerő:

T4 = T3+cT3 = (1+c)T3 = (1+0,05)•1500 = 1575 (N). A felső, teljes hosszában anyagot szállító láncág végén (az 1 pontban) a húzóerő:

T1 = T4+Zf = T4+µz(q+q0)L = = 1575+0,1(150+250)20 = 1575+800 = 2375 (N).

A hajtókerékre felfutó láncág hajlítási ellenállását is figyelembe véve:

T1’ = (1+k)T1 = (1+0,015)2375 = 2410 (N). A hajtáshoz szükséges kerületi erő:

Fk = T1’-T2 = 2410-1000 = 1410 (N). Példa. Vizsgáljuk meg, hogy ugyanezen lánc nem fogas,

hanem súrlódóhajtása esetén a felvett feszítés nagysága megfelel-e?

A körülfogási szög α=180°, µ=0,15, ema=1,60. Az Fk=1410 N vonóerő súrlódással való átadásához szükséges

feszítőerő:

( )0

1 11410 1410 *1, 66 2350 N

1 1, 6 1k

T Feµα

′ = = = =− −

tehát nem elegendő. Az eddigi T0=l000 N feszítéssel mindössze Fk=T0(ema')=1000(1,6-1)=600 N vonóerő adható át. Ha a vonóelem mozgatását súrlódóhajtással kívánjuk megoldani, akkor a feszítőerő újbóli T0” =2500 N felvételével a számítást újra kell végezni és az erőket pontról pontra meghatározni.

Tehát a feszítés: T0” = T2” =2500 N. A 3 pontban a húzóerő: T3” = T2” + Za = 2500+500 = 3000 (N). A 4 pontban a húzóerő: T4”: = (1+c)T3” = 1,05•3000 = 3150 (N). Az 1 pontban a húzóerő: T'1” = (1 +k) (T4” +Zf) = 1,015 (3150+800) = 4000 (N). A kerületi erő: Fk” = T1”-T0” = 4000-2500 = 1500 (N).

A szükséges feszítőerő:

( )0

1 11500 1500 *1, 66 2500 N

1 1, 6 1k

T Feµα

′′ ′′= = = =− −

Tehát a felvétel helyes volt. A 2.79. ábra a függőlegesen felfelé szállító láncos

elevátor elrendezését tünteti fel. A vonóelem hajtása a baloldali ábrán a felső, a jobb oldalin az alsó lánckerékkel történik. Mindkét ábrán látható a vonóelemben ébredő húzóerő nagyságának változása a pálya mentén. A feszítőerő most is, úgy mint vízszintes elrendezésnél, a pálya minden pontján azonos nagyságú, a középső mező, a vonóelem tömegéből ébredő húzóerő-komponens a magassággal arányosan növekszik, legnagyobb a felső terelőkeréknél. A külső mező az anyagszállítás ellenállásait jelöli; ez függőleges szállításnál legnagyobb részben a vonó-, illetve szállítóelemen levő anyag tömegéből adódik.

A két elrendezés erőeloszlását összehasonlítva megállapítható, hogy az alsó hajtás semmiképpen sem lehet előnyös. Alsó hajtás esetén a vonóelem lefelé haladó ága teljes hosszában az ellenállásból adódó vonóerővel terhelt, ennek következtében a hajlítási ellenállása és kopása is nagyobb lesz. A súrlódóhajtás szempontjából kedvezőtlen körülmény, hogy a hajtódobra fel- és lefutó vonóelemben ébredő húzóerők viszonyszáma nagyobb, tehát ugyanakkora vonóerő átadásához nagyobb feszítésre van szükség. A felső dobos hajtásnál ezzel szemben a vonó- és szállítóelem tömegéből eredő húzóerő a feszítőerőhöz hozzáadódik, és így a feszítés ennek következtében sok esetben jelentősen csökkenthető.

2.6. FUTÚKEREKEK ÉS SÍNEK

Sok anyagmozgató gépnél a teher vízszintes,

ritkábban emelkedő vagy lejtő irányú mozgatása céljából a teherszállító vagy alátámasztó szerkezetet futókerekekre helyezve sínpályán továbbítják. E futókerekek általában nagy kerékterheléssel és kis sebességgel működnek. Az érintkező felületek felszínnyomásának csökkentése érdekében a kerekek széles, hengeres futófelületűek, és széles, síkfelületű sínfejen gördülnek. A legtöbb esetben a kerék vezetésére a futókereket egy vagy két peremmel látják el.

2.61. A futókerék vontatási ellenállása A teher továbbításakor a futókeréken fellépő

ellenállások: a gördülőel1enállás, a csapsúrlódás és a sínpálya egyenetlenségből eredő ellenállások.

A gördülőellenállás és csapsúrlódás legyőzésére szükséges nyomaték a 2.41. ábra jelölései szerint:

,2dM Ff Fµ= +

Page 46: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

66. oldal

és a kerék vontatásához szükséges vonóerő:

,/ 2 2 z

M F dZ f FR D

µ µ⎛ ⎞= = + =⎜ ⎟⎝ ⎠

F a kerékterhelés (kN) D a futókerék átmérője (cm), f a gördülési ellenállás karja, (acél esetében 0,05

cm) µ a csapsúrlódás tényezője: gördülőcsapágynál=0,005, siklócsapágynál =0,1, d a futókerékcsap átmérője (cm), µz a futókerék fajlagos vontatási ellenállása:

2 ,zf d

D Dµ µ= +

lásd még a 2.41. fejezetet is. A gördülőellenállás és csapsúrlódás kifejezhető az

1 kN kerékterhelésre eső w N vontatási ellenállással is:

3 N10kNzw µ ⎛ ⎞= ⎜ ⎟

⎝ ⎠

A peremsúrlódás és a futókerékagy súrlódása -amely különösen a nyomtávolsághoz viszonyított kis keréktáv esetében fellépő ferde futásból ered -, a pálya felületének minőségétől, és a futókerekek helyes beépítésétől függő vontatási ellenállás ok, melyek számítással nem határozhatók meg. Ezek a járulékos

2.80. ábra. Vezetőgörgő

ellenállások (wp) esetenként igen eltérőek lehetnek. Átlagos viszonyokra, biztonsággal w=50...80 N/kN-nal vehető figyelembe. Gördülőcsapágyazású futókerekeknél, amelyeknél a kerékagysúrlódás elkerülhető azáltal, hogy az oldalerőt a gördülőcsapágy veszi fel, a járulékos ellenállás 30...50 N/kN-ra csökkenthető.

Így számításainkban az 1 kN kerékterhelésre eső

(gördülőellenállást, csapsúrlódást, peremsúrlódást stb.) összes vontatási ellenállást figyelembe vesszük:

wö = w+wp (N/kN). A peremsúrlódás kiküszöbölésére néha perem

nélküli futókerekeket alkalmaznak. A futókerék vezetésére vízszintes síkú vezetőgörgőt építenek be. A vezetőgörgő vagy a 2.80. ábra szerint a sínfejre, vagy a pályatartóra támaszkodik.

A vízszintes síkú görgők vontatási ellenállása wpv=16...20 N/kN-nal vehető figyelembe a futókerék-terhelésre számítva.

2.62. A darufutókerék méretezése Az egy futókerékre megengedhető kerékterhelést

az egyenértékű és a megengedett kerékterhelés egybevetése alapján számítjuk.

Az egyenértékű kerékterhelést (Fe) a terhelésciklus alatt változó kerékterhelésértékből kell meghatározni.

A megengedett kerékterhelés (Fm) a megengedett kerékterhelés alapértékéből (F0), az üzemi fordulatszám-tényezőből (c1) és a haladási sebesség-tényezőből (c2) képezhető.

A megengedett kerékterhelés alapértéke a kerék és sín méreteiből, valamint a Hertz-feszültségből számítható.

Az egyenértékű kerékterhelés értékét a következő összefüggés határozza meg:

( )3

3 ,i ie

i

F ZF

Z=∑∑

ahol Fi egy Zi számú kerékfordulathoz tartozó kerékterhelést Σ(Fi

3Zi)-t, ill. ΣZi-t egy teljes munkaciklusra kell képezni. Fmin és Fmax között egyenletesen változó terhelésciklusra

min max23e

F FF += vehető.

Futómacskákra vonatkozóan Fe = Fmax A megengedett kerékterhelés értéke

Fm=c1c2F0

Page 47: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

67. oldal

a c1 üzemi tényező, értéke a daru üzemi csoportszámától függ. A daru üzemi csoportszáma :

I II III IV A c1 üzemi tényező értékei:

1 0,85 0,7 0,55 Futómacska kerekét a fenti érték 1,2-szeresével

kell számítani. A c2 fordulatszám-tényező, a következő módon

állapítható meg: n < 50/min esetére c2=1,

n > 50/min esetére 2200 .

150c

n=

+

Lapos fejű sín esetén a megengedett kerékterhelés alapértékét a következő módon számítjuk:

Az F erővel egymáshoz szorított henger- és síkfelület érintkezési helyén a középen keletkező σH1 legnagyobb nyomófeszültség Hertz szerint:

2 1 21

1 2

20,35 .HE EF

bD E Eσ =

+

A képletben b a sín (kerékkel érintkező) szélessége (cm), D a futókerék átmérője (cm), E1 és E2 a kerék és a sín anyagának rugalmassági

modulusa (N/mm2). A megengedett kerékterhelés alapértéke.

( )2

10

1 kN ,1000 855

HF Dbσ⎛ ⎞= ⎜ ⎟⎝ ⎠

a megengedett legnagyobb Hertz-feszültség a kerék és sín redukált keménységéveI (Hr) kifejezve:

1 0,3 ,H m rHσ =

1 2 1 2

1 2

2 *r

közepes

HB HB HB HBHHB HB HB

−= =

+

a kerék és sín közepes Brinell-keménysége: 1 2

2közepesHB HBHB +

=

Domború fejű sín esetén két egymásra merőleges acélhenger érintkezési helyén keletkezik a legnagyobb nyomófeszültség. Ez esetre a megengedett kerékterhelés alapértéke:

( )2

20 2

1 1 kN .1000 4000 2 1

H mF

D r

σ⎛ ⎞= ⎜ ⎟⎝ ⎠ ⎛ ⎞+⎜ ⎟

⎝ ⎠

A megengedett legnagyobb Hertz-feszültség

pontszerű érintkezés esetére

( )22 0,75 N/mmH m rHσ =

r domború fejű sín esetén a sínfej görbületi sugara (cm).

Sík felületen gördülő gömb felületű futókerék érintkezésekor a megengedett kerékterhelés alapértéke:

( )2

220

1 kN .1000 6400

H mF Rσ⎛ ⎞= ⎜ ⎟⎝ ⎠

R a futókerék gömbfelületének sugara (cm). Futókerekek hajtása vagy torziós tengelyre ékelten, vagy - ha a futókerék álló csapon fut - a kerékhez erősített fogaskoszorúval történik. A fogaskerék lehetőleg külön darabból készüljön, így elhasználódás esetén csak a fogaskereket kell cserélni, és a futókerék futófelülete átesztergálással javítható. Kellő falvastagságról szerkesztéskor gondoskodni kell.

A kerületi erő átadása a fogaskoszorúról a futókerékre nyíróhüvely közbeiktatásával történik a 2.81. ábrán fe1tüntetett módon.

2.81. ábra. Hajtott darufutókerék

1 - futókeréktest; 2 - fogaskoszorú; 3 - nyíróhüvely

Page 48: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

68. oldal

2.82. ábra. Hajtott darufutókerék sarokcsapággyal

A futókerék futófelülete henger, szélessége a sín

szélességénél 5...30 mm-rel nagyobb. Gördülőcsapágyazású álló csapon forgó futókerék

szerkezeti kialakítása a 2.81. ábrán, torziós tengelyre ékelt darufutókerék gördülőcsapágyas beépítése pedig a 2.82. ábrán látható.

A futókerék anyaga igen könnyű és lökésmentes üzemre (kézi hajtás) Öv, gépi hajtású üzemre acélöntvény. Nehéz üzemre edzett futófelülettel és peremmel látják el a futókereket.

2.63. Darusínek Kis vontatási ellenállás érdekében a futókerekeket

sínpályára helyezik. Az anyagmozgató gép üzemi követelményeinek megfelelően kialakított sínszelvényeket tüntet fel a 2.83. ábra.

Kis terhelés vagy acél szerkezetre helyezett sín esetén pályasínként négyzet- vagy laposacél használható (2.83/a ábra). Szabványos méretei (MSZ 6711-61): Szélessége (mm) 40 50 50 55 60 60 80 100Magassága (mm) 40 30 50 55 40 60 50 50

Anyaga az MSZ 500 szerinti A50.

2.83. ábra. Sínek

a) négyszög keresztmetszetű darusín; b)darupályasín; e) vasútí sín; d) függőpályasín

A darupályasín (2.83/b ábra) futókerékkel

érintkező felülete aránylag széles és sík felület, eltérően a vasútnál használt legömbölyített sínfej kiképzéstől, amelyre a vasútnál az ívben való haladás miatt van szükség. A sík felület következtében a kerék nagyobb felületen érintkezik a sínnel, és így nagyobb kerékterhelések engedhetők meg, mint a vasútüzemben. A széles síntalp a kerékterhelésnek lehetőleg nagy felületen való továbbadását és a sín jó lerögzítését biztosítja.

Nálunk darupályasínt az MSZ 5750-76 szabványban megadott méretekkel gyártanak 65, 80 és 100 mm fejszélességgel. Anyaga az MSZ 500 szerint A60.

Ha a sínt alátétekre (talpfákra) helyezik, előnyös a szabványos vasúti sín (2.83/c ábra) alkalmazása, amelynek alakja hajlítással szemben nagyobb ellenállású. Szokásos a 18, 34 és 48 rendszerű szabványos kis- és nagyvasúti sín felhasználása.

Kötélpályákhoz kapcsolódó fúggőpályák és egyetlen sínen futó kézi vagy villamos hajtású futómacskák sínjéül használják a 2.83/d ábrán megadott fúggőpályasínt. A sín futófelülete hengeres. A fúggőpályasín előnye, hogy a megkopott sínfej a sín egyszerű átfordításával felújítható, továbbá a kettős fejű sín hajlító igénybevételre ellenállóbb, és így a sín felfüggesztési távolsága nagyobb.

A sínek rögzítése. A laposacél sínt a daruhídra, ill. darupálya tartóira kétoldalt szakaszos varrattal, szabadban üzemelt daruk tartóira kétoldalt folytonos varrattal hegesztik fel. Ez utóbbi megoldást a korrózió csökkentése érdekében alkalmazzák.

A nagyobb terhelésű és nehéz üzemi viszonyok között dolgozó darupályasínek lerögzítése csavarozással történik (lásd MSZ 15030-58 szabványt) oly módon, hogy esetleges későbbi sínbeállítás vagy síncsere könnyen elvégezhető legyen.

Page 49: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

69. oldal

A 2.84. ábra két állítható sínleerősítési megoldást

tüntet fel: a) ábra sínleerősítés acéltartón; b) ábra rugalmas alátámasztású sínleerősítés betontartón (KOGÉPTER V-megoldás).

Különös gondot igényel a betontartó, ill. betonon elhelyezendő sín rögzítése. Igen érzékeny a beton egyrészt a beton és sín között fel1épő felszínnyomásra, másrészt a sínt terhelő nagy, vízszintes erőkre. Viszonylag legjobban bevált megoldás a rugalmas alátéteken nyugvó szakaszos alátámasztású sínrendszer (2.84/b ábra). Szereléskor a sín alá 1 jelű magasságállító béléslemez kerül. A sínt oldalirányban a 2 jelű ék rögzíti, amelyet kifelé egy külpontos furatú alátétlemez határol. Egy ilyen alátétlemez négyfajta oldalállítású méretre használható. A síntalpra felfekvő szorítólemezt olyan vastagra válasszuk, hogy a csavar meghúzásakor már képlékenyen deformálódjék, és rásimuljon a síntalpra, ill. a sínt a sarulemezhez szorítsa. A betonra a sínterhelést a 3 jelű kb. 5...6 mm-es gumilemez, ill. a felette levő 5 jelű sarulemez osztja el.

A sarulemezt a betontartóhoz szorító csavar feje a

csavar elforgását akadályozó alátét útján a 4 jelű gumialátéten át biztosítja a rugalmas kapcsolatot. A gumilapok nagymértékben csökkentik a beton morzsolódását.

Példa. Határozzuk meg, milyen átmérőjű futókerekeket kell

választani egy 100 kN teherbírású, B típusú futódaru hídjához a következő körülmények között:

Legnagyobb kerékterhelés teljes terheléssel: Fmax=137 kN. Legkisebb kerékterhelés teljes terheléssel: Fmin=48 kN. Darupályasín: Darusín NgD 60 MS Z 6711 A 50,

HB2=1400N/mm2 Híd sebessége v=90 m/min. Futókerék edzett HB1 =4000 N/mm2. A darupályasín hatásos szélessége a lekerekítés

figyelembevételével b = 5,4 cm. D=60 cm futókerék-átmérő előzetes feltételezésével c1 =0,85 (lásd 67. o.). c2=1,00 (lásd

67. o.).

2.84. ábra. Sínek állítható rögzítése

a) darupályatartón; b) vasbeton tartón; 1 - magasságállító lemez; 2 - vízszintes síkban a pálya tengelyére merőleges irányban határoló ék: 3 - gumilemez; 4 - gumialátét; 5 – sarulemez

Page 50: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

70. oldal

( )min max2 48 2 *137

108 kN3 3

e

F FF

+ += = =

( )21 2

1

*0, 3 0, 3 624 N/mm

H m r

közepes

HB HBH

HBσ = = =

A fenti értékekkel a D=60 cm átmérőjű futókerekekre

( ) ( )

2

1

0

2

1

1000 855

1 6240060 * 5, 4 172 kN ,

1000 855

HF Dbσ

= =

= =

⎛ ⎞⎜ ⎟⎝ ⎠

( ) ( )1 2 0

0, 85 *1, 00 *172

145 kN 108 kN .

m

e

F c c F

F

= = =

= > =

Mivel a választott kerékre megengedett értékek igen bőséges, megvizsgáljuk a D= 50 cm átmérőjűt is. Erre a c2=0,96.

( ) ( )2

0

1 6240050 * 5, 4 144 kN ,

1000 855F = =

Fm=0,85*0,96*144=118(kN)>Fe=108 (kN), tehát ez is megfelel.

Példa. Határozzuk meg most a szükséges futókereket

ugyanezekre a viszonyokra, de 48 rendszerű nagyvasúti sínhez, anyaga A 70

( )2 2

700 N1950 .

0, 36 0, 36 mmBHB

σ= = =

Vegyük fel újra a D=50 cm átmérőt r=20cm,

( )21 2

2

*0, 7 18300 N/mm

H m

közepes

HB HB

HBσ = =

a többi kiinduló érték változatlan.

( )( ) ( )

( )

2

2

0 2

2

2

1 1

1000 4000 2 1

1 18300 1117 kN .

1000 4000 2 1

50 20

H mF

D r

σ= =

+

= =

+

⎛ ⎞⎜ ⎟⎝ ⎠

Fm=0,85•0,96•117=95 (kN)<F.=108 (kN). Ez a kerék tehát már nem felel meg a domború fejű sínre. D=60 cm esetén: c2=1,00,

( ) ( )( )

2

0 2

1 18300 1138 kN .

1000 4000 2 1

60 20

F = =

+

Fm=0,85•1,0•138=117 (kN)>-F.=108 (kN); ez a futókerék már megfelelő.

2.7. GÉPELEMEK A TEHER FELVÉTELÉRE Az emelendő terhet a teheremelés és szállítás

tartamára az emelést végző függesztőelemhez kell kötni.

Emelőszerkezetekhez darabáru emelésekor általában horgokat, kengyeleket alkalmazunk, amelyekre a terhet kötözőkötél közvetítésével függesztjük fel. Ömlesztett anyagot szállítóedénybe helyezve vagy markolóval emelünk fel lásd a 315. és 316. fejezetet).

2.71. Egyágú horog A horog alakja a legjobb anyagkihasználás szem

előtt tartásával alakult ki (2.85. ábra). A nyershorog alakját és méreteit az MSZ 9705-79 szabvány rögzíti. Daruhorogszár és horoganyamenet MSZ 9706-75.

A horog szára húzásra, a görbe szakasz pedig hajlításra és húzásra van igénybe véve. A horogszárnak leggyengébb keresztmetszete a csavarorsó magkeresztmetszete.

( )22

1

4 30 60 N/mmmQ

dσ σ

π= ≤ = …

C25 (MSZ 61) anyagra, ahol a kis terhelésnél az alacsonyabb, nagy terhelésnél a magasabb feszültség

engedhető meg. Ugyanis nagy teherbírású horgoknál nem valószínű a horog túlterhelése, míg egy 5 kN teherbírású horognál ez könnyen megtörténik.

A görbe szakaszon az I-II keresztmetszetben fellépő feszültséget közelítő számítással ellenőrizhetjük.

2.85. ábra. Egyágú horog

Page 51: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

71. oldal

A horgot excentrikusan terhelt egyenes tartónak

tekintjük, és elhanyagoljuk, hogy görbe középvonalú tartó esete áll fenn.

A 2.85. ábra jelölései szerint az I-II keresztmetszetben fellépő legnagyobb igénybevételek:

A legnagyobb húzófeszültség az I pontban

01

,I hQ MA K

σ σ σ= + = +

1 11

, .2a JM Q e és K

e⎛ ⎞= + =⎜ ⎟⎝ ⎠

A legnagyobb feszültség a II pontban

22 2

, .IIQ M Jés KA K e

σ == − =

A megengedhető igénybevételek C25 anyagnál 60...70 N/mm2.

A szélesebb oldalával (b) befelé fordított trapéz keresztmetszet kedvezőbb, mert egyrészt a keresztmetszet súlypontja a teher súlyvonalához közelebb kerülve, a hajlítás karja csökken, másrészt pedig a húzott szálak távolsága kisebbedik. A feszültségeloszlást tekintve az anyag jobb kihasználása érdekében azt is elérhetjük, hogy a húzott övben és a nyomott övben a legnagyobb feszültségek egymással egyenlők legyenek:

σI= -σII A III-IV keresztmetszetet a horog hossztengelyével

60°-ot bezáró kötözőkötél terhelése alapján hajlításra ellenőrizzük. A figyelembe veendő hajlítónyomaték a 2.85. ábrán megadott jelölés szerint

tg .2QM xα=

A horogban fellépő feszültségek megállapítására a valóságos feszültségeloszlást jobban megközelítő eredményt kapunk, ha a horgot síkban görbe középvonalú tartónak tekintjük. A 2.85. ábra jelölése szerint az I-II keresztmetszetben fellépő feszültségeket a következőképpen számítjuk.

Az A keresztmetszetű és 12aR e= + görbületi

sugarú tartót a Q húzóerő és

12aM Q e QR⎛ ⎞− = + =⎜ ⎟

⎝ ⎠nyomaték veszi igénybe. A

hajlítónyomaték előjele negatív, mert a tartó görbületi sugarát növeli.

2.86. ábra. Feszültség meghatározás Tolle-

módszerrel A súlyponttól y távolságban levő szál feszültsége a

Grashof-képlet alapján

,Q M M yA RA RAx R y

σ = + ++

1 dyx AA R y

= −+∫

Az x a keresztmetszet alakjától függő tényező, amely Tolle-féle eljárással, szerkesztéssel könnyen meghatározható. A szerkesztés menetét a 2.86. ábra tünteti fel. A görbületi középponttól kiinduló MA sugárral metsszük a horogkeresztmetszet határvonalát. E pontból húzott függőlegest a keresztmetszet S súlypontjából húzott, az MA sugárral párhuzamos SB egyenessel metsszük. Az így megszerkesztett metszéspontok - a szerkesztést elegendő a horogszelvény felére elvégezni - két, f' és f"-vel jelölt területet határolnak. E területek nagyságát megmérve (planimetrálva), az x tényező a következő összefüggés alapján számítható:

( )2.

f fx

A′′ ′−

=

E pontosabb számítási mód szerint az I pontban

fellépő húzófeszültség nagyobb, és a II pontban fellépő nyomófeszültség kisebb, mint a közelítő számítással nyert érték. Ezen értékek kivitelezett horgokon nyúlásméréssel megállapított feszültségekkel jól megegyeznek.

A megbízhatóbb számítás következtében a megengedhető feszültségek magasabbak, mint a közelítő számítással megadottak, éspedig C25 anyagra (σm= =70...140 N/mm2). A bonyolultabb számítás előre felvett vagy közelítő számítással meghatározott horogkeresztmetszet ellenőrzésére használható fel.

Page 52: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

72. oldal

Példa. Határozzuk meg a Q= 100 kN teherbírású horog A

szelvényének I és II pontjában ébredő feszültségeket. A szerkesztés szerint (2.86. ábra):

e1 = 5,1 cm, e2 = 6,9 cm,

( )1

11, 55,1 10, 85 cm ,

2 2

aR e= + = + =

A = 73,55 cm2, f' = 3,36 cm2, f" = 6,79 cm2, ( ) ( )2 2 6, 79 3, 36

0, 0933,73, 55

f fx

A

′′ ′− −= = =

M= QR = 100000•10,85 = 1085.103 (N•cm),

( )

1

1

3 3

2

,

100000 1085 *10 1085 *10*

73, 55 10, 85 * 73, 55 10, 85 * 73, 55 * 0, 0933

5,1 N* 1360 1360 12900 12900

10, 85 5,1 cm

I

I

eQ M M

A RA RAx R eσ

σ

−= − −

= − −

−= − + =

Ha a terhelés a görbületi középpontban hat, az első két tag összege zérus.

( )

3

2

1085 *10 6, 9*

10, 85 * 73, 55 * 0, 0933 10, 85 6, 9

N5760

cm

IIσ = =

+

=

2.72. Kétágú horog A teher szimmetrikus felfüggesztése következtében

a kétágú horog (2.87. ábra) igénybevétele kedvezőbb. Méretezése az egyágú horoghoz hasonlóan történhet.

2.87. ábra. Kétágú horog

Veszélyes keresztmetszet az ábrán az I-II-vel jelölt

keresztmetszet. Közelítő számítással

( )sin.

2 cosQM x

α βα+

=

Legnagyobb húzófeszültség az I pontban ( )

1

sin,

2 cosIM QK A

α βσ

α+

= +

és legnagyobb nyomófeszültség a II pontban ( )

2

sin.

2 cosIIM QK A

α βσ

α+

= −

A kétágú nyershorog méreteit az MSZ 9711-79 írja elő.

2.73. Zárt kengyel Igen nagy terhek felfüggesztésére használják.

Kisebb súlyú,. mint az azonos teherbírású nyitott horog. Használata nehézkesebb, mert a kötözőkötelet át kell fűzni, míg a nyitott horogba könnyen beakasztható.

Az egy darabból kovácsolt zárt kengyelben fellépő feszültségek csak közelítőleg számíthatók. Nagy terhelésekhez a kengyelt csuklókkal összekötött három rúdból készítik (2.88. ábra).

2.88. ábra. Háromcsuklós kengyel

Page 53: 2. AZ ANYAGMOZGATÓ GÉPEK ELEMEI · ágában is az anyagmozgató gépek (emelőgépek) igen gyakran alkalmazott gépeleme. Előnyös tulajdonságai a hajlékonyság, kis önsúly,

Greschik Gyula: Anyagmozgató gépek

Tankönyvkiadó, Budapest, 1981

73. oldal

Előállítása egyszerű; statikailag határozott

szerkezet. Az alsó rúd kéttámaszú tartóként hajlításra, a felfüggesztő hevederek húzásra vannak igénybe véve. A biztosabb számítási módra való tekintettel a megengedhető feszültség nagyobbra választható; σm = 100 N/mm2

A horgok anyaga C 25 (MSZ 61) nemesíthető ötvözetlen acél. Előál1ításuk kovácsolással történik. Kovácsolás után gondosan lágyítandó az anyagban visszamaradó belső feszültségek eltávolítása céljából.

2.74. Lemezelt horog A lemezelt horgot kohászati üzemekben

alkalmazzák. A folyékony acél öntőüstben való szállításakor a sugárzó hő hatására a teherfelvevő elem gyakori hőigénybevételt szenved, az anyag öregedésének és ridegedésének veszélye nagymértékben fennáll, és a horog váratlanul és hirtelen eltörhet. A horogtörés elkerülésére egymás mellett elhelyezett 5...7 db lemezből képezik ki a horgot. Ha eltörik egy lemez, akkor nagy valószínűség szerint a megmaradt lemezek még elegendő biztonságot nyújtanak a teher viselésére.

A lemezelt horog (2.89. ábra) lemezeit (1) szegecsek (2) fogják össze. A függesztőszem varratait (3) az elhúzódás elkerülése céljából szegecselés előtt hegesztik. A horog görbületének belső felületét a bélés (4) és persely (5) elhelyezésére megmunkálják. A kopásnak kitett persely (5) cserélhető.

2.89. ábra. Lemezelt horog (KOGÉPTERV)

1 - lemezek; 2 - szegecsek; 3:- hegesztett varratok; 4 - horogszájbélés; 5 - persely