18
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2012, Article ID 760246, 17 pages doi:10.1155/2012/760246 Research Article The Number of Chains of Subgroups in the Lattice of Subgroups of the Dicyclic Group Ju-Mok Oh, 1 Yunjae Kim, 2 and Kyung-Won Hwang 2 1 Department of Mathematics, Kangnung-Wonju National University, Kangnung 210-702, Republic of Korea 2 Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea Correspondence should be addressed to Kyung-Won Hwang, [email protected] Received 9 May 2012; Accepted 25 July 2012 Academic Editor: Prasanta K. Panigrahi Copyright q 2012 Ju-Mok Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We give an explicit formula for the number of chains of subgroups in the lattice of subgroups of the dicyclic group B 4n of order 4n by finding its generating function of multivariables. 1. Introduction Throughout this paper, all groups are assumed to be finite. The lattice of subgroups of a given group G is the lattice LG, where LG is the set of all subgroups of G and the partial order is the set inclusion. In this lattice LG, ,a chain of subgroups of G is a subset of LG linearly ordered by set inclusion. A chain of subgroups of G is called G-rooted or rooted if it contains G. Otherwise, it is called unrooted. The problem of counting chains of subgroups of a given group G has received attention by researchers with related to classifying fuzzy subgroups of G under a certain type of equivalence relation. Some works have been done on the particular families of finite abelian groups e.g., see 14. As a step of this problem toward non-abelian groups, the first author 5 has found an explicit formula for the number of chains of subgroups in the lattice of subgroups of the dihedral group D 2n of order 2n where n is an arbitrary positive integer. As a continuation of this work, we give an explicit formula for the number of chains of subgroups in the lattice of subgroups of the dicyclic group B 4n of order 4n by finding its generating function of multivariables where n is an arbitrary integer.

€¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Hindawi Publishing CorporationDiscrete Dynamics in Nature and SocietyVolume 2012, Article ID 760246, 17 pagesdoi:10.1155/2012/760246

Research ArticleThe Number of Chains ofSubgroups in the Lattice of Subgroups ofthe Dicyclic Group

Ju-Mok Oh,1 Yunjae Kim,2 and Kyung-Won Hwang2

1 Department of Mathematics, Kangnung-Wonju National University,Kangnung 210-702, Republic of Korea

2 Department of Mathematics, Dong-A University, Busan 604-714, Republic of Korea

Correspondence should be addressed to Kyung-Won Hwang, [email protected]

Received 9 May 2012; Accepted 25 July 2012

Academic Editor: Prasanta K. Panigrahi

Copyright q 2012 Ju-Mok Oh et al. This is an open access article distributed under the CreativeCommons Attribution License, which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

We give an explicit formula for the number of chains of subgroups in the lattice of subgroups ofthe dicyclic group B4n of order 4n by finding its generating function of multivariables.

1. Introduction

Throughout this paper, all groups are assumed to be finite. The lattice of subgroups of a givengroup G is the lattice (L(G),≤) where L(G) is the set of all subgroups of G and the partialorder ≤ is the set inclusion. In this lattice (L(G),≤), a chain of subgroups ofG is a subset of L(G)linearly ordered by set inclusion. A chain of subgroups of G is called G-rooted (or rooted) if itcontains G. Otherwise, it is called unrooted.

The problem of counting chains of subgroups of a given groupG has received attentionby researchers with related to classifying fuzzy subgroups of G under a certain type ofequivalence relation. Some works have been done on the particular families of finite abeliangroups (e.g., see [1–4]). As a step of this problem toward non-abelian groups, the first author[5] has found an explicit formula for the number of chains of subgroups in the lattice ofsubgroups of the dihedral groupD2n of order 2nwhere n is an arbitrary positive integer. As acontinuation of this work, we give an explicit formula for the number of chains of subgroupsin the lattice of subgroups of the dicyclic group B4n of order 4n by finding its generatingfunction of multivariables where n is an arbitrary integer.

Page 2: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

2 Discrete Dynamics in Nature and Society

2. Preliminaries

Given a group G, let C(G), U(G), and R(G) be the collection of chains of subgroups of G, ofunrooted chains of subgroups of G, and of G-rooted chains of subgroups of G, respectively.Let C(G) := |C(G)|,U(G) := |U(G)|, and R(G) := |R(G)|.

The following simple observation is useful for enumerating chains of subgroups of agiven group.

Proposition 2.1. Let G be a finite group. Then R(G) = U(G) + 1 and C(G) = R(G) + U(G) =2R(G) − 1.

For a fixed positive integer k, we define a function λ as follows:

λ(xk) := 1 − 2xk,

λ(xk, xk−1, . . . , xj

):= λ(xk, xk−1, . . . , xj+1

) − (1 + λ(xk, xk−1, . . . , xj+1))xj

(2.1)

for any j = k − 1, k − 2, . . . , 1.

Proposition 2.2 (see [5]). Let Zn be the cyclic group of order

n = pβ11 pβ22 · · · pβk

k, (2.2)

where p1, . . . , pk are distinct prime numbers and β1, . . . , βk are positive integers. Then the numberR(Zn) of rooted chains of subgroups in the lattice of subgroups of Zn is the coefficient of xβ11 x

β22 · · ·xβkk

of

φβ1,...,βk(xk, . . . , x1) =1

λ(xk, . . . , x1). (2.3)

Let Z be the set of all integer numbers. Given distinct positive integers i1, . . . , it, wedefine a function

πi1···it : Zk �−→ Z

k, (x1, . . . , xk) �−→(y1, . . . , yk

), (2.4)

where

y� =

{x�, if � /= ij ∀j = 1, . . . , t,x� − 1, � = ij for some j such that 1 ≤ j ≤ t. (2.5)

Most of our notations are standard and for undefined group theoretical terminologieswe refer the reader to [6, 7]. For a general theory of solving a recurrence relation using agenerating function, we refer the reader to [8, 9].

Page 3: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 3

3. The Number of Chains of Subgroups of the Dicyclic Group B4n

Throughout the section, we assume that

n := pβ11 pβ22 · · · pβkk , (3.1)

is a positive integer, where p1, . . . , pk are distinct prime numbers and β1, . . . , βk are nonnega-tive integers and the dicyclic group B4n of order 4n is defined by the following presentation:

B4n :=⟨a, b | a2n = e, b2 = an, bab−1 = a−1

⟩, (3.2)

where e is the identity element.By the elementary group theory, the following is wellknown.

Lemma 3.1. The dicyclic group B4n has an index 2 subgroup 〈a〉, which is isomorphic to Z2n, andhas pi index pi subgroups

〈api , b〉, 〈api , ab〉, . . . ,⟨api , api−1b

⟩, (3.3)

which are isomorphic to the dicyclic group B4n/pi of order 4n/pi where i = 1, 2, . . . , k.

Lemma 3.2. (1) For any i = 1, 2, . . . , k,

〈api , arb〉 ∩ 〈api , asb〉 = 〈api〉 ∼= Z2n/pi , (3.4)

where 0 ≤ r < s ≤ pi − 1.(2) For any distinct prime factors pi1 , pi2 , . . . , pit of n,

〈api1 , ar1b〉 ∩ 〈api2 , ar2b〉 ∩ · · · ∩ 〈apit , artb〉 ∼= B4n/pi1 ···pit , (3.5)

where r1, . . . , rt are nonnegative integers.

Proof. (1) To the contrary suppose that

〈api , arb〉 ∩ 〈api , asb〉/= 〈api〉. (3.6)

Then apiu+rb = apiv+sb for some integers u and v. This implies pi | s− r. Since 0 ≤ r < s ≤ pi −1,we have s = r, a contradiction.

(2)We only give its proof when t = 2. The general case can be proved by the inductiveprocess. Let

K := 〈api1 , ar1b〉 ∩ 〈api2 , ar2b〉. (3.7)

Page 4: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

4 Discrete Dynamics in Nature and Society

Clearly, api1pi2 ∈ K. Since gcd(pi1 , pi2) = 1, there exist integers u and v such that pi1u+ pi2v = 1.Note that api1 (−u(r1−r2))+r1b = api1 (−u(r1−r2))ar1b ∈ 〈api1 , ar1b〉. On the other hand,

api1 (−u(r1−r2))+r1b = a−pi1u(r1−r2)+r1b

= api2v(r1−r2)−(r1−r2)+r1b since pi1u + pi2v = 1

= api2v(r1−r2) +r2b ∈ 〈api2 , ar2b〉.

(3.8)

Considering the order of K, one can see that K = 〈api1pi2 , api1 (−u(r1−r2))+r1b〉. Since

(api1pi2 )4n/pi1pi2 = e,(api1 (−u(r1−r2))+r1b

)2= b2 = an = (api1pi2 )n/pi1pi2 ,

(api1 (−u(r1−r2))+r1b

)(api1pi2 )

(api1 (−u(r1−r2))+r1b

)−1= (api1pi2 )−1,

(3.9)

we have K ∼= B4n/pi1pi2 .

By Lemma 3.1, we have

U(B4n) = C(〈a〉 ∼= Z2n)k⋃

i=0

pi−1⋃

j=0

C(⟨api , ajb

⟩ ∼= B4n/pi

). (3.10)

Using the inclusion-exclusion principle and Lemma 3.2, one can see that the number U(B4n)has the following form:

U(B4n) = C(Z2n) +∑

1≤i1<···<it≤k,1≤t≤k

zi1,...,itC(Z2n/pi1 ···pit

)

+∑

1≤i1<···<it≤k,1≤t≤k

bi1,...,itC(B4n/pi1 ···pit

) (3.11)

for suitable integers zi1,...,it and bi1,...,it . In the following, we determine the numbers zi1,...,it andbi1,...,it explicitly.

Lemma 3.3. (1) bi1,i2,... ,it = (−1)t+1pi1pi2 · · · pit .(2) zi1,i2,...,it = (−1)tpi1pi2 · · · pit .

Proof. (1) Clearly bi1 = (−1)1+1pi1 = pi1 for any i1 = 1, . . . , k. For any integer t ≥ 2, one can seeby Lemma 3.2 that among intersections of the subgroups of the right-hand side of (3.10), thegroup isomorphic to B4n/pi1pi2 ···pit only appears in t-intersection of the subgroups

⟨api1 , aj1b

⟩,⟨api2 , aj2b

⟩, . . . ,⟨apit , ajtb

⟩, (3.12)

Page 5: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 5

where 0 ≤ jr ≤ pir − 1 and 1 ≤ r ≤ t. Since there are( pi1

1

)( pi21

) · · · ( pit1)= pi1pi2 · · · pit such

choices, we have bi1,i2,...,it = (−1)t+1pi1pi2 · · · pit .(2) By Lemma 3.2, one can see that among intersections of the subgroups of the right-

hand side of (3.10), the group isomorphic to Z2n/pi1pi2 ···pit only appears one of the followingtwo forms:

〈a〉 ∩⟨api1 , aj1b

⟩∩⟨api2 , aj2b

⟩∩ · · · ∩

⟨apit , ajtb

⟩,

⟨api1 , aj1b

⟩∩⟨api2 , aj2b

⟩∩ · · · ∩

⟨apit , ajtb

⟩,

(3.13)

where 0 ≤ jr ≤ pir − 1 and 1 ≤ r ≤ t, and each subgroup type in the first form must appear atleast once, and it can appear more than once, while each subgroup type in the second formmust appear at least once, and one of the subgroup types must appear more than once. Letγ be the number of the groups isomorphic to Z2n/pi1pi2 ···pit obtained from the first form, andlet δ be the number of the groups isomorphic to Z2n/pi1pi2 ···pit obtained from the second form.Then clearly zi1,i2,··· ,it = γ + δ. Note that

γ =pi1+···+pit−t∑

k=0

(−1)t+2+k∑

j1+···+jt=t+k,1≤jr≤pir ,1≤r≤k

t∏

r=1

(pirjr

)

=∑

k≥0

j1+···+jt=t+k,1≤jr≤pir ,1≤r≤t

(−1)t+kt∏

r=1

(pirjr

)

=∑

1≤jr≤pir ,1≤r≤t(−1)j1+···+jt

t∏

r=1

(pirjr

)

=t∏

r=1

1≤jr≤pir(−1)j1+···+jt

(pirjr

)= (−1)t.

(3.14)

On the other hand,

δ =pi1+···+pit−t−1∑

k=0

(−1)t+2+k∑

j1+···+jt=t+1+k,1≤jr≤pir ,1≤r≤t

t∏

r=1

(pirjr

)

=pi1+···+pit−t−1∑

k=0

(−1)t+2+k∑

j1+···+jt=t+1+k,1≤jr≤pir ,1≤r≤t

t∏

r=1

(pirjr

)+ (−1)t+1

j1+···+jt=t,1≤jr≤pir ,1≤r≤t

t∏

r=1

(pirjr

)

− (−1)t+1∑

j1+···+jt=t,1≤jr≤pir ,1≤r≤t

t∏

r=1

(pirjr

)

Page 6: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

6 Discrete Dynamics in Nature and Society

=pi1+···+pit−t∑

k=0

(−1)t+1+k∑

j1+···+jt=t+k,1≤jr≤pjr ,1≤r≤t

t∏

r=1

(pirjr

)− (−1)t+1

j1+···+jt=t,1≤jr≤pir ,1≤r≤t

t∏

r=1

(pirjr

)

= (−1)t − (−1)t+1pi1 · · · pit .(3.15)

Therefore, we have zi1,i2,...,it = (−1)tpi1 · · · pit .

By Proposition 2.1 and Lemma 3.3, (3.11) becomes

R(B4n) = 2R(Z2n) + 2∑

1≤i1<···<it≤k,1≤t≤k

(−1)tpi1 · · · pitR(Z2n/pi1 ···pit

)

+ 2∑

1≤i1<···<it≤k,1≤t≤k

(−1)t+1pi1 · · · pitR(B4n/pi1 ···pit

).

(3.16)

Let aβ1,...,βk := R(B4n) and let bβ1,...,βk := R(Z2n). Then (3.16) becomes

aβ1,...,βk = 2bβ1,...,βk + 2∑

1≤i1<···<it≤k,1≤t≤k

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk)

+ 2∑

1≤i1<···<it≤k,1≤t≤k

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk).(3.17)

Throughout the remaining part of the section, we solve the recurrence relation of(3.17) by using generating function technique. From now on, we allow each βi to be zerofor computational convenience.

Let

ψβ1,...,βk(xk, xk−1, . . . , xj

):=

∞∑

βj=0

· · ·∞∑

βk−1=0

∞∑

βk=0

aβ1,...,βkxβkkxβk−1k−1 · · ·x

βjj ,

φβ1,...,βk(xk, xk−1, . . . , xj

):=

∞∑

βj=0

· · ·∞∑

βk−1=0

∞∑

βk=0

bβ1,...,βkxβkk x

βk−1k−1 · · ·x

βjj ,

(3.18)

where j = k, k − 1, . . . , 1.For a fixed integer n = pβ11 p

β22 · · · pβk

ksuch that p1, . . . , pk are distinct prime numbers and

β1, . . . , βk are non-negative integers, we define a function μ as follows.

μ(xk) := 1 − 2pkxk,

μ(xk, . . . , xj

):= μ(xk, . . . , xj+1

) − (1 + μ(xk, . . . , xj+1))pjxj

(3.19)

for any j = k − 1, k − 2, . . . , 1.

Page 7: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 7

Lemma 3.4. Let k be a positive integer. If k = 1, then

μ(x1)ψβ1(x1) =(1 + μ(x1)

)φβ1(x1). (3.20)

If k ≥ 2, then

μ(xk, . . . , xj

)ψβ1,...,βk

(xk, . . . , xj

)

=(1 + μ

(xk, . . . , xj

))

×

⎢⎢⎣φβ1,...,βk

(xk, . . . , xj

)+

1≤i1<···<it≤j−1,1≤t≤j−1

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj

)

+∑

1≤i1<···<it≤j−1,1≤t≤j−1

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk, . . . , xj

)

⎥⎥⎦

(3.21)

for any j = k, k − 1, . . . , 2.

Proof. Assume first that k = 1. Then (3.17)with k = 1 gives us that

aβ1 = 2bβ1 + 2p1aβ1−1 − 2p1bβ1−1. (3.22)

Taking∑∞

β1=1 to both sides of (3.22), we have

(1 − 2p1x1

)ψβ1(x1) =

(2 − 2p1x1

)φβ1(x1) (3.23)

because a0 = R(B4p01) = R(Z22) = 22 and b0 = R(Z2p01

) = R(Z2) = 2 by a direct computation.From now on, we assume that k ≥ 2. We prove (3.21) by double induction on k and j.

Equation (3.17) with k = 2 gives us that

aβ1,β2 = 2bβ1,β2 − 2p1bβ1−1,β2 − 2p2bβ1,β2−1 + 2p1p2bβ1−1,β2−1

+ 2p1aβ1−1,β2 + 2p2aβ1,β2−1 − 2p1p2aβ1−1,β2−1.(3.24)

Taking∑∞

β2=1 xβ22 of both sides of (3.24), we have

(1 − 2p2x2

)ψβ1,β2(x2) =

(2 − 2p2x2

)[p1ψβ1−1,β2(x2) + φβ1,β2(x2) − p1φβ1−1,β2(x2)

](3.25)

because aβ1,0 = aβ1 and bβ1,0 = bβ1 by the definition, and

aβ1,0 − 2bβ1,0 − 2p1aβ1,0 + 2p1bβ1−1,0 = 0 (3.26)

Page 8: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

8 Discrete Dynamics in Nature and Society

by (3.17) with k = 1. That is,

μ(x2)ψβ1,β2(x2) =(1 + μ(x2)

)[φβ1,β2(x2) − p1φβ1−1,β2(x2) + p1ψβ1−1,β2(x2)

]. (3.27)

Thus (3.21) holds for k = 2.Assume now that (3.21) holds from 2 to k−1 and consider the case for k. Note that the

last two terms of the right-hand side of (3.17) can be divided into three terms, respectively, asfollows:

2∑

1≤i1<···<it≤k,1≤t≤k

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk)

= −2pkbβ1,...,βk−1,βk−1 − 2pk∑

1≤i1<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk−1,βk−1)

+ 2∑

1≤i1<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk),

2∑

1≤i1<···<it≤k,1≤t≤k

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk)

= 2pkaβ1,...,βk−1,βk−1 − 2pk∑

1≤i1<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk−1,βk−1)

+ 2∑

1≤i1<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk).

(3.28)

Taking∑∞

βk=1 xβkk

of both sides of (3.17) and using (3.28), one can see that

(1 − 2pkxk

)ψβ1,...,βk(xk)

=(2 − 2pkxk

)

×

⎢⎢⎣φβ1,...,βk(xk) +

1≤i<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk−1,βk)(xk)

+∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk)

⎥⎥⎦

Page 9: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 9

+ aβ1,...,βk−1,0 − 2bβ1,...,βk−1,0 − 2∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk−1,0)

− 2∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk−1,0).

(3.29)

Further since

aβ1,...,βk−1,0 − 2bβ1,...,βk−1,0

− 2∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitbπi1 ···it (β1,...,βk−1,0)

− 2∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitaπi1 ···it (β1,...,βk−1,0) = 0

(3.30)

by (3.17), we have

(1 − 2pkxk

)ψβ1,...,βk(xk)

=(2 − 2pkxk

)

×

⎢⎢⎣φβ1,...,βk(xk) +

1≤i<···<it≤k−1,1≤t≤k−1

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk−1,βk)(xk)

+∑

1≤i<···<it≤k−1,1≤t≤k−1

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk)

⎥⎥⎦.

(3.31)

Thus (3.21) holds for j = k. Assume that (3.21) holds from k to j and consider the case forj − 1. Note that the last two terms of the right-hand side of (3.21) can be divided into threeterms, respectively, as follows:

1≤i1<···<it≤j−1,1≤t≤j−1

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj

)

= −pj−1φβ1,...,βj−2,βj−1−1,βj ,...,βk(xk, . . . , xj

)

− pj−1∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βj−2,βj−1−1,βj ,...,βk)(xk, . . . , xj

)

+∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj

),

(3.32)

Page 10: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

10 Discrete Dynamics in Nature and Society∑

1≤i1<···<it≤j−1,1≤t≤j−1

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk, . . . , xj

)

= pj−1ψβ1,...,βj−2,βj−1−1,βj ,...,βk(xk, . . . , xj

)

− pj−1∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βj−2,βj−1−1,βj ,...,βk)(xk, . . . , xj

)

+∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj

).

(3.33)

Taking∑∞

βj−1=1 xβj−1j−1 of both sides of (3.21), we have

μ(xk, . . . , xj , xj−1

)ψβ1,...,βk

(xj−1, . . . , xk

)

=(1 + μ

(xk, . . . , xj , xj−1

))

×

⎢⎢⎣φβ1,...,βk

(xj−1, . . . , xk

)+

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj , xj−1

)

+∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk, . . . , xj , xj−1

)

⎥⎥⎦

+ μ(xk, . . . , xj

)ψβ1,...,βj−2,0,βj ,...,βk

(xk, . . . , xj

)

− (1 + μ(xk, . . . , xj)) ∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βj−2,0,βj ,...,βk)(xk, . . . , xj

)

− (1 + μ(xk, . . . , xj)) ∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βj−2,0,βj ,...,βk)(xk, . . . , xj

).

(3.34)

Note that

μ(xk, . . . , xj

)ψβ1,...,βj−2,0,βj ,...,βk

(xk, . . . , xj

)

− (1 + μ(xk, . . . , xj)) ∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βj−2,0,βj ,...,βk)(xk, . . . , xj

)

− (1 + μ(xk, . . . , xj)) ∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βj−2,0,βj ,...,βk)(xk, . . . , xj

)= 0

(3.35)

Page 11: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 11

by induction hypothesis. Thus

μ(xk, . . . , xj , xj−1

)ψβ1,...,βk

(xj−1, . . . , xk

)

=(1 + μ

(xk, . . . , xj , xj−1

))

×

⎢⎢⎣φβ1,...,βk

(xj−1, . . . , xk

)+

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)tpi1 · · · pitφπi1 ···it (β1,...,βk)(xk, . . . , xj , xj−1

)

+∑

1≤i1<···<it≤j−2,1≤t≤j−2

(−1)t+1pi1 · · · pitψπi1 ···it (β1,...,βk)(xk, . . . , xj , xj−1

)

⎥⎥⎦.

(3.36)

Therefore, (3.21) holds for j − 1.

Equation (3.21) with j = 2 gives us that

μ(xk, . . . , x2)ψβ1,...,βk(xk, . . . , x2)

=(1 + μ(xk, . . . , x2)

)

× [φβ1,...,βk(xk, . . . , x2) − p1φβ1−1,β2,...,βk(xk, . . . , x2) + p1ψβ1−1,β2,...,βk(xk, . . . , x2)].

(3.37)

Taking∑∞

β1=1 xβ11 of both sides of (3.37), we get that

μ(xk, . . . , x1)ψβ1,...,βk(xk, . . . , x2, x1)

=(1 + μ(xk, . . . , x1)

)φβ1,...,βk(xk, . . . , x2, x1)

+ μ(xk, . . . , x2)ψ0,β2,...,βk(xk, . . . , x2) −(1 + μ(xk, . . . , x2)

)φ0,β2,...,βk(xk, . . . , x2).

(3.38)

Lemma 3.5. If k ≥ 2, then

μ(xk, . . . , x2)ψ0,β2,...,βk(xk, . . . , x2) =(1 + μ(xk, . . . , x2)

)φ0,β2,...,βk(xk, . . . , x2). (3.39)

Proof. If k = 2, then since ψ0,β2(x2) = ψβ2(x2) and φ0,β2(x2) = φβ2(x2), the equation

μ(x2)ψ0,β2(x2) =(1 + μ(x2)

)φ0,β2(x2) (3.40)

holds by (3.20). Assume now that (3.39) holds for k. Then by (3.38)we get that

μ(xk, . . . , x1)ψβ1,...,βk(xk, . . . , x2, x1) =(1 + μ(xk, . . . , x1)

)φβ1,...,βk(xk, . . . , x2, x1), (3.41)

Page 12: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

12 Discrete Dynamics in Nature and Society

which implies that

μ(xk+1, . . . , x2)ψ0,β2,...,βk+1(xk+1, . . . , x2) =(1 + μ(xk+1, . . . , x2)

)φ0,β2,...,βk+1(xk+1, . . . , x2). (3.42)

Thus (3.39) holds for k + 1.

By Lemmas 3.4 and 3.5 and (3.38), we have

μ(xk, . . . , x1)ψβ1,...,βk(xk, . . . , x1) =(1 + μ(xk, . . . , x1)

)φβ1,...,βk(xk, . . . , x1). (3.43)

We now need to find the function φβ1,...,βk(xk, . . . , x1) explicitly.

Lemma 3.6. If p1 = 2, then

φβ1,...,βk(xk, . . . , x1) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

2λ(x1)

, if k = 1,

[1 +

1λ(xk, . . . , x2)

]1

λ(xk, . . . , x1), if k ≥ 2.

(3.44)

If pi /= 2 for i = 1, 2, . . . , k, then

φβ1,...,βk(xk, . . . , x1) =[1 +

1λ(xk, . . . , x1)

]1

λ(xk, . . . , x1). (3.45)

Proof. We first assume that p1 = 2. Then by Proposition 2.2,

bβ1,β2,...,βk = R(

Zpβ1+11 p

β22 p

β33 ···pβk

k

)(3.46)

is the coefficient of xβ1+11 xβ22 x

β33 · · ·xβk

kof

1λ(xk, . . . , x1)

, (3.47)

which implies that bβ1,β2,...,βk is the coefficient of xβ11 xβ22 x

β33 · · ·xβk

kof

2λ(x1)

if k = 1,

[1 +

1λ(xk, . . . , x2)

]1

λ(xk, . . . , x1)if k ≥ 2,

(3.48)

Page 13: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 13

and hence by the definition of φ we get that

φβ1,...,βk(xk, . . . , x1) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

2λ(x1)

, if k = 1,

[1 +

1λ(xk, . . . , x2)

]1

λ(xk, . . . , x1), if k ≥ 2.

(3.49)

Assume now that pi /= 2 for i = 1, 2, . . . , k. Since bβ1,...,βk = R(Z2p

β11 p

β22 ···pβk

k

), by

Proposition 2.2 bβ1,...,βk is the coefficient of x11x

β12 x

β23 · · ·xβkk+1 of

1λ(xk+1, . . . , x1)

. (3.50)

Since

1λ(xk+1, . . . , x1)

=1

λ(xk+1, . . . , x2) − (1 + λ(xk+1, . . . , x2))x1

=1

λ(xk+1, . . . , x2)1

1 − [1 + (1/λ(xk+1, . . . , x2))]x1

(3.51)

by the definition, bβ1,...,βk is the coefficient of xβ12 xβ23 · · ·xβkk+1 of

1λ(xk+1, . . . , x2)

[1 +

1λ(xk+1, . . . , x2)

]. (3.52)

By changing the variables x2, x3, . . . , xk+1 by x1, x2, . . . , xk, respectively, we get that bβ1,...,βk is

the coefficient of xβ11 xβ22 · · ·xβkk of

1λ(xk, . . . , x1)

[1 +

1λ(xk, . . . , x1)

]. (3.53)

By the definition of φβ1,...,βk(xk, . . . , x1), we have

φβ1,...,βk(xk, . . . , x1) =1

λ(xk, . . . , x1)

[1 +

1λ(xk, . . . , x1)

]. (3.54)

By Proposition 2.1, (3.43), and Lemma 3.6, we have the following theorem.

Theorem 3.7. Let

n := pβ11 pβ22 · · · pβk

k, (3.55)

Page 14: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

14 Discrete Dynamics in Nature and Society

be a positive integer such that p1, . . . , pk are distinct prime numbers and β1, . . . , βk are positive inte-gers. Let

B4n :=⟨a, b | a2n = e, b2 = an, bab−1 = a−1

⟩(3.56)

be the dicyclic group of order 4n. Let R(B4n) be the number of rooted chains of subgroups in the latticeof subgroups of B4n.

(1) If p1 = 2, then R(B4n) is the coefficient of xβ11 xβ22 · · ·xβk

kof

ψβ1,...,βk(xk, . . . , x1) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[1 +

1μ(x1)

]2

λ(x1), if k = 1,

[1 +

1μ(xk, . . . , x1)

][1 +

1λ(xk, . . . , x2)

]1

λ(xk, . . . , x1), if k ≥ 2.

(3.57)

(2) If pi /= 2 for i = 1, 2, . . . , k, then R(B4n) is the coefficient of xβ11 xβ22 · · ·xβkk of

ψβ1,...,βk(xk, . . . , x1) =[1 +

1μ(xk, . . . , x1)

]1

λ(xk, . . . , x1)

[1 +

1λ(xk, . . . , x1)

]. (3.58)

Furthermore, the number C(B4n) of chains of subgroups in the lattice of subgroups of B4n isthe coefficient of xβ11 x

β22 · · ·xβk

kof

2ψβ1,...,βk(xk, . . . , x1) −k∏

i=1

11 − xi .

(3.59)

We now want to find the coefficient of xβ11 xβ22 · · ·xβkk of ψβ1,...,βk(xk, . . . , x1) explicitly.

Since

1μ(xk, . . . , x1)

=1

μ(xk, . . . , x2)1

1 − [1 + (1/μ(xk, . . . , x2))]p1x1

, (3.60)

by the definition, the coefficient of xβ11 of 1/μ(xk, . . . , x1) is

1μ(xk, . . . , x2)

[1 +

1μ(xk, . . . , x2)

]β1pβ11

= pβ11

β1∑

i1=0

(β1i1

)[1

μ(xk, . . . , x2)

]i1+1

= pβ11

β1∑

i1=0

(β1i1

)[1

μ(xk, . . . , x3)

]i1+1[

11 − [1 + (1/μ(xk, . . . , x3)

)]p2x2

]i1+1.

(3.61)

Page 15: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 15

Thus the coefficient of xβ11 xβ22 of 1/μ(xk, . . . , x1) is

pβ11 p

β22

β1∑

i1=0

(β1i1

)(i1 + β2β2

)[1

μ(xk, . . . , x3)

]i1+1[1 +

1μ(xk, . . . , x3)

]β2

= pβ11 pβ22

β1∑

i1=0

β2∑

i2=0

(β1i1

)(β2i2

)(i1 + β2β2

)[1

μ(xk, . . . , x3)

]i1+i2+1.

(3.62)

Continuing this process, one can see that the coefficient of xβ11 xβ22 · · ·xβkk of 1/μ(xk, . . . , x1) is

2βkpβ11 pβ22 · · · pβkk

β1∑

i1=0

β2∑

i2=0

· · ·βk−1∑

ik−1=0

k−1∏

r=1

(βrir

)⎛

⎝βr+1 +r∑

m=1im

βr+1

⎠. (3.63)

Similarly one can see that the coefficient of xβ11 xβ22 · · ·xβkk of 1/λ(xk, . . . , x1) is

2βkβ1∑

i1=0

β2∑

i2=0

· · ·βk−1∑

ik−1=0

k−1∏

r=1

(βrir

)⎛

⎝βr+1 +r∑

m=1im

βr+1

⎠, (3.64)

the coefficient of xβ11 xβ22 · · ·xβk

kof [1 + (1/λ(xk, . . . , x2))](1/λ(xk, . . . , x1)) is

2βkβ1+1∑

i1=0

β2∑

i2=0

β3∑

i3=0

· · ·βk−1∑

ik−1=0

(β1 + 1i1

)(β2 + i1β2

) k−1∏

r=2

(βrir

)⎛

⎝βr+1 +r∑

m=1im

βr+1

⎠ (3.65)

and the coefficient of xβ11 xβ22 · · ·xβk

kof 1/λ(xk, . . . , x1)

2 is

(β1 + 1

)2βk

β1∑

i1=0

β2∑

i2=0

· · ·βk−1∑

ik−1=0

k−1∏

r=1

(βrir

)⎛

⎜⎝βr+1 +

r∑

m=1im + 1

βr+1

⎟⎠. (3.66)

Therefore, one can have the following.

Corollary 3.8. Let n and B4n be the positive integer and the dicyclic group, respectively, defined inTheorem 3.7. Let R(B4n) be the number of rooted chains of subgroups in the lattice of subgroups ofB4n.

Page 16: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

16 Discrete Dynamics in Nature and Society

(1) If p1 = 2, then

R(B4n) = 2βkβ1+1∑

i1=0

β2∑

i2=0

β3∑

i3=0

· · ·βk−1∑

ik−1=0

(β1 + 1i1

)(β2 + i1β2

) k−1∏

r=2

(βrir

)⎛

⎝βr+1 +r∑

m=1im

βr+1

+ 2βkβ1∑

j1=0

β2∑

j2=0

· · ·βk∑

jk=0

⎣pj11 p

j22 · · · pjkk

j1∑

i1=0

j2∑

i2=0

· · ·jk−1∑

ik−1=0

k−1∏

r=1

(jrir

)⎛

⎝jr+1 +r∑

m=1im

jr+1

×⎡

⎣β1−j1+1∑

i1=0

β2−j2∑

i2=0

β3−j3∑

i3=0

· · ·βk−1−jk−1∑

ik−1=0

(β1 − j1 + 1

i1

)(β2 − j2 + i1β2 − j2

)

×k−1∏

r=2

(βr − jrir

)⎛

⎝βr+1 − jr+1 +r∑

m=1im

βr+1 − jr+1

⎦,

(3.67)

where if k = 1, then R(B4·2β1 ) = 22β1+2 and if k = 2, then

R(B4·2β1pβ22

)= 2β2

β1+1∑

i1=0

(β1 + 1i1

)(β2 + i1β2

)

+ 2β2β1∑

j1=0

β2∑

j2=0

[[

2j1pj22

j1∑

i1=0

(j1i1

)(j2 + i1j2

)]

×⎡

⎣β1−j1+1∑

i1=0

(β1 − j1 + 1

i1

)(β2 − j2 + i1β2 − j2

)⎤

⎦.

(3.68)

(2) If pi /= 2 for i = 1, 2, . . . , k, then

R(B4n) = 2βkβ1∑

i1=0

β2∑

i2=0

· · ·βk−1∑

ik−1=0

k−1∏

r=1

(βrir

)⎛

⎝βr+1 +r∑

m=1im

βr+1

+(β1 + 1

)2βk

β1∑

i1=0

β2∑

i2=0

· · ·βk−1∑

ik−1=0

k−1∏

r=1

(βrir

)⎛

⎝βr+1 + 1 +r∑

m=1im

βr+1

+2βkβ1∑

j1=0

β2∑

j2=0

· · ·βk∑

jk=0

⎣pj11 p

j22 · · · pjkk

j1∑

i1=0

j2∑

i2=0

· · ·jk−1∑

ik−1=0

k−1∏

r=1

(jrir

)⎛

⎝jr+1 +r∑

m=1im

jr+1

×⎡

⎣β1−j1∑

i1=0

β2−j2∑

i2=0

· · ·βk−1−jk−1∑

ik−1=0

k−1∏

r=1

(βr − jrir

)⎛

⎝βr+1 − jr+1 +r∑

m=1im

βr+1 − jr+1

Page 17: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Discrete Dynamics in Nature and Society 17

+ 2βkβ1∑

j1=0

β2∑

j2=0

· · ·βk∑

jk=0

⎣pj11 p

j22 · · · pjk

k

j1∑

i1=0

j2∑

i2=0

· · ·jk−1∑

ik−1=0

k−1∏

r=1

(jrir

)⎛

⎝jr+1 +r∑

m=1im

jr+1

×⎡

⎣(β1 − j1 + 1

)β1−j1∑

i1=0

β2−j2∑

i2=0

· · ·βk−1−jk−1∑

ik−1=0

k−1∏

r=1

(βr − jrir

)

×⎛

⎝βr+1 − jr+1 + 1 +r∑

m=1im

βr+1 − jr+1

⎦,

(3.69)

where if k = 1, then

R(B4p

β11

)= 2β1 +

(β1 + 1

)2β1 + 2β1

β1∑

j1=0

pj11 + 2β1

β1∑

j1=0

pj11

(β1 − j1 + 1

)

= 2β1

⎣β1 + 2 +pβ1+11 − 1p1 − 1

+pβ1+21 − (β1 + 2

)p1 + β1 + 1

(p1 − 1

)2

⎦.

(3.70)

Acknowledgments

The first author was funded by the Korean Government (KRF-2009-353-C00040). In the caseof the third author, this research was supported by Basic Science Research Program Throughthe National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2011-0025252).

References

[1] V. Murali and B. B. Makamba, “On an equivalence of fuzzy subgroups. II,” Fuzzy Sets and Systems, vol.136, no. 1, pp. 93–104, 2003.

[2] V. Murali and B. B. Makamba, “Counting the number of fuzzy subgroups of an abelian group of orderpnqm,” Fuzzy Sets and Systems, vol. 144, no. 3, pp. 459–470, 2004.

[3] J.-M. Oh, “The number of chains of subgroups of a finite cycle group,” European Journal of Combinatorics,vol. 33, no. 2, pp. 259–266, 2012.

[4] M. Tarnauceanu and L. Bentea, “On the number of fuzzy subgroups of finite abelian groups,” FuzzySets and Systems, vol. 159, no. 9, pp. 1084–1096, 2008.

[5] J. M. Oh, “The number of chains of subgroups of the dihedral group,” Submitted.[6] J. S. Rose, A Course on Group Theory, Dover Publications, New York, NY, USA, 1994.[7] W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, NJ, USA, 1964.[8] M. Aigner, Combinatorial Theory, Springer, New York, NY, USA, 1979.[9] A. Tucker, Applied Combinatorics, John Wiley & Sons, New York, NY, USA, 1995.

Page 18: €¦ · 2 Discrete Dynamics in Nature and Society 2. Preliminaries Given a group G,letC G , U G ,andR G be the collection of chains of subgroups of G,of unrooted chains of subgroups

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of