2005-Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying

Embed Size (px)

DESCRIPTION

Arquivo com classificações de metais

Citation preview

  • Classication of Bulk Metallic Glasses by Atomic Size Dierence,

    Heat of Mixing and Period of Constituent Elements and Its Application

    to Characterization of the Main Alloying Element

    Akira Takeuchi and Akihisa Inoue

    Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

    Bulk metallic glasses (BMGs) have been classied according to the atomic size dierence, heat of mixing (Hmix) and period of theconstituent elements in the periodic table. The BMGs discovered to date are classied into seven groups on the basis of a previous result byInoue. The seven groups are as follows: (G-I) ETM/Ln-LTM/BM-Al/Ga, (G-II) ETM/Ln-LTM/BM-Metalloid, (G-III) Al/Ga-LTM/BM-Metalloid, (G-IV) IIA-ETM/Ln-LTM/BM, (G-V) LTM/BM-Metalloid, (G-VI) ETM/Ln-LTM/BM and (G-VII) IIA-LTM/BM, where ETM,Ln, LTM, BM and IIA refer to early transition, lanthanide, late transition, group IIIBIVB and group IIA-group metals, respectively. The mainalloying element of ternary G-I, G-V and G-VII, ternary G-II and G-IV, and ternary G-VI BMGs is the largest, intermediate and smallest atomicradius compared to the other alloying elements, respectively. The main alloying element of ternary BMGs belonging to G-I, G-V, G-VI and G-VII is an element in the atomic pair with the largest and negative value of Hmix (HmixL.N.), while the main element of ternary BMGs belongingto G-II and G-IV is independent of the atomic pair with HmixL.N.. The characteristics of the main element derived for the ternary BMGs aredirectly applicable to multicomponent BMGs belonging to G-I, G-II, G-IV (Mg-based BMGs), G-V and G-VII. The main element can be thelarger-sized element in the atomic pair withHmixL.N. or in the same group as the other elements for multicomponent BMGs belonging to G-III, G-IV (Be-containing Zr-based BMG) and G-VI. The main element of BMGs belonging to G-VI tends to change from the element with the smallestatomic radius in a ternary system to an element with a relatively large atomic size in a multicomponent system. The change is due to an increasein glass-forming ability through multicomponent alloying of BMGs belonging to G-VI. The results of the classication of BMGs obtained in thepresent study are important for further development of BMGs, with the results providing a road map for the development of new BMGcompositions.

    (Received June 16, 2005; Accepted August 8, 2005; Published December 15, 2005)

    Keywords: bulk metallic glass, mixing enthalpy, atomic radius, periodic table, main element, ternary system, multicomponent system, glass-

    forming ability, atomic conguration, interchangeability

    1. Introduction

    It is widely known that metallic glasses are solid alloysexhibiting many superior properties to crystalline alloys. Theunique properties originate from the random atomic arrange-ment of metallic glasses that contrasts with the regular atomiclattice arrangement found in crystalline alloys. Rapidquenching from the melt for the fabrication of metallicglasses is required since the random atomic arrangement is anon-equilibrium state. However, the size of metallic glasssamples fabricated in this manner is constrained to less thanone millimeter due to the high critical cooling rate requiredfor the formation of conventional metallic glasses. Only afew metallic glasses have been reported to have been formedas bulk materials up until the early 1980s1) due to theconstraints on the sample size.Since 1988, a number of alloys with a high glass-forming

    ability and able to be fabricated as bulk metallic glasses(BMGs) have been discovered in multicomponent Mg-,24)

    La-,5) Zr-,6,7) Fe-,8,9) and Pd-based10,11) alloy systems. Sub-sequently, Inoue12) succeeded in classifying the BMGs intove groups by focusing on the characteristics of theconstituent elements with respect to the chemical speciesand their atomic size dierences. This classication is usefulfor understanding the characteristics of BMGs. However, thisclassication is inadequate for the development of newBMGs for a number of reasons. First, an updated review ofthe classication system of BMGs is required as many BMGshave been discovered since the classication system by Inouewas proposed back in 2000. Second, the classication systemdescribes the alloy system but not the range of glass-forming

    compositions in that system. For instance, it is widelyaccepted that the Zr-based ZrAlNi alloy is a typical BMG,forming BMGs when the composition is Zr-rich. Theprevious classication system organizes the ZrAlNisystem into a single group of BMGs, even though BMGsfabricated to date in the system comprising Zr, Ni and Al areneither Al-based nor Ni-based BMGs. Furthermore, the ZrAlNi system has a wide composition range for the formationof metallic glasses6) over the Ni-rich side and a separatecomposition range for formation of the amorphous phase6) inthe Al-rich side. Third, this classication of BMGs fails toinclude Pd- and Pt-based alloy systems, although these alloysare widely accepted as typical BMGs.The inadequacies mentioned above illustrate that the

    classication system for BMGs is incomplete due to a lack ofdening properties, aside from chemical species and atomicsize dierences. In other words, a more practical classica-tion system for BMGs can be developed by taking intoaccount important quantities, such as heat of mixing of theconstituent elements.12) In addition, it is reasonable to assumethat the periodicity of the elements in the periodic table isalso likely to be an important quantity since the atomic sizeand heat of mixing should be related to the period of theelement.The purposes of the present paper are to summarize the

    characteristics of the known BMGs in terms of the atomicsize dierence, heat of mixing and period of the constituentelements, and to propose a classication system for BMGsthat could be used to assist with further development ofBMGs.

    Materials Transactions, Vol. 46, No. 12 (2005) pp. 2817 to 2829Special Issue on Materials Science of Bulk Metallic Glasses#2005 The Japan Institute of Metals OVERVIEW

  • Table 1 The values of HmixfABg (kJ/mol) calculated by Miedemas model for atomic pairs between the elements with atomic numbers of (a) 1 to 46 and (b) 46 to 94. The values of HmixfABg for atomic pairs

    containing H, C or N are treated as 0 kJ/mol in a previous study.14

    2818

    A.Takeuchi

    andA.Inoue

  • Table 2 The values ofHmixfABg (kJ/mol) calculated byMiedemas model for atomic pairs between elements with atomic numbers (a) 1 to 45 and (b) 47 to 94. The values ofHmixfABg for atomic pairs containing

    H, C or N are treated as 0 kJ/mol in a previous study.14

    Classi

    cationofBulk

    Metallic

    Glasses

    byAtomicSize

    Dieren

    ce,Heat

    ofMixingandPerio

    dofConstitu

    entElem

    ents2819

  • 2. Data Used for Analysis

    2.1 Heat of MixingThe values of heat of mixing were quoted as enthalpy of

    mixing (HmixfABg)13) of the binary liquid in an AB system at

    an equi-atomic composition. From the Miedemas model,13)

    one can deal withHmixfABg for TMTM and TMNTM atomicpairs (except for those of gaseous elements) where TM andNTM are a transition metal and non-transition metalcontaining metalloid, respectively. In addition, values ofHmixfABg for a total of 1053 atomic pairs including NTMNTM atomic pairs were quoted14) for ternary alloy systemslisted in a databook for the formation of amorphous alloys.15)

    On the basis of a previous report,14) HmixfABg was calculatedfor 2628 atomic pairs from 73 elements; that is, the atomicpairs that can be dealt with by Miedemas model. Tables 1and 2 summarize the values of HmixfABg, while Table 3explains how to read the values of HmixfABg. In Tables 1 and2, it should be noted that the values of HmixfABg containingNTM (H, B, C, N, P, Si and Ge) are modied14) from theoriginal values of HmixfABg

    13) due to the subtraction termrequired for NTMs to transform to metallic elements13)

    (Htransi ). The values of Htransi (i H, B, C, N, P, Si and

    Ge) are 100, 30, 180, 310, 17, 34 and 25 kJ/mol, respec-tively.13) The subtraction term for a binary AB system withan equiatomic composition is Htransi =2 for TMNTM andHtransi Htransj =2 for NTMNTM, where i and j refer to

    the two elements (i 6 j) in NTMs. It is noted that values ofHmixfABg for atomic pairs containing H, C or N are treated as0 kJ/mol in a previous study.14)

    2.2 Atomic SizeThe atomic size of an element is quoted from a databook16)

    as the atomic radius which is taken as half of the interatomicdistance in a crystalline state. Figure 1 illustrates the atomicradius of elements and the relationship with their position inthe periodic table, together with the numerical values ofatomic radius.

    2.3 Previous Classication of BMGs12)

    Figure 2 illustrates the previous classication system forBMGs as considered by Inoue.12) From Fig. 2, it is evidentthat the four groups (G-I to G-IV) of the BMGs are composedof three in ve groups of elements: an early transition metal(ETM), lanthanide metal (Ln), late transition metal (LTM),simple metal, metalloid and group of elements (Al,Ga,Sn).An exception to this rule is BMGs of G-III that are reported12)

    to form as multicomponent systems comprising severalconstituent elements as illustrated by the Fe(Al,Ga)(P,C,B)system.7) Another exception to this rule is BMGs of G-Vconsisting of elements from two groups of elements (LTMandMetalloid). This is exemplied by PdNiP BMG that Pdand Ni belong to LTM, and P belongs to Metalloid. This typeof BMG is designated by line type in the present paper.

    Table 3 Conventional table for the values of HmixfABg. Tables 1 and 2 are prepared using the symmetry of the table. The square partsurrounded by thick lines corresponds to Table 1. The triangle parts surrounded by thick lines with (a,b) coordinates of (1-45,1-45) and

    (47-94,47-94) correspond to the upper right and lower left parts of Table 2, respectively.

    2820 A. Takeuchi and A. Inoue

  • 2.4 The BMGs discovered after 2000Several BMGs have been discovered since the proposed

    classication system for BMGs by Inoue in 2000, includingthe CuZrTi,17) CaMgCu,18,19) CaMgZn,20) NiNbSn,21) NiNbTa,22) TiCuNi based system23) and TiCuNiMoFe system.24) These new BMGs are also analyzed inthe present study.

    3. Results

    Figure 3 shows the result of classifying BMGs based onBMGs from previous results12) and new BMGs as describedin Section 2. It is noted that there are dierences in elementgroups between Figs. 2 and 3. The element group of AlGaSn in Fig. 2 is modied as AlGa in Fig. 3. Simple metals(Be,Mg) are extended to alkaline earth metals (IIA: Be,Mg,Ca). In addition, LTM are extended to LTM containing theIIIBIVB metals (LTM/BM). The reason for dierences inthe groups of elements between Figs. 2 and 3 will bediscussed in Section 4. As a result, BMGs discovered to datecan be classied into seven groups based on the constituentelements belonging to the groups of elements in Fig. 3. Thesegroups are G-I: ETM/Ln-LTM/BM-Al/Ga, G-II: ETM/Ln-LTM/BM-Metalloid, G-III: Al/Ga-LTM/BM-Metalloid,G-IV: IIA-ETM/Ln-LTM/BM, G-V: LTM/BM-Metalloid,

    G-VI: ETM/Ln-LTM/BM, and G-VII: IIA-LTM/BM. Therepresentative alloy systems for each of these groups are alsotabulated in Fig. 3. The BMGs belonging to G-V, G-VI andG-VII are drawn as a line type in Fig. 3 as a result of thepresent classication.It should be noted that Fig. 3 is a projection of Fig. 4,

    which is a solid gure with Fig. 3 at the base and with aperpendicular axis corresponding to the period as well. InFig. 4, all of the BMGs within each group form either atriangle, polygon or polyhedron with three or more elementswhich are located at the period axis of each group ofelements. Accordingly, the groups G-V to G-VII, which arediscerned as a line type combining two kinds of groups ofelements in Fig. 3, can form either a triangle, polygon orpolyhedron in Fig. 4, which explains why the PdNiP BMGbelongs to G-V. Thus, the period of the constituent elementsthat compose BMGs is also an important quantity for theformation of a BMG.Figure 5 illustrates the relationship between the atomic

    size dierence, heat of mixing of the constituent elements(Hmix) and main element of the ternary BMGs. Figure 5(a)shows the atomic radius of elements plotted in a sequencefrom the smallest (H) to the largest (Cs), followed byFig. 5(b), which is drawn by tracing the locations of theelements in Fig. 5(a) horizontally for the constituent ele-

    Fig. 1 Atomic radii16) of elements plotted as a 3-D bar graph over the periodic table. The numerical values of the atomic radii (nm) for the

    elements are also shown at the top. Atomic radius of Lanthanide (Ln) and Actinide (Ac) metals, which are belonging to IIIA, are plotted

    separately. Half the interatomic distance is regarded as the atomic radius.16) The interatomic radius is determined by metallic, covalent

    and van der Waals bondings in metals, non-metals and rare gases, respectively. The elements in the metal-nonmetal region of the periodic

    table and elements with polymorphous transformations have the following atomic radii (nm) (C: 0.071, Mn: 0.150, Zn: 0.148, Ga: 0.138,

    Cd: 0.166, In: 0.168, Sn: 0.151, Hg: 0.158, Tl: 0.170, U: 0.150, Np: 0.148).

    Classication of Bulk Metallic Glasses by Atomic Size Dierence, Heat of Mixing and Period of Constituent Elements 2821

  • ments of the representative ternary BMGs belonging to eachof the seven groups. The following ternary alloys werechosen as representative BMGs from each of the sevengroups: ZrAlNi6) and LaAlNi5) for G-I, FeZrB9) forG-II, MgLaNi4) and MgCuY3) for G-IV, PdNiP11) andPdNiSi1) for G-V, NiNbSn,21) NiNbTa22) and CuTiZr17) for G-VI, and CaMgCu18) and CaMgZn20) forG-VII. In addition, the relationship between Hmix andtypical compositions of ternary BMGs are summarized inFig. 5(c). Figure 5 shows the characteristics of a ternaryBMG with a composition of AaBbCc, and correspondingatomic radii of rA, rB and rC (where rA > rB > rC) andmixing enthalpies of mixing of HmixfABg,H

    mixfBCg andH

    mixfCAg,

    respectively. The largest, negative enthalpy of mixing(HmixL.N.) is underlined with the symbol H

    mixfABg and its

    numerical value. The main constituent elements with thehighest composition in a system are illustrated with closedcircles and white lettering. This is exemplied byZr60Ni25Al15 BMG in Fig. 5(c) that Zr with 60 at%, whichis the main element in the system, is illustrated with closedcircles and white lettering and that HmixfZrNig value of 49kJ/mol, which is the largest, negative enthalpy of mixing inthe system, is underlined.From Fig. 5, it is obvious that the main element of a BMG

    has the largest radius for G-I, G-V and G-VII, smallest radiusfor G-VI, and an intermediate radius for G-II and G-IV. It isnoted that Pd and Ni in Pd40Ni40P20 BMG are equal in theirstoichiometry, such that Ni could also be considered to be the

    main element. However, Pd is regarded as the main elementin this work. The details will be discussed in Section 46.The important point to note for Hmix is that BMGsbelonging to G-II and G-IV have HmixL.N. for the C-A atomicpair consisting of the largest and the smallest constituentelements (HmixL.N. HmixfCAg). Figure 5 shows that the ratiosof HmixfABg=H

    mixfBCg or H

    mixfBCg=H

    mixfABg, and jHmixfCAgj=

    fjHmixfABgj jHmixfBCgjg of the G-II and G-IV BMGs for theFeZrB, MgLaNi and MgCuY systems are in the rangeof 12 and 1.12.4, respectively. In contrast, the mainelement is independent of the atomic pair with HmixL.N. forBMGs belonging to G-I, G-V and G-VII.

    4. Discussion

    The classication of BMGs depends on the element groupsof the constituent elements. Thus, the following items will bediscussed in terms of the element groups: (1) Sn in the groupof elements of LTM/BM, (2) extension of an element groupas a function of the period, (3) Ca in the group of elements ofIIA with simple metals (Be,Mg), and (4) BMGs containingconstituent elements in the same group in the periodic table.In addition, (5) applicability of the characteristics of the mainelement in BMGs based on multicomponent systems, (6)exchangeability of constituent elements in multicomponentBMGs, and (7) signicance of the classication of BMGswill be discussed.

    Ln,E

    TM>A

    l,Ga>

    LTM

    M>LTM>Be

    Al,Ga>LTM>Metalloid

    Ln,ETM>LTM

    >Metalloid

    >Mg>LTM

    TMLn,

    P

    Pd-Ni-P

    Pt-Ni-PPd-Cu-Ni-PV

    Zr-Ti-Be-Ni-CuMg-Ln-CuMg-Ln-Ni

    IV

    Fe-(Al,Ga)-metalloidIIICo-Zr-Nb-BFe-Co-Ln-BFe-Zr-Hf-B

    Fe-Hf-BFe-Zr-B

    II

    Ln-Ga-CuZr-Ga-NiLn-Ga-NiZr-Ti-Al-Ni-Cu

    Ln-Al-Ni-CuZr-Al-Ni-CuLn-Al-CuZr-Al-CuLn-Al-NiZr-Al-Ni

    I

    ETM: Early Transition MetalLn: Lanthanide MetalLTM: Late Transition Metal

    ETMg

    ,BeSim

    pleMe

    tal

    E

    ETMLn

    LTM

    Met-alloid

    VVPP

    dCu

    Pt,Ni,

    >

    Ga,SnAl, >III

    IV

    I II

    Fig. 2 Previous BMG classication system proposed by Inoue.12)

    2822 A. Takeuchi and A. Inoue

  • 4.1 Sn in the element group of LTM/BMAs shown in Fig. 2, Inoue previously classied Sn in the

    group of elements of Al, Ga, Sn on the basis of reports that aBMG is formed in the TiNiCuSn system25)the onlyknown BMG containing Sn prior to 2000. Subsequently,BMGs containing Sn have been discovered for the followingsystems: NiNbSn,21) TiCuNiSn,23) TiCuNiBSiSn,26) NiTiZr(Si,Sn),27) Cu47Ti33Zr11Ni8X1 (X Fe, Si,Sn, Pb)28) and Ni59Zr20Ti16Si2Sn3.

    29)

    The reason for shifting Sn from (Al,Ga,Sn) to the LTM/BM group of elements is due to the following considerations.First, the main element depends on the type of BMG as forternary BMGs in Fig. 5. Second, the characteristics of aBMG are determined by the major constituent elements withrespect to composition. In other words, minor elements oradditional elements scarcely change the characteristics ofBMGs. This leads to the third consideration that similarBMGs should be classied into the same group of BMGs.The rst consideration is supported if Sn is placed in the

    LTM/BM group of elements, which leads to NiNbSnBMGs being classied as G-VI BMGs. In addition, theNi59:5Nb33:6Sn6:9 BMG

    25) satises the characteristics of themain element of the BMGs belonging to G-VI. That is, thesmallest element (Ni) is the main element. On the other hand,if Sn is placed in the element group of (Al,Ga,Sn)theelement group used for the analysis of the characteristics ofBMGs in the previous study12)the Ni59:5Nb33:6Sn6:9 BMGis classied as a G-I BMG. The element with the largest

    atomic radius (Sn) may be the main element for BMGsbelonging to G-I, which is at variance with Ni59:5Nb33:6Sn6:9BMG in which Ni is the main element. The secondconsideration is proven by the similarities betweenNi59:5Nb33:6Sn6:9 and Ni60Nb30Ta10

    22) BMGs in terms ofcomposition, atomic radius and Hmix of the constituentelements. For example, the dierences in composition ofeach of the constituent elements are within 4 at%. In addition,both BMGs have a common HmixfNi{Nbg and one atomic pairwith aHmix that is almost zero. For example,HmixfNb{Sng andHmixfNb{Tag are 1 and 0 kJ/mol, respectively, and Hmixfor NiSn and NiTa atomic pairs are negative values.Furthermore, the atomic radii of Sn and Ta are 0.137 and0.145 nm, respectively, which is quite similar to Ni and Nbwith atomic radii of 0.125 and 0.143 nm, respectively. Fromthese two considerations, one can observe the similaritiesbetween Ni59:5Nb33:6Sn6:9 and Ni60Nb30Ta10 BMGs, satisfy-ing the third consideration that similar BMGs should beclassied into the same group.If Sn is placed in the LTM group of elements, it is possible

    to classify various Sn-containing BMGs as follows: TiCuNiSn24) in G-VI, TiCuNiBSiSn26) in G-II, NiTiZrSn27) in G-VI, Cu47Ti33Zr11Ni8X1 (X Fe, Sn, Pb)28) inG-VI, and Ni59Zr20Ti16Si2Sn3

    29) in G-II. In stark contrast,the (Al,Ga,Sn) group of elements does not allow theplacement of TiCuNiBSiSn and Ni59Zr20Ti16Si2Sn3BMGs into any of the groups as shown in Fig. 3.

    Ti-Ni-Cu-Sn

    Ni-Nb-Ta, Ni-Nb-Sn

    Ti-Cu-Ni-Mo-Fe

    Ti-Zr-Cu-Ni

    Cu-Zr-Ti

    VI

    Mg-Ln-Ni, Mg-Ln-Cu

    IV Zr-Ti-Be-Ni-CuTi-Cu-Ni-Sn-BeTi-Cu-Ni-Sn-Be-Zr

    Pd-Ni-PV Pd-Cu-Ni-P

    Pt-Ni-P

    Ca-Mg-CuVII Ca-Mg-Zn

    Fe-(Al,Ga)-MetalloidIIICo-Fe-Ta-BCo-Zr-Nb-BFe-Co-Ln-BFe-Zr-Hf-B

    Fe-Zr-B, Fe-Hf-B

    II

    Zr-Ga-Ni, Ln-Ga-Ni Ln-Ga-CuZr-Ti-Al-Ni-Cu

    Zr-Al-Ni-Cu, Ln-Al-Ni-CuZr-Al-Cu, Ln-Al-CuZr-Al-Ni, Ln-Al-Ni

    I

    LTMBM

    I II

    VI

    IIIV

    IVVII

    IIA

    Al,Ga Met-alloid

    ETMLn

    IIA: Alkaline MetalETM: Early Transition Metal (IIIA-VIIA)Ln: Lanthanide MetalLTM: Late Transition Metal (VIII-VIIB)BM: IIIB-IVB Metal (In,Sn,Tl,Pb)

    Fig. 3 Classication of BMGs discovered to date, showing seven groups denoted by G-I to G-VII. The ETM and LTM represent the

    transition metals belonging to groups IIIAVIIA and VIIIIIB in the periodic table, respectively.

    Classication of Bulk Metallic Glasses by Atomic Size Dierence, Heat of Mixing and Period of Constituent Elements 2823

  • 4.2 Extension of element groups as a function of theperiod

    As shown in Fig. 3, element group was extended as afunction of the period by considering that Ni and Pd bothbelong to the LTM group of elements. This assumption issupported by the tendency for the atomic radii of transitionmetals to increase consideably between the fourth and fthperiod in the periodic table. For instance, the atomic radii16)

    of Ni, Pd and Pt, which belong to the fourth, fth and sixthperiod, are 0.125, 0.137 and 0.139 nm, respectively, and thatof Ti, Zr and Hf are 0.147, 0.162 and 0.160 nm, respectively.Thus, the dierence in atomic radii is greater betweentransition metals in the fourth and fth periods comparedwith those between the fth and sixth periods. For othertransition metals, this tendency is also shown in Fig. 6.The extending of element groups as a function of the

    period is important for understanding the characteristics ofBMGs. As described in Section 3, the PdNiP system formsa triangle in Fig. 4. However, it should be noted that BMGswith a thickness of several millimeters, described as a linetype within the solid gure, have not been reported. Forinstance, LTM(4)-LTM(4)-Metalloid(3), where the numbersin the parentheses denote the period of the element, is not aBMG-forming system as demonstrated by the NiFePsystem. On the other hand, the LTM(5)-LTM(4)-Metal-loid(3) is drawn as a line in Fig. 3 and triangle in Fig. 4, andis typied by the PdNiP BMG system. In general,

    dierences in atomic radius also correspond to a dierencein group and period on the periodic table. Hence, the periodof the constituent elements is also an important quantity forthe formation of BMGs.

    4.3 Ca in the IIA group of elements with Simple metal(Be,Mg)

    The element groups of Simple metal (Be,Mg) in Fig. 2 isextended to IIA in Fig. 3. The reasons for grouping Be, Mgand Ca into IIA are as follows. First, the atomic radii16) of Be,Mg and Ca are 0.113, 0.160, and 0.197 nm, respectively.Accordingly, the atomic radii of Be, Mg and Ca increasemonotonously with increasing period, as is also apparent inFig. 6(a). Second, one can discern the similarity with respectto atomic size dierences and Hmixs for CaMgZn andMgCuY systems in Fig. 5. The atomic radii of Ca, Mg andZn are 0.197, 0.160 and 0.133 nm, respectively. The atomicradii of Y, Mg and Cu are 0.182, 0.160 and 0.128 nm,respectively. In addition, only one value ofHmix is dierentamong the atomic pairs with the intermediate and smallestradii. For instance,Hmix for MgZn and MgCu are4 kJ/mol and 3 kJ/mol, respectively. However, Mg is the mainelement in the MgCuY system (G-IV), while Ca is themain element in the CaMgZn system (G-VII). From theseobservations, it is reasonable to include Ca in the IIA groupof elements.

    Period5-

    Y,Zr,Nb,Mo 5- Pd

    4-Fe,Ni,Co,Cu

    *5- Sn4-Ca4-Ti

    Period-Element(s)

    3- Mg

    3- Si,P

    2- B,C

    4- Zn

    2- Be

    6- Ln,Hf,Ta

    3- Al

    2

    3

    4

    5

    6

    5- Pt

    I

    VI

    V

    IVVII

    II

    4- Ga

    Fig. 4 A solid gure with a base of Fig. 3, and an extended axis of the period of the element in each group of elements. The representative

    ternary systems in each group of BMGs is drawn as a triangle for G-I: ZrAlNi, G-II: FeZrB, G-IV: MgCuY, G-V: PdNiP, G-VI:

    NiNbTa, G-VII: CaMgCu. The multicomponent BMGs with four or more elements can form a polygon or polyhedron in the solid

    gure. Asterisk denotes the element belonging to IBIVB (BM). Closed circle in the period axis denotes the absence of elements.

    2824 A. Takeuchi and A. Inoue

  • 4.4 BMGs containing constituent elements in the samegroup in the periodic table

    The BMGs placed in groups G-V to G-VII are charac-terized by having constituent elements that all fall into thesame group in the periodic table. As a result, these BMGs aredrawn as a line type in Fig. 3. The values of Hmix betweenatomic pairs are calculated to be 0 or nearly 0 kJ/mol forBMGs having their constituent elements in the same group inthe periodic table. Examples are NbTa, TiZr and NiPdatomic pairs (Fig. 5). Furthermore, the dierence in atomicradii for elements within the same group in the periodic tableis relatively small by comparison with elements fromdierent groups. For instance, the atomic radii16) of Ni, Nband Ta are 0.125, 0.143 and 0.143 nm, respectively. Verylittle dierence in atomic radius can be observed between Nband Ta, although this system is BMG-forming. Thus, it ispossible to conclude that the dierence in the period is priorto the dierence in atomic size in the case of BMGsconsisting of elements in the same group of the periodictable.

    4.5 Applicability of the characteristics of the mainelement of the BMGs in multicomponent systems

    Within the seven groups of BMGs, G-III is considerablydierent from the other groups with respect to the number ofnecessary elements for BMG formation. For instance, the Fe(Al,Ga)(P,C,B) alloy system requires as many as sixconstituent elements to form as a BMG. Conrmation of

    0

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Atom

    ic R

    adiu

    s, r

    / nm

    H

    NOF C

    BCl S

    PMnBe

    BrSe

    Si

    Ge

    Fe

    GaCr

    CoNi

    As

    Cu

    NpVZn

    RuRh I

    TcOs

    Ir

    Mo

    Pd

    W

    Re

    U

    PtSn

    Hg

    Al

    Nb

    TeTa

    Ag

    AuSb At

    TiCdHeLi

    Bi

    Ne MgHf

    PaZr

    In

    Pu

    Sc

    PoTl

    LuErDyHo

    TbTm

    Pb

    GdSm

    Pm

    Th

    Y

    Nd

    CsFr

    Rb

    KRa

    XeBa

    Sr

    Kr

    Eu

    CaYb

    ArAcLaNa

    Ce

    Pr

    -23-9

    0

    Cu

    Zr

    Ti30

    60

    10-29-30

    0

    Ni

    TaNb 10

    60

    30-71

    -26

    -25 10

    20

    70B

    Zr

    Fe -27-4

    -7 20

    30

    50Ni

    La

    Mg -22-3

    -6 10

    20

    70Cu

    Y

    Mg

    -36.5-34.5

    0 40

    20

    40P

    Pd

    Ni

    -55-19

    -14 77.5

    16.5

    6Si

    Pd

    Cu

    -49-22

    -44 60

    25

    15Ni

    Zr

    Al -27-22

    -38 55

    20

    25Ni

    La

    Al -13-3

    -6 70

    10

    20

    Ca

    Mg

    -22-4

    -6 65

    20

    15Zn

    Ca

    Mg-23-1

    -44 65

    27.5

    7.5Cu

    Zr

    Al -21-1

    -38 55

    20

    25Cu

    La

    Al-30-4

    -1 33.6

    59.5Ni

    Nb

    Sn 6.9

    I VIIVIVIIVI

    Rn

    La

    Al

    Ni

    Mg

    Cu

    CaLa

    AlCu

    AlCu

    Zr

    PdNi

    P

    Al

    Ni

    Zr

    PdCuSi

    Mg

    Cu

    Mg

    La

    Ni

    Y

    Zr

    Fe

    B

    Zn

    Mg

    Ca

    Cu

    ZrTi

    Ni

    TaSn Nb

    (a) (b)

    (c)

    Smallest Largest

    The atomic radius of the main element:

    AaBbCc System,rA>rB>rC ,

    mixHij / kJmol-1 ,

    mixHij :The largest and negative

    : Main Element A

    BC

    Aor

    BC

    A

    or

    mixHAB a

    c

    bC

    A

    BmixHBC

    mixHCAmixHAB mixHCA mixHCAmixHBC

    mixHAB

    C

    A

    BmixHBC

    mixHCA

    mixHAB /mixHBC

    mixHBC /mixHAB

    1 <

  • the adoptability of the characteristics of the main element ofBMGs as derived in Section 3 to multicomponent systems isrequired since typical BMGs are mostly based on quaternarysystems.Figure 7 shows Hmix for dierent atomic pairs for

    quaternary BMGs belonging to G-I (Zr65Al7:5Ni10Cu17:530)),

    G-II (Co43Fe20Ta5:5B31:531)), G-IV (Mg65Cu25Y5Gd5

    32) andMg65Cu15Y10Ag10

    33)), G-V (Pd40Cu30Ni10P2010)) and G-VII

    (Ca60Mg20Ag10Cu1019)). The values of Hmix are drawn in a

    tetrahedron for each BMG together with the quasi-ternarysystems, selected by taking three elements from the four,under the condition that the selected quasi-ternary systemsbelong to G-I to G-VII. For example, ZrAlNi and ZrAlCu quasi-ternary systems would be selected from ZrAlNi,ZrNiCu, ZrAlCu and AlCuNi if the ZrAlNiCuquaternary system was to be considered. The ZrNiCu andAlCuNi quasi-ternary systems were excluded since thesequasi-ternary systems do not belong to G-I to G-VII. In thesame way, one can select quasi-ternary systems for the otherquaternary BMGs. Here, it is noted that HmixL.N. is found inthe atomic pair of the selected quasi-ternary systems, and thecharacteristics of the main element analyzed for the ternaryBMGs can be applied to these quaternary BMGs belonging to

    G-I, G-II, G-IV, G-V and G-VII. Moreover, the multi-component BMGs in these groups with ve or moreconstituent elements show the same characteristics for themain element.In contrast, BMGs belonging to G-III, G-IV and G-VI have

    another tendency for the characteristic of the main element.Figure 8 shows the relationships of Hmixs between theatomic pairs for the multicomponent BMGs belonging to G-III (Fe72Al5Ga2P11C6B4

    8)), G-IV (Zr41:2Ti13:8Cu12:5Ni10-Be22:5

    7) and Ti40Zr25Ni8Cu9Be1823)) and G-VI (Ti50Ni20-

    Cu25Sn5,25) Ti34Zr11Cu47Ni8

    34) and Ti52Cu23Ni11Mo7Fe724)).

    In each alloy system, quasi-ternary systems are selected inthe same way as is described in Fig. 7. In Fig. 8, one canrecognize the same tendency as is shown in Fig. 7, namely,that HmixL.N. is also found in the atomic pair of the selectedquasi-ternary systems for these BMGs. It is proposed anassumption that the main element of multicomponent BMGshas a larger atomic radius in the atomic pair with HmixL.N..This assumption is applied to determine the characteristics ofthe main element for BMGs belonging to G-III(Fe72Al5Ga2P11C6B4) due to the absence of fundamentalternary BMGs in this group. Permitting the assumption, onecan detect Fe as the main element due to the facts thatHmixL.N.

    G-V: Pd40Cu30Ni10P20

    G-I: Zr65Al7.5Ni10Cu17.5 G-II: Co43Fe20Ta5.5B31.5

    G-VI: Mg65Cu25Y5Gd5

    G-VII: Ca60Mg20Ag10Cu10G-IV: Mg65Cu15Y10Ag10

    Al

    Ni

    Zr

    Cu-49

    65

    7.517.5

    -23 -44

    -224-1

    10

    Co

    B

    Ta

    Fe-54

    5.5

    4320

    -15 -24

    -24-26-1

    31.5

    Gd

    Cu

    Y

    Mg-22

    5

    565

    -6 0

    -22-3-6

    25

    Cu

    P

    Pd

    Ni

    -36.5

    40

    3010

    0-14

    -17.5-34.54

    20

    Mg

    Cu

    Y

    Ag-22

    10

    6510

    -29 -6

    -32-10

    15

    Mg

    Cu

    Ca

    Ag-13

    60

    2010

    -28 -6

    -32-10

    10

    -49-22

    -44 65

    10

    7.5

    Zr

    Al

    Ni

    -23-1

    -44 65

    17.5

    7.5

    Zr

    Al

    Cu

    -54-26

    -15 5.5

    31.5

    20

    Ta

    Fe

    B

    -54-24

    -24 5.5

    31.5

    15

    Ta

    Co

    B

    -22-3

    -6 5

    25

    65

    Y

    Mg

    Cu

    -22-3

    -6 5

    25

    65

    Gd

    Mg

    Cu

    -22-22

    -11 5

    25

    5

    Y

    Gd

    Cu

    -222

    -29 10

    15

    5

    Y

    Ag

    Cu

    -22-3

    -6 5

    15

    65

    Y

    Mg

    Cu

    -29-10

    -6 5

    15

    65

    Y

    Mg

    Ag

    -13-3

    -6 60

    10

    20

    Ca

    Mg

    Cu

    -28-10

    -6 60

    10

    20

    Ca

    Mg

    Ag

    -36.5-17.5

    -14 40

    20

    30

    Pd

    Cu

    P

    -36.5-34.5

    0 40

    20

    10

    Pd

    Ni

    P

    B

    D

    A

    C

    a

    bc

    dA

    mixHCA

    AaBbCcDd System,rA>rB>rC>rD ,

    mixHij / kJmol-1 ,

    mixHij :The largest and negative: Main Element

    mixHAD

    mixHAB

    mixHCDmixHBD

    mixHBC

    Fig. 7 The heat of mixing (HmixfABg) for atomic pairs of the quaternary BMGs belonging to G-I, G-II, G-VI, G-V and G-VII. The values ofHmixfABg (kJ/mol) are written with normal text. The value of H

    mixfABg with the largest, negative value for each BMG is underlined. The

    main elements are marked with solid circles in white letters, and the compositions of the system are written in italics. In each alloy system,

    quasi-ternary systems are selected from all of the possible systems for the alloy, provided that the selected quasi-ternary system belongs to

    the group of BMGs from G-I to G-VII. The locations of the elements in the tetrahedron depend on the atomic radius (r) of the constituent

    elements.

    2826 A. Takeuchi and A. Inoue

  • is found in the FeC atomic pair and that the atomic radius ofFe is larger than C. Thus, the assumption mentioned aboveholds for the Fe72Al5Ga2P11C6B4 BMG.The characteristics of the main element of multicomponent

    BMGs obtained under the assumption are applicable to theTiNiCuSn and TiCuNiMoFe systems belonging toG-VI. For instance, the largest element in these systems is Ti,which is the main element, and HmixL.N. is found in the TiNiatomic pair in both the TiNiCuSn and TiNi systems.From these results, one can identify Ti as the main elementwith respect to the atomic radius of the main element for TiNiCuSn and TiCuNiMoFe, coinciding with theexperimental results. Attention should be paid to the factthat the main element of BMGs belonging to G-VI in aternary system is the element with the smallest atomic radius.Thus, the main element of BMGs belonging to G-VI shiftsfrom the smallest to the largest one due to this multi-component alloying eect. It is widely accepted that theglass-forming ability of BMGs is enhanced by multicompo-nent alloying. Thus, this shift with respect to the size of themain element is due to the changes in the local atomicarrangement of BMGs. In other words, it can be interpreted tomean that the local atomic arrangement of BMGs belonging

    to G-VI become stable with increasing atomic radius of themain element.Aside from G-VI BMGs, the main element of

    Zr41:2Ti13:8Cu12:5Ni10Be22:5 BMG also exhibits the character-istics of the main element of multicomponent BMGs suchthat HmixL.N. is found in the ZrNi atomic pair and the atomicradius of Zr is larger than Ni. However, it has recently beenreported that Ti40Zr25Ni8Cu9Be18,

    23) which has a dierentcomposition to Zr41:2Ti13:8Cu12:5Ni10Be22:5, also forms aBMG, although both systems are in the same group of BMGs.The existence of a Ti-based TiZrNiCuBe BMG is atvariance with the characteristics of the main element ofmulticomponent BMGs. However, the variance can beinterpreted as the co-existence of BMG composition regionsin a multicomponent system, which is found in the TiZrCuNi system.34) It is reported34) that the TiZrCuNisystem has two BMG composition regions on the Ti- and Zr-rich sides owing to the near interchangeability between Niand Cu. Interchangeability between Ni and Cu can take placein both Zr- and Ti-based BMGs since the ZrTiCuNiBesystem also has Ni and Cu. Thus, the characteristics of themain element for multicomponent BMGs are modied asfollows: rst, the main element of the BMGs was determined

    G-IV: Zr41.2Ti13.8Cu12.5Ni10Be22.5, Ti40Zr25Ni8Cu9Be18

    Ti

    Cu -49

    41.2

    10

    13.8

    12.5

    -230

    -300 4

    Zr

    Be22.5

    -9-43

    -4

    -35

    Ni

    G-III: Fe72Al5Ga2P11C6B45

    -11 2

    72

    11

    46

    0

    -36

    -20.51

    -26-50 -39.5

    -11

    -10

    0.56

    -4.5

    -33-18.5

    B

    P

    GaAl

    Fe

    C

    G-VI: Ti50Ni20Cu25Sn5

    G-VI: Ti34Zr11Cu47Ni8

    G-VI: Ti52Cu23Ni11Mo7Fe7

    Sn

    Ni

    Ti

    Cu-35

    50

    525

    -9 -21

    -440

    20

    Ti

    Ni

    Zr

    Cu-49

    11

    3447

    -23 -21

    -354-9

    8

    Mo

    Cu -35

    52

    11

    7

    23

    -9-4

    -213 4

    Ti

    Fe 7

    -19-17

    -2

    -7

    Ni

    0-26

    -11 5

    4

    72

    Al

    Fe

    B

    -36-50

    -11 5

    6

    72

    Al

    Fe

    C

    -20.5-39.5

    -11 5

    11

    72

    Al

    Fe

    P

    -6-26

    -11 2

    4

    72

    Ga

    Fe

    B

    -33-50

    -11 2

    6

    72

    Ga

    Fe

    C

    -18.5-39.5

    -11 2

    11

    72

    Ga

    Fe

    P

    -49-35

    0 41.2

    10

    13.8

    Zr

    Ti

    Ni

    -23-9

    0 41.2

    12.5

    13.8

    Zr

    Ti

    Cu

    -43-4

    -49 41.2

    22.5

    10

    Zr

    Ni

    Be

    -430

    -23 41.2

    22.5

    12.5

    Zr

    Cu

    Be

    -30-4

    -35 13.8

    22.5

    10

    Ti

    Ni

    Be

    -300

    -9 13.8

    22.5

    12.5

    Ti

    Cu

    Be

    -35-4

    -21 50

    20

    5

    Ti

    Sn

    Ni

    -90

    -21 50

    25

    5

    Ti

    Sn

    Cu

    -35-7

    -4 52

    11

    7

    Ti

    Ti

    Ni

    -9-19

    -4 52

    23

    7

    Ti

    Mo

    Cu

    -17-2

    -4 52

    7

    7

    Ti

    Mo

    Fe

    -49-35

    0 11

    8

    34

    Zr

    Ti

    Ni

    -23-9

    0 11

    47

    34

    Zr

    Ti

    Cu

    Fig. 8 The heat of mixing (HmixfABg) between the atomic pairs of the multicomponent BMGs belonging to G-III, G-IV, G-VI and G-VI.The symbols have the same meaning to those in Fig. 7. For the ZrTiCuNiBe system in G-IV, Zr46:5Ti8:25Cu7:5Ni10Be27:5 is selected

    as the representative composition for showing the values of HmixfABg. The locations of the elements in the polyhedron depend on theatomic radius of the constituent elements.

    Classication of Bulk Metallic Glasses by Atomic Size Dierence, Heat of Mixing and Period of Constituent Elements 2827

  • by nding HmixL.N. and the larger element in terms of theatomic radius in an atomic pair, and then this element wasextended to the same group of elements in the periodic table.Finally, we focus on the TiZrCuNi BMGs. According

    to the modied characteristics of the elements in a multi-component systems, Zr is determined to be the main element,and then it is extended to Ti due to the interchangeabilityof Ni and Cu. However, the main element of theTi34Zr11Cu47Ni8 BMG

    34) is Cu, which has the second smallestatomic radius in the system. This result is at variance with allof the characteristics of multicomponent BMGs described inthis section. However, the main element of this system can beregarded as having the smallest radius for the followingreasons: (1) near equal atomic radii of Ni and Cu (Ni:0.125 nm, Cu: 0.128 nm), (2) interchangeability34) between Niand Cu, and (3) the composition ratio between LTM(Cu,Ni)and ETM(Ti,Zr) of 55:45, implying that Ti34Zr11Cu47Ni8BMG can be regarded as an LTM-based BMG. In addition tothese reasons, it also should be noted that the TiZrCuNisystem has two BMG composition regions on the Zr- and Ti-rich side. It is reported34) that the Ti34Zr11Cu47Ni8 BMGbelongs to the Ti-rich side. Therefore, it is expected thatfurther multicomponent alloying in this quaternary systemwill lead to the formation of Zr-based BMGs.The main element of BMGs in G-VI can shift through the

    following three stages with increasing GFA of the systems:(1) LTM(Cu,Ni), (2) co-existence of LTM(Cu,Ni) andETM(Ti,Zr), and (3) ETM(Ti,Zr), where the atomic radiusof the element in the group of elements is generally describedas rETM > rLTM, as shown in Fig. 1. For the BMGs belongingto G-VI discovered to date, it is interpreted that the ternaryCuZrTi, quaternary Ti34Zr11Cu47Ni8, and quiternaryTi52Cu23Ni11Mo7Fe7 BMGs are in the rst, second and thirdstage, respectively.

    4.6 Exchangeability of constituent elements in BMGsAs a result of the analysis of the main element of BMGs, it

    is found that multicomponent BMGs belonging to G-VI havea probability of having two or more main elements. A typicalexample is the Ti34Zr11Cu47Ni8 BMG

    34) with BMG-formingcomposition ranges on both the Ti- and Zr-rich sides of thesystem, owing to approximate interchangeability between Niand Cu.34) It is assumed that either the interchangeability orsome similar mechanism aects the composition of BMGsbetween elements in the same group in the periodic table.Under such an assumption, the atomic pairs of (Ni,Cu),(Ti,Zr), (Ni,Pd), etc. can change the composition in theBMGs. These sets of elements have a common characteristicin that they exhibit complete solid solubility at high temper-atures according to their binary phase diagrams,35) and areconstituent elements in BMGs belonging to G-V and G-VI. Itis possible to explain from these results the reason forPd40Ni40P20 BMG having the same composition between Pdand Ni as main elements.

    4.7 Signicance of the classication of BMGsIt is possible to obtain information about the main element

    and the composition of the alloy system required forformation of a BMG as a result of the characteristicsdetermined for the ternary BMGs shown in Fig. 5 and their

    extension to multicomponent BMGs described in Section 45. The information enables a decrease in the tasks requiredfor the development of BMGs to 25% for ternary systemswhen considering the Gibbs triangle for alloy compositions.The classication system for BMGs developed in the presentstudy is of great importance to further development of BMGssince currently it is not possible to predict the optimalcomposition for BMG formation. In particular, the character-istics of the main element in multicomponent BMGs, asdiscussed in 45, can be used for the selection of additionalelements in the case of multicomponent alloying.

    5. Conclusions

    On the basis of previous results by Inoue in 2000, bulkmetallic glasses (BMGs) discovered to date are classiedaccording to atomic size dierences, heat of mixing (HmixfABg)of AB atomic pairs and period of the constituent elements.The main results obtained from the present study are asfollows.(1) It has been found that BMGs can be classied into

    seven groups (G-I to G-VII) represented by G-I: ETM/Ln-LTM/BM-Al/Ga, G-II: ETM/Ln-LTM/BM-Met-alloid, G-III: Al/Ga-LTM/BM-Metalloid, G-IV: IIA-ETM/Ln-LTM/BM, G-V: LTM/BM-Metalloid, G-VI:ETM/Ln-LTM/BM, and G-VII: IIA-LTM/BM.

    (2) The main alloying element in ternary G-I, G-V and G-VII, ternary G-II and G-IV, and ternary G-VI BMGs isthe greatest, intermediate and smallest atomic radiusamong the other alloying elements, respectively. Themain alloying element of ternary BMGs belonging toG-I, G-V, G-VI and G-VII is an element in the atomicpair with the largest negative value of Hmix (HmixL.N.),while the main element of ternary BMGs belonging toG-II and G-IV is independent of the atomic pair withHmixL.N.. The absolute value of H

    mixL.N. is greater than

    that of the sum of the absolute values of Hmix for theother atomic pairs by a factor of 1.1 to 2.4, and the ratioof the Hmixs for the atomic pairs other than atomicpairs with HmixL.N. is in the range of 1 to 2. In contrast,the main element is independent of the atomic pair withHmixL.N. for BMGs belonging to G-I, G-V and G-VII.

    (3) The characteristics of the main element derived forternary BMGs are directly applicable to multicompo-nent BMGs belonging to G-I, G-II, G-IV (Mg-basedBMGs), G-V and G-VII. For multicomponent BMGsbelonging to G-III, G-IV (Be-containing Zr-basedBMG) and G-VI, the main element can be the larger-sized element in the atomic pair with HmixL.N. or anelement in the same group with the element in theperiodic table.

    (4) In addition to dierences in chemical species, (1)atomic size dierences that accompany dierent peri-ods in the periodic table and (2) dierences in theperiods of the constituent elements in the periodic tablecan also both be important for the formation of BMGs.The elements of Pd and Ni in PdNiP (G-VI) BMG area typical example of the rst case while Nb and Ta inNiNbTa (G-VI) BMG are a typical example of thesecond case.

    2828 A. Takeuchi and A. Inoue

  • (5) BMGs belonging to G-VI change the characteristics ofthe main element with respect to its atomic radius andwith increasing glass-forming ability due to multi-component alloying. The main element changes fromthe smallest size for ternary BMGs to a larger atomicsize in the atomic pair with HmixL.N. in multicomponentsystems. This change occurs due to the interchange-ability between elements in the same group in theperiodic table.

    (6) The classication system developed in the present studyis important for further development of BMGs, as ithelps predict the alloy systems that lead to formation ofBMGs and appropriate composition of BMGs by alsodesignating the main component of the system.

    Acknowledgements

    The author (AT) gratefully acknowledges the adviceprovided by Prof. Masashi Hasegawa of IMR, TohokuUniversity with regard to classifying the groups of elementsfrom the viewpoint of electron theory. This work waspartially supported by a Grant-in-Aid for Young Scientists(B) under grant number of 15760515 by The Ministry ofEducation, Culture, Sports, Science and Technology(MEXT) of Japan.

    REFERENCES

    1) J. Steinberg, A. E. Lord, L. L. Lacy and J. Jobson: Appl. Phys. Lett. 38

    (1981) 135137.

    2) A. Inoue, K. Ohtera, K. Kita and T. Masumoto: Jpn. J. Appl. Phys. 27

    (1988) L2248L2251.

    3) S. G. Kim, A. Inoue and T. Masumoto: Mater. Trans., JIM 31 (1990)

    929934.

    4) A. Inoue, M. Kohinata, A. P. Tsai and T. Masumoto: Mater. Trans., JIM

    30 (1989) 378381.

    5) A. Inoue, T. Zhang and T. Masumoto: Mater. Trans., JIM 30 (1989)

    965972.

    6) A. Inoue, T. Zhang and T. Masumoto: Mater. Trans., JIM 31 (1990)

    177183.

    7) A. Peker and W. L. Johnson: Appl. Phys. Lett. 63 (1993) 23422344.

    8) A. Inoue and J. S. Gook: Mater. Trans., JIM 36 (1995) 11801183.

    9) A. Inoue, T. Zhang, T. Itoi and A. Takeuchi: Mater. Trans., JIM 38

    (1997) 359362.

    10) A. Inoue, N. Nishiyama and T. Matsuda: Mater. Trans., JIM 37 (1996)

    181184.

    11) Y. He, R. B. Schwarz, J. I. Archuleta: Appl. Phys. Lett. 69 (1996)

    18611863.

    12) A. Inoue: Acta Mater. 48 (2000) 279306.

    13) F. R. Boer and D. G. Perrifor: Cohesion in Metals, (Elsevier Science

    Publishers B.V., Netherlands, 1988).

    14) A. Takeuchi and A. Inoue: Mater. Trans., JIM 41 (2000) 13721378.

    15) Y. Kawazoe et al.: Nonequilibrium Phase Diagrams of Ternary

    Amorphous Alloys, LB: New Ser., Group III: Condensed, Vol. 37: ed.,

    (Springer, 1997).

    16) Metal Databook, 4th edition, Japan Institute of Metal, Maruzen, (2004),

    p. 8 (in Japanese).

    17) A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: Mater. Trans. 42

    (2001) 11491151.

    18) K. Amiya and A. Inoue: Mater. Trans. 43 (2002) 8184.

    19) K. Amiya and A. Inoue: Mater. Trans. 43 (2002) 25782581.

    20) E. S. Park and D. H. Kim: J. Mater. Res. 19 (2004) 685688.

    21) H. Choi-Yim, D. H. Xu and W. L. Johnson: Appl. Phys. Lett. 82 (2003)

    10301032.

    22) M. Lee, D. Bae, W. Kim and D. Kim: Mater. Trans. 44 (2003) 2084

    2087.

    23) Y. C. Kim, W. T. Kim and D. H. Kim: Mater. Sci. Eng. A 375377

    (2004) 127135.

    24) N. Nishiyama, K. Amiya and A. Inoue: Mater. Trans. 45 (2004) 1245

    1250.

    25) T. Zhang and A. Inoue: Mater. Trans., JIM 39 (1998) 10011006.

    26) T. Zhang and A. Inoue: Mater. Sci. Eng. A 304306 (2001) 771774.

    27) S. Yi, T. G. Park and D. H. Kim: J. Mater. Res. 15 (2000) 24252430.

    28) M. Calin, M. Stoica, J. Eckert, A. R. Yavari and L. Shultz: Mater. Sci.

    Eng. A 392 (2005) 169178.

    29) M. H. Lee, D. H. Bae, D. H. Kim and D. J. Sordelet: J. Mater. Res. 18

    (2003) 21012108.

    30) T. Zhang, A. Inoue and T. Masumoto: Mater. Trans., JIM 32 (1991)

    10051010.

    31) A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari: Acta

    Mater. 52 (2004) 16311637.

    32) H. Men, W. T. Kim and D. H. Kim: J. Non-Cryst. Solids 337 (2004)

    2935.

    33) H. G. Kang, E. S. Park, W. T. Kim, D. H. Kim and H. K. Cho: Mater.

    Trans. 41 (2000) 846849.

    34) X. H. Lin and W. L. Johnson: J. Appl. Phys. 78 (1995) 65146519.

    35) Phase Diagrams for Binary Alloys: ed. H. Okamoto, (ASM Interna-

    tional, 2000).

    Classication of Bulk Metallic Glasses by Atomic Size Dierence, Heat of Mixing and Period of Constituent Elements 2829