49
NCC ASHRAE October 8, 2008 Energy & Water Savings with Cooling Tower Systems Kevin Morin, GF Morin 

2008_10coolingtower

Embed Size (px)

Citation preview

Page 1: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 1/49

NCC ASHRAE

October 8, 2008

Energy & Water Savings 

with Cooling

 Tower

 Systems

Kevin Morin,

 GF

 Morin

 

Page 2: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 2/49

Green Cooling

 Towers

 ?

Page 3: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 3/49

Optimization of 

 Scarce

 Resources

Energy, water and money are all scarce 

resources. 

Sustainable design

 optimizes

 the

 

use of  scarce resources and provides a 

comfortable environment for the occupants

Page 4: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 4/49

Cooling Tower

Page 5: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 5/49

Cooling Tower

Page 6: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 6/49

Principle Operation

 of 

 a Cooling

 Tower

• All cooling towers operate on the principle of  

removing heat

 from

 the

 water

 by

 evaporating

 

a small portion of  the water that is 

recirculated through the tower

Page 7: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 7/49

Cooling 

Tower 

Terms 

and 

Definitions3gpm/95/85 @ 78WB• Approach  – The difference between the temperature 

of  the

 cold

 water

 leaving

 the

 tower

 and

 the

 wet

‐bulb

 temperature of  the air. 

• Wet‐Bulb  – The lowest temperature that water theoretically can reach by evaporation. Wet‐bulb 

and Approach

 are

 the

 extreme

 parameters

 in

 

selection and design of  cooling towers

• Dry‐bulb  – entering ambient temperature

• Range  – the

 difference

 between

 the

 hot

 water

 

entering the tower and the cold water leaving the 

tower, also known as Delta T (∆T) 

Page 8: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 8/49

Why water

 cooled?

• Water cooled systems are more energy efficient 

than air

 cooled

 systems.

• 40 ‐ 60 % Higher COP than Air Cooled

• Lower Condensing Temperature than Air Cooled 

systems

• California Energy Code Title 24 limits the use of  air cooled chillers on all applications above 300 

tons and states that none of  the high efficiency 

air cooled

 chillers

 are

 as

 efficient

 as

 water

 cooled

 systems using the lowest chiller efficiency 

allowed.

Page 9: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 9/49

Lower Condensing

 Temperature

• Air Cooled System

 –  95°F Ambient

 Air

 Dry

 Bulb

 –  20°F Approach

 –  115°F Condensing Temperature

• Water Cooled System

 –  85/95°F Condenser Water

 –  7°F Approach

 –  105°F Condensing Temperature

Page 10: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 10/49

Evolution of  Tower Design

Forced Draft

 Counter

 Flow

 CT

 Tower

 

Page 11: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 11/49

Evolution of  Tower Design

Induced Draft

 Tower

Page 12: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 12/49

Reduction in

 Cooling

 Tower

 HP

• ASHRAE 90.1 provides max hp per ton.

• All cataloged

 selections

 from

 the

 major

 

manufacturers comply with standard

Option available

 to

 reduce

 cooling

 tower

 hp

Page 13: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 13/49

Cooling Tower

Page 14: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 14/49

Increase Heat Transfer Area & Reduce 

Energy Consumption

• Example

• 600 tons/1800/95/85/78

• Dimensions/ hp

• 12 

x 21.5

 x 12.5 40hp

• 12 x 21.5 x 16.5  25hp

• Reduce energy consumption by 37% by 

increasing tower box size

Page 15: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 15/49

A systems

 approach

 to

 condenser

water and chilled water equipment

selection yields

 cost

 and

energy savings opportunities.

Reduced System

 Energy

 Consumption

Page 16: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 16/49

Energy Saving Tip 

Lower  the design

condenser  water  temperature.

Page 17: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 17/49

Effect of  Condenser Water 

Temperature on

 Chiller

 Energy

CW Typ Chiller EnergyTemp. Energy  Savings

85°F 0.570 kW/ton Base

83°F 0.542 kW/ton 5%

80°F 0.524 kW/ton 8%

75°F 0.484 kW/ton 15%

70°F 0.450 kW/ton 21%

65°F 0.420 

kW/ton 26%

Page 18: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 18/49

“Rule of 

 Thumb” for

 Saving

 Chiller

 Energy 

Chiller  energy  is reduced  2%  for  every  1° F  of  reduced  condenser  

water  temperature

Page 19: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 19/49

Optimize System Energy

Example based

 on

 600

 tons

 

@78WB with 12’ x 21.5’ CT

Option Flow/

Temp

Height Tower

Hp

Pump Hp Chiller 

KW

Base 1800/95/85 12.5’ 40    ____ ____ ___

Low Flow 1200/100/85 11’ 30

Low Flow/

Low Temp

1200/98/83 12.5 40    ____ ___

Low flow/

Low Temp/

Low Hp

1200/98/83 16.5 25 ___

Low Temp 1800/93/83 16.5 50 ____

Page 20: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 20/49

Benefits to

 Optimized

 Controls

• 98% of  operating hours are below designWB

• Many installation

 have

 redundant

 cells,

 future

 

capacity, or large safety factors

Many 

installations 

operate 

at 

less 

than 

design 

load most of  the time

Page 21: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 21/49

Energy Saving Tip

Take advantage of  low  ambient  wet  bulb 

temperatures. 

Page 22: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 22/49

Optimized Controls  – Low WB

3000 ton

 peak

 load

 with

 (5)

 600

 ton

 towers @ 40 hp 

each/chillers/pumps 

with 

24/7 

operation @ 72 WB.  95 % of  all 

hours are below 72 WB

Option Flow/temp Tower Hp Comment

Low 

temp 9000/90/80 200 Reduce 

chiller 

KW by 8%

Low Hp 9000/95/85 VFD @ 70%= 69 Reduce tower hp 

by 65%

Page 23: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 23/49

Optimized Controls  – Low Load

70% load

 @

 78WB

 

Option Flow/Temp Tower Hp Comment

(4) Towers 

@1800 gpm each

7200/95/85 160

(5) Towers

 

@1440 gpm each7200/93/83 200 Reduce

 chiller

 KW

 

by 5%

(5) towers 7200/95/85 VFD @ 78%= 95 Reduce tower hp 

by 50%

Page 24: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 24/49

Optimized controls

Low Load/Low WB

70% load

 @

 72WB

Option Flow/Temp Hp Comment

(4) towers 

@1800 gpm

7200/90/80 160 Reduce chiller 

KW by 8%

(4) towers 7200/95/85 VFD@70%=55 Reduce tower 

hp by

 65%

(5) Towers @ 

1440 gpm

7200/88/78 200 Reduce chiller 

KW by 11%

(5) towers 7200/95/85 VFD@55%=33 Reduce tower 

hp by

 80%

Page 25: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 25/49

Optimized controls

• Muliticell cooling tower installations can be 

optimized based

 on

 required

 flow,

 setpoint

and WB by varying the # of  cells, flow per cell 

& HP per cell.  Optimized control also 

eliminates poor

 operating

 strategies

 that

 lead

 

to excessive scaling & reduced tower life.

Page 26: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 26/49

Water Consumption

• The cooling tower system may consume more 

water than

 any

 other

 system

 in

 the

 building

• The cooling tower is the key to water 

conservation in a building

• The cooling tower consumes water by 

evaporation, drift & bleed

• Strategies are

 now

 available

 to

 reduce

 water

 

consumption and re‐use tower bleed water

Page 27: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 27/49

Definitions• Drift  – the water entrained in the exit air flow and 

discharged to the atmosphere  – not including 

evaporation• Evaporation  – water that is converted from liquid to 

vapor rejecting heat into the environment

Evaporation= 

flow 

range 

.001• Bleed  – water that is discharged to waste to help keep 

the dissolved solids concentration below a certain limit

• Bleed = evaporation/cycles ‐1

• Make‐up

  – the

 amount

 of 

 water

 required

 to

 replace

 

normal losses caused by bleed, drift and evaporation

Page 28: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 28/49

Cycles of Concentration

Page 29: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 29/49

Controlling Cycles

Page 30: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 30/49

WSSC Water & Sewer Rate Schedule 

Effective 7/1/08

Water rates have increased by 15% in 

the last

 year

Average daily 

Consumption in 

gallons per day

Rate per 1000 

gallons

Sewer  Rate per 

1000 gallons 

Combined Water 

& Sewer Rate per 

1000 gallons

1,000‐

,3999 

gal $4.30 $6.60 $10.904,000‐ 6,999 $4.40 $6.75 $11.15

7,000‐ 8,999 $4.45 $6.85 $11.30

9,000   – greater $4.53 $7.03 $11.56

Page 31: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 31/49

Reduction in potable Cooling Tower 

Make‐up

 Water

• Increase cycles of  concentration with NCWT, dry 

chemicals, or

 diligent

 water

 treatment

• Grey water & other sources of  reclaimed water

• Recycled cooling tower bleed with softener/ 

filtration device

• Condensate from AHUs

Harvest rainwater

• Reduce evaporation in low ambient conditions

Page 32: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 32/49

Cooling Tower Water Consumption 

600 tons/1500

 hr

 per

 year/60%

 load

3 Cycles

Flow= 1800

 gpm

Evaporation= 18 gpm

1,620,000 gpy

Blowdown= 9 gpm

810,000 gpy

Make‐up = 27 gpm

2,430,000 gpy

5 Cycles

Flow= 1800

 gpm

Evaporation= 18 gpm

1,620,000 gpy

Blowdown= 5 gpm

405,000 gpy

Make‐up = 23 gpm

2,025,000 gpy

• Reduce blowdown by

 50%

• Reduce water by 17%

Page 33: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 33/49

Re‐use

 Cooling

 Tower

 Bleed

• Cooling Tower make‐up

• Irrigation/green roof 

• Roof  evaporative cooling system

Toilets or

 other

 use

 in

 the

 building

Page 34: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 34/49

Re‐use

 of 

 Cooling

 Tower

 Bleed

• Non chemical water treatment systems are 

the key

 to

 reusing

 cooling

 tower

 bleed

• Liquid chemicals that are effective at controlling bacteria in CT are hazardous. 

Bleed from

 CT

 treated

 with

 these

 liquid

 chemicals cannot be used in the building or irrigation and should not be piped to the 

storm drain.

 This

 bleed

 is

 a wasted

 resource

 with high disposal cost.

Page 35: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 35/49

Economic Benefit

 

• A cooling tower system with liquid chemical 

treatment must

 bleed

 to

 a sanitary

 drain

• Bleed from a tower system with NCWT can be 

re‐used  – reducing sewer flow and cost 

• Bleed from a tower system with NCWT may 

be piped to a storm drain reducing sewer cost.

l l

Page 36: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 36/49

Annual Water Cost Analysis

Based on

 600

 ton

 system

 and

 WSSC

System Make‐Up Blowdown Total

3 cycles 

Liquid chemical

Bleed to

 Sanitary

$11,008 $5,694 $16,702

Base Cost

5 cycles  – Liquid 

Bleed to Sanitary

$9,173 $2,847 $12,020

28% savings

5 cycles

NCWTRe‐use bleed

Or bleed to storm

$9,173 $0 $9,173

45% savings

5 cycles  – NCWT

Re‐use bleed

50% alt

 make

‐up

$4,587 $0 $4,587

72% savings

3 cycles

Liquid chemical

Bleed to Sanitary

50%alt make‐up

$5,504 $5,694 $11,198

33% savings

Page 37: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 37/49

Pulse Power Non Chemical Water 

Treatment 

Page 38: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 38/49

Typical Cooling Tower Applications

Page 39: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 39/49

Minimizes BioMinimizes Bio‐‐foulingfouling

Supplements Chemical

 Biological

 Supplements

 Chemical

 Biological

 

TreatmentTreatment

Improves SafetyImproves Safety

Minimizes Risk of  DiseaseMinimizes Risk of  Disease

Minimizes Discharge

 ConcernsMinimizes

 Discharge

 Concerns

Low MaintenanceLow Maintenance

Environmentally FriendlyEnvironmentally Friendly

No

 

No 

““ResidualResidual”” in 

Waterin 

Water

Ultraviolet 

Light

Ult i l t Li htUlt i l t Li ht

Page 40: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 40/49

Ultraviolet LightUltraviolet Light

•• Kills planktonicKills planktonic

bacteria that comes inbacteria that comes incontact with the lightcontact with the light

•• Breaks down organicBreaks down organicmolecules that aremolecules that are

not UV stable.not UV stable.

Page 41: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 41/49

Reduction 

in 

water 

consumption• Hybrid heat rejection systems use a 

combination of 

 evaporative

 and

 dry

 cooling

 to

 minimize water consumption. Dry cooling is 

used at low ambient temperatures.

• Hybrid systems

 include

 integrated

 controls

 to

 

optimize the heat rejection source.

Hybrid systems

 are

 becoming

 available

 in

 different configurations

Page 42: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 42/49

Hybrid Closed Circuit Cooling Tower

Th H t T f S t

Page 43: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 43/49

Three Heat Transfer SystemsFINNED COIL

DRY 

PRIME

SURFACE COIL

WET 

WET DECK

SURFACE

 ADIABATIC 

Three Modes of Operation

Page 44: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 44/49

Three Modes of Operation

Cumulative Hours per Year

   A  m   b   i  e  n   t   T  e  m  p  e  r  a   t  u  r  e

Page 45: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 45/49

LEED• Technologies to re‐use/reduce water 

consumption in

 heat

 rejection

 systems

 can

 contribute to points for water efficiencies, 

innovation in design, and sustainable sites.

Page 46: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 46/49

Case 

study• Molasky Corporate Center  – Las Vegas

• 260,000 sq

 ft

 Class

 A

 office

 building

• Flack & Kurtz

• LEED GOLD

• Pulse Power

 non

 chemical

 water

 treatment

• 30,000 gallons per day of  cooling tower 

blowdown is 

re‐

used 

for 

irrigation• 10 million gallons of  water per year

Page 47: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 47/49

HPAC 

Engineering‐

April 

2008• National Gateway Tower

• LEED Gold

• Pulse power non chemical water treatment

Cooling 

tower 

bleed 

water 

for 

irrigation• Save 750,000 gallons per year

Page 48: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 48/49

Case 

Study• Association Headquaters in DE is using UV 

light on

 the

 AHUs in

 the

 building

 to

 keep

 the

 coil and condenasate clean.  The condensate 

is stored and used for make‐up for the cooling 

tower.

Page 49: 2008_10coolingtower

8/8/2019 2008_10coolingtower

http://slidepdf.com/reader/full/200810coolingtower 49/49

Thank you