69
Pump Affinity Laws

2011 Core Ag Engineering Principles - Session II

Embed Size (px)

Citation preview

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 1/69

Pump Affinity Laws

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 2/69

Pump Affinity LawsP. 100 of text

–section 4: vary

only speed of pump

P. 100 of text – section 5:vary only diameter

P. 106 of text – vary BOTHspeed and diameter ofimpeller.

3

2

1

2

1

2

1)(

 

 

 

 

 D

 D

 N 

 N 

Q

Q

2

2

1

2

2

1

2

1

 

  

  

  

 

 D

 D

 N 

 N 

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 3/69

Power out equations

 

  

  

  

  

  

 

 

  

 

2

1

5

2

1

3

2

1

2

1

  

  

 D

 D

 N 

 N 

 P 

 P 

o

o

 g QW  P o  

p. 106

p. 89

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 4/69

 A pump is to be selected that is geometricallysimilar to the pump given in the performancecurve below, and the same system. What D

and N would give 0.005 m3

/s against a headof 19.8 m?

900W 9m

1400W

W

0.01 m3 /s

D = 17.8 cm

N = 1760 rpm

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 5/69

What is the operating point of first pump?

N1 = 1760

D1 = 17.8 cmQ1 = 0.01 m3/s Q2 = 0.005 m3/s

W1 = 9m W2 = 19.8 m

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 6/69

Now we need to “map” to

new pump on same systemcurve.

Substitute into Solve for D2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 7/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 8/69

N2

= ?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 9/69

Try it yourself 

If the system used in the previousexample was changed by removing alength of pipe and an elbow – what

changes would that require you tomake?

Would N1 change? D1? Q1? W1? P1?

Which direction (greater or smaller)would “they” move if they change? 

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 10/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 11/69

Moisture and PsychrometricsCore Ag Eng Principles Session IIB

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 12/69

Moisture in biological products

can be expressed on a wet basisor dry basis

wet basis

dry basis (page 273)

d

m

dm

m

W

WM

)W(W

Wm

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 13/69

Standard bushels

 ASAE Standards

Corn weighs 56 lb/bu at 15% moisturewet-basis

Soybeans weigh 60 lb/bu at 13.5%moisture wet-basis

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 14/69

Use this information todetermine how much water needs to be removed to dry

grain We have 2000 bu of soybeans at 25%moisture (wb). How much water mustbe removed to store the beans at

13.5%?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 15/69

Remember grain is made up of drymatter + H2O

The amount of H2O changes, but the

amount of dry matter in bu is constant.

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 16/69

Standard bu

51.9l8.1lb60lbW

8.1lb)0.135(60lbW

60lb

W

W

W0.135

d

m

m

t

m

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 17/69

17.3l0.7513W

0.75W13

W130.25W

51.9W

W0.25

m

m

mm

m

m

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 18/69

So water removed =H2O @ 25% - H2O @ 13.5%

O18,400lbH2000bu*bu

lb9.2

bu

lb9.2bu

lb8.1bu

lb17.3

2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 19/69

Your turn:

How much water needs to be removedto dry shelled corn from 23% (wb) to15% (wb) if we have 1000 bu?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 20/69

Psychrometrics

If you know two properties of anair/water vapor mixture you know allvalues because two propertiesestablish a unique point on the psychchart

Vertical lines are dry-bulb temperature

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 21/69

Psychrometrics

Horizontal lines are humidity ratio(right axis) or dew point temp (leftaxis)

Slanted lines are wet-bulb temp andenthalpy

Specific volume are the “other” slantedlines

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 22/69

Your turn:

List the enthalpy, humidity ratio,specific volume and dew pointtemperature for a dry bulb

temperature of 70F and a wet-bulbtemp of 60F

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 23/69

Enthalpy = 26 BTU/lbda  Humidity ratio=0.0088 lbH2O/lbda 

Specific volume = 13.55 ft3/lbda 

Dew point temp = 54 F

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 24/69

Psychrometric Processes

Sensible heating – horizontally to theright

Sensible cooling – horizontally to the

left

Note that RH changes without

changing the humidity ratio

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 25/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 26/69

Example

 A grain dryer requires 300 m3/min of 46C air. The atmospheric air is at 24Cand 68% RH. How much power must

be supplied to heat the air?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 27/69

Solution

@ 24C, 68% RH: Enthalpy = 56 kJ/kgda

@ 46C: Enthalpy = 78 kJ/kgda

V = 0.922 m3/kgda

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 28/69

119kW

60s

1min

min

300m

kg

m0.922

kgkJ22

V

 ΔhQEnergy

kg

kJ22 Δh

3

da

3

da

da

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 29/69

Equilibrium Moisture Curves

When a biological product is in a moistenvironment it will exchange water with theatmosphere in a predictable way – depending on the temperature/RH of themoist air surrounding the biological product.

This information is contained in the EMC for each product

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 30/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 31/69

Equilibrium Moisture Curves

Establish second point on theevaporative cooling line – i.e. can’t

remove enough water from the

product to saturate the air under allconditions – sometimes the exhaustair is at a lower RH because the

product won’t “release” any morewater 

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 32/69

Establishing Exhaust Air RH

Select EMC for product of interest On Y axis – draw horizontal line at the

desired final moisture content (wb) of 

product Find the four T/RH points from EMCs

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 33/69

Establishing Exhaust Air RH

Draw these points on your psych chart “Sketch” in a RH curve 

Where this RH curve intersects your 

drying process line represents thestate of the exhaust air 

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 34/69

Sample EMC

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 35/69

We are drying corn to 15% wb;with natural ventilation usingoutside air at 25C and 70% RH.What will be the Tdb and RH of the exhaust air?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 36/69

Drying Calculations

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 37/69

Example problem

How long will it take to dry 2000 bu of soybeans from 20% mc (wb) to 13%mc (wb) with a fan which delivers

5140-9000 cfm at ½” H2O staticpressure. The bin is 26’ in diameter 

and outside air (60 F, 30% RH) is

being blown over the soybeans.

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 38/69

Steps to work drying problem

Determine how much water needs to beremoved (from moisture content before andafter; total amount of product to be dried)

Determine how much water each pound of dry

air can remove (from psychr chart; outside air  – is it heated, etc., and EMC)

Calculate how many cubic feet of air is needed

Determine fan operating CFM

From CFM, determine time needed to dryproduct

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 39/69

Step 1

How much water must beremoved?

2000 bu

20% to 13%

Now what?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 40/69

Step 1

Std bu = 60 lb @ 0.135mw = 0.135(60 lb) = 8.1 lb H2O

md = mt  – mw = 60 – 8.1 = 51.9 lbdm

@ 13%:

7.76lbm

6.70.13mm

51.9m

m0.13

w

ww

w

w

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 41/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 42/69

Step 2

How much water can eachpound of dry air remove?

How do we approach this step?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 43/69

Step 2

Find exit conditions from EMC.Plot on psych chart.

0C = 32F = 64%

10C = 50F = 67%

30C = 86F = 72%

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 44/69

Step 2

@ 52F – 

68% RH

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 45/69

Change in humidity ratio

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 46/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 47/69

We need to remove 10500lbH2O.

Each lbda removes 0.0023

lbH2O.  

 

 

 

OH

daOHda

2

2 0.0023lb1lb10500lbb4,565,217l

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 48/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 49/69

Step 3 Calculations

da

3

da3air 

lb

ft13.2b4,565,217lft60,260,870

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 50/69

Step 4

Determine the fan operatingspeed

How do we approach this?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 51/69

Step 4

Main term in F is Fgrain

Airflow (cfm/ft2)

5030

15

10

Pressure drop (“H2O/ft)

0.50.23

0.09

0.05

x depth x CF

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 52/69

Step 4

½

Fgrain

6300 cfmQ

PS

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 53/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 54/69

6.6d

159hrs

9565mi

min

ft6300

ft60,260,8703

3

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 55/69

Example 2

 Ambient air at 32C and 20% RH isheated to 118 C in a fruit residuedryer. The flow of ambient air into

the propane heater is at 5.95m3/sec. The drying is to be carriedout from 85% to 22% wb. The air leaves the drier at 40.5C.

Determine the airflow rate of theheated air.

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 56/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 57/69

Example 2

2. Determine the relative humidityof the air leaving the drier.

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 58/69

Example 2

32 40.5 118

78% RH

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 59/69

Example 2

3. Determine the amount of propane fuel required per hour.

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 60/69

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 61/69

Example 2

4. Determine the amount of fruitresidue dried per hour.

E l 2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 62/69

Example 2

@ 85%, 0.15 of every kg is drymatter 

OHm

m

m

2

0.0423kgw

0.15w

w0.22

E l 2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 63/69

Example 2

Remove 0.85 – 0.0423 = wetresidue

OH

kg

kg0.8077 2

da

OH

kg

kg0.0320.0060.038 ΔH

2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 64/69

Example 2

hr kg970

0.8077kg

kg

s

6.8kg

kg

kg0.032

wetfruit

OH

wetresidueda

da

OH

2

2

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 65/69

Your Turn:

 A grain bin 26’ in diameter has aperforated floor over a plenumchamber.

Shelled field corn will be dried from an

initial mc of 24% to 14% (wb). Batch

drying (1800 std. bu/batch) will beused

with outside air (55F, RH 70%) that hasbeen heated 10F before being passed

through the corn. To dry the corn in 1

week -

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 66/69

1. What is the necessary fandelivery rate (cfm)?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 67/69

2. What is the approximate totalpressure drop (in inches of water)required to obtain the needed air 

flow?

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 68/69

3. The estimated fan HP based onfan efficiency of 65%

7/27/2019 2011 Core Ag Engineering Principles - Session II

http://slidepdf.com/reader/full/2011-core-ag-engineering-principles-session-ii 69/69

4. If the drying air is heated byelectrical resistance elements andthe power costs is $0.065/KWH,

calculate the cost of heatingenergy per standard bushel.