2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

Embed Size (px)

Citation preview

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    1/14

    This article was downloaded by: [Concordia University Libraries]On: 06 February 2015, At: 13:09Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

    Journal of Electromagnetic Wavesand ApplicationsPublication details, including instructions for authors andsubscription information:http://www.tandfonline.com/loi/tewa20

    Arbitrary Footprints from Arrays

    with Concentric Ring Geometry

    and Low Dynamic Range RatioR. Eirey-Pérez a , M. Álvarez-Folgueiras b , J. A.

    Rodríguez-González c & F. Ares-Pena d

    a Department of Applied Physics, Faculty of Physics,University of Santiago de Compostela, 15782 Santiago deCompostela, Spainb Department of Applied Physics, Faculty of Physics,University of Santiago de Compostela, 15782 Santiago deCompostela, Spainc Department of Applied Physics, Faculty of Physics,University of Santiago de Compostela, 15782 Santiago deCompostela, Spaind Department of Applied Physics, Faculty of Physics,University of Santiago de Compostela, 15782 Santiago deCompostela, Spain;, Email: [email protected] online: 03 Apr 2012.

    To cite this article: R. Eirey-Pérez , M. Álvarez-Folgueiras , J. A. Rodríguez-González &F. Ares-Pena (2010) Arbitrary Footprints from Arrays with Concentric Ring Geometry andLow Dynamic Range Ratio, Journal of Electromagnetic Waves and Applications, 24:13,1795-1806

    To link to this article: http://dx.doi.org/10.1163/156939310792486601

    PLEASE SCROLL DOWN FOR ARTICLE

    Taylor & Francis makes every effort to ensure the accuracy of all the information(the “Content”) contained in the publications on our platform. However, Taylor& Francis, our agents, and our licensors make no representations or warrantieswhatsoever as to the accuracy, completeness, or suitability for any purposeof the Content. Any opinions and views expressed in this publication are the

    http://dx.doi.org/10.1163/156939310792486601http://dx.doi.org/10.1163/156939310792486601http://dx.doi.org/10.1163/156939310792486601http://www.tandfonline.com/loi/tewa20

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    2/14

    opinions and views of the authors, and are not the views of or endorsed byTaylor & Francis. The accuracy of the Content should not be relied upon andshould be independently verified with primary sources of information. Taylor andFrancis shall not be liable for any losses, actions, claims, proceedings, demands,costs, expenses, damages, and other liabilities whatsoever or howsoever causedarising directly or indirectly in connection with, in relation to or arising out of theuse of the Content.

    This article may be used for research, teaching, and private study purposes.Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expresslyforbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

    http://www.tandfonline.com/page/terms-and-conditionshttp://www.tandfonline.com/page/terms-and-conditions

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    3/14

    J. of Electromagn. Waves and Appl., Vol. 24, 1795–1806, 2010 

    ARBITRARY FOOTPRINTS FROM ARRAYS WITHCONCENTRIC RING GEOMETRY AND LOW DYNAMICRANGE RATIO

    R. Eirey-Pérez, M.  Álvarez-FolgueirasJ. A. Rodŕıguez-González, and F. Ares-Pena

    Department of Applied PhysicsFaculty of PhysicsUniversity of Santiago de Compostela15782 Santiago de Compostela, Spain

    Abstract—A common method of antenna array synthesis uses least-squares approximation to fit the radiation pattern of the array to a setof samples of an ideal desired pattern  F id. However, it has long beenknown that discontinuities in   F id   prevent close approximation, andthat sampling a target pattern  F 

    tar  that approximates  F 

    id  can afford

    better results. Here we show, for the case of circular planar arrays,that an appropriate target pattern can be obtained by modification of a Taylor pattern for a circular aperture.

    1. INTRODUCTION

    In view of the physical unrealizability of ideal antenna radiationpatterns such as a perfectly flat-topped beam, designers sinceSchelkunoff [1] have sought to identify and implement the realizablepattern that, given various conditions or constraints, constitutes theleast-squares approximation to the ideal pattern. For a numberof situations there exist function-analytic solutions for the bestapproximation to a given field (see, for example, [2–4]). Themain problem faced by these methods is due to the least-squaressolution being an optimum in the mean, because of which it mayallow significant deviation from the ideal pattern in regions whereclose approximation is of particular interest [3]. Since electronic

    computation facilities became widespread, this difficulty has beenReceived 11 May 2010, Accepted 8 July 2010, Scheduled 21 July 2010 

    Corresponding author: F. Ares-Pena ([email protected]).

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    4/14

    1796 Eirey-Pérez et al.

    tackled by seeking the least-squares fit to a set of samples of the desiredpattern [5]; although the same problem recurs to some extent, it may

    be handled by assigning different weights to different sample points [6].Unfortunately, it is not always easy to see how a given set of sampleweights will affect the solution.

    An alternative approach to the waywardness of least-squaressolutions is to replace the ideal pattern   F id   with a discontinuity-free target pattern   F tar   that is close to the desired pattern, thoughnot necessarily in the least-squares sense [3]. Here we show, forthe case of planar arrays required to generate arbitrary footprintpatterns (i.e., patterns consisting of a flat-topped main beam witha contour of given shape, surrounded by low side lobes), thatan appropriate target pattern can be obtained by angle-dependenthomothetic transformation (ADHT) of a circular Taylor pattern thathas been shaped by the method of Elliott and Stern (ES) [7, 8]; in aprevious paper [9] we described the use of a target pattern of this kindfor Woodward-Lawson synthesis, which of course requires a rectangulararray. Once the target pattern has been obtained, it can be sampled,and the excitations of a given array can be optimized to obtain theleast-squares fit to the samples. Finally, array realizability can befacilitated by imposing a lower limit on element excitations [10].

    The following papers recently published in PIER journals may beconsidered relevant [11–22].

    2. METHOD

    Given an ideal footprint   F id   that is defined by a contour   C   in thespace of spherical coordinates (θ, φ), and is to be achieved by an arrayof characteristic radius  a, we proceed as follows.

    Step 1. We begin by deforming   C   to a circle   C  around some

    appropriate internal point. For simplicity, this point is assumed hereto be  θ  = 0, so that the deformation takes the form (θ, φ)  →  (θ, φ),where sin θ = h(φ)sin θ   for some function  h  defined on [0, 2π).

    Step 2.  We next apply the ES method (Elliott and Stern 1988) toobtain a footprint of contour   C , maximum ripple  Rd  and maximumside lobe level  SLLd  that could be generated by a circular aperture of radius   a, i.e., for some appropriate  M   and   p  we find   tn   and   sn   suchthat the required circular footprint is given by

    F ES(t) = f (t)

    n=1

    1−

      t2

    (tn+ jsn)2

    1−

      t2

    (tn− jsn)2ε  M + p

    n=M +1

    1−

    t2

    t2n

      (1)

    where  t  = (2a/λ)sin θ,  ε is 1 if the field must be real and 0 otherwise,

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    5/14

    Concentric ring geometry and low dynamic range ratio 1797

    and

    f (t) = 2

    J 1(πt)

    πt

    M + p+εM 

    n=1

    1 −

      t2

    γ 21n−1

    (2)

    J 1  being the Bessel function of the first kind and order 1, and  πγ 1n  thenth zero of  J 1.   M   (or 2M   if the field is to be real) is the number of nulls of  J 1(πt)/πt  that must be filled to cover the area within  C 

    , and p is the number of additional nulls that must be moved to achieve theside lobe specification or steepen rolloff. Although the determinationof  tn and sn is an iterative local optimization process, it is neverthelessvery rapid.

    Step 3.   The pattern   F ES   obtained in Step 2, or a sample of itspoints (see Step 4 below), is then reverse-transformed into the targetpattern  F tar  by replacing sin θ

    with  h(φ)sin θ   in the expression for  t.Step 4.   F tar   is sampled at appropriate points. If the sampling

    scheme is sufficiently dense as not to need to take the morphology of F tar into account explicitly, then in Step 3  F tar  need only be calculatedat the sample points.

    Step 5.   The excitations   I i   of the array are optimized by least-squares to afford the pattern best fitting the   F tar   samples. Like thecalculation of  F ES in Step 2, the least-squares calculation is much faster

    than stochastic optimization methods.Steps 3 –5 , 3 –5 , etc.   If   ε   is 0 in Equation (1), and   F ES(t)

    therefore complex, the power pattern  F ES(t)∗F ES(t) corresponding to

    the set {(tn, sn)} is also the pattern corresponding to any set {(tn, s

    n)},where   sn   =   ±sn   [7]. In general this leads to a total of 2

    M  differentF tar   and the same number of solutions   {I i}. Therefore, from amongthese 2M  solutions, one can choose the one with the best combinationof side lobe level, ripple and/or dynamic range ratio  I max/I min, whereI max  and  I min  are the maximum and minimum excitation amplitudes,

    respectively.Step 6.  If necessary, the element excitations I i can be retouched soas to reduce the dynamic range ratio. For example, thresholds  T zero andT  floor  (T zero  < T  floor ) can be defined for the amplitude of the normalizedexcitation I i/I max, excitations  I i  such that |I i/I max| < T zero  can be setto zero, and excitations   I i   such that  T zero  ≤ |I i/I max|  < T  floor   can beamplified by  |I max/I i|T  floor . This procedure, which ensures a dynamicrange ratio of 1/T  floor , is generally found to result in less patterndegradation than the suppression of all excitations with amplitudes lessthan  T  floor . Apart from reducing the dynamic range ratio, eliminatingelements also, of course, reduces the weight of the antenna.

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    6/14

    1798 Eirey-Pérez et al.

    3. EXAMPLES

    The method described above was applied to the examples that followusing Matlab (R2009b) on a desktop computer with an Intel Core i7processor running at 3.2 GHz. In all cases, computation time was about4 or 5 seconds.

    3.1. Rectangular Footprint, Circular Array, Complex Field

    We wish to generate a rectangular footprint of aspect ratio 2 : 1, centredon  θ = 0 and defined in the first quadrant by

    v = 0.12 0 ≤  u

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    7/14

    Concentric ring geometry and low dynamic range ratio 1799

    0 2 4 6 8 100

    2

    4

    6

    8

    10

     x 

         y

    [λ]

                 [       λ             ]

    Figure 1.   First quadrant of the array used in the complexfield example, before eliminationof weakly excited elements.

    0 2 4 6 8 100

    2

    4

    6

    8

    10

     x 

         y

    [λ]

                 [       λ             ]

    Figure 2.   First quadrant of the array used in the complexfield example, after elimination of weakly excited elements.

    of the antenna, the field function to be fitted to the   F tar   samples isgiven by

    F (θ, φ) = 420

    m=1

    mn=1

    I mn

     cos(kxmn sin θ cos φ)cos(kymn sin θ sin φ) (6)

    where  I mn   is the excitation of the  nth element on the  mth ring, and  kis the wavenumber.

    The pattern produced by Step5 has a maximum side lobe level of −22.34 dB and lowest ripple troughs of  −2.60 dB in the footprint, andthe array excitation distribution has a dynamic range ratio of 471. If the excitations are retouched in Step6 using thresholds   T zero   = 1/16

    and  T  floor  = 1/14 to achieve a dynamic range ratio of 14, 92 elements(44%) are zeroed in each quadrant, the maximum side lobe level islowered to  −22.59 dB, and the ripple troughs are raised to  −2.51 dB.The resulting array is shown in Fig. 2, and the pattern it generatesin Figs. 3 and 4. Note that although this pattern underperforms asregards both side lobe level and ripple, the initial specifications couldbe met simply by increasing   M   and/or   p   in Step 2 so as to be ableto impose stricter specifications on   F ES. The alternative solutionscorresponding to Steps 3–5 of the general method (see Section 2)

    are no improvement.The pattern obtained above may be compared with the results of sampling the ideal pattern (a perfectly flat-topped rectangular columnrising 25 dB above a perfectly flat background), instead of  F ES. Before

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    8/14

    1800 Eirey-Pérez et al.

    Figure 3.  Power pattern of the complex field generated by the arrayof Fig. 2 (projection on the (u, v) plane).

    Figure 4.  Power pattern of the complex field generated by the arrayof Fig. 2 (perspective view).

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    9/14

    Concentric ring geometry and low dynamic range ratio 1801

    Table 1.   Values of  tn   and  sn   forF 

    ES in the complex field example.

    n   tn   sn1   0.5967 0.52252   1.7837 0.52683   3.6420 04   4.3039 05   5.2119 0

    Table 2.   Values of  tn   and  sn   forF 

    ES in the real field example.

    n   tn   sn1   1.0225 1.14242   3.0445 1.08293   5.4319 04   6.1570 05   7.1293 0

    retouching, the least-squares fit to the ideal pattern has a side lobe levelas high as −17.80 dB and ripple troughs of  −2.03 dB, and the dynamicrange ratio of the array is 2576. Retouching (with the same thresholdsas above) eliminates 161 elements per quadrant (77%), leaving an arraythat generates a pattern with side lobe levels of  −13.79 dB and rippletroughs of  −1.65 dB.

    3.2. Rectangular Footprint, Circular Array, Real Field

    To approximate the same power pattern as above while ensuring a real

    field, a task that requires more nulls to be filled, we use a larger circulararray comprising 32 rings. The between-ring spacing is again  λ/2, andthe same formulae as above are used for ρm, xmn and  ymn (so the radiusof the outermost ring is 15.75λ). The values of   M   and   p   in Step 2,and the sampling scheme of Step4, are likewise the same as in thecomplex field case; the values of  tn   and  sn   determining  F ES  are listedin Table 2. Before retouching, the resulting pattern has a side lobelevel of   −22.74 dB and ripple troughs of   −1.37 dB, and the dynamicrange ratio of the array is 15,097. Retouching with  T zero  = 1/56 and

    T  floor   = 1/54 eliminates 394 elements per quadrant (75%; see Fig. 5)and achieves a pattern with a maximum side lobe level of  −22.56dBand ripple troughs of  −1.56 dB (Figs. 6 and 7). As in the complex fieldcase, achievement of   −25 dB side lobes and   −1.0 dB ripple troughswould require stricter specifications for  F ES.

    3.3. Irregular Footprint, Circular Array, Complex Field

    Figure 8 shows the outline of the desired footprint in our final example,in which we are allowed 12 rings of elements and once more aim for a

    peak side lobe level of −25 dB and ripple troughs no deeper than −1dB.Fig. 8 also shows, superimposed on the desired footprint contour   C ,the circular contour C ; since C  has no analytic expression, neither has

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    10/14

    1802 Eirey-Pérez et al.

    Figure 5.   First quadrant of thearray used in the real field ex-ample, after elimination of weaklyexcited elements.

    Figure 6.   Power pattern of thereal field generated by the arrayof Fig. 5 (projection on the (u, v)plane).

    Figure 7.   Power pattern of the real field generated by the array of Fig. 5 (perspective view).

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    11/14

    Concentric ring geometry and low dynamic range ratio 1803

    Figure 8.   An irregular desiredbeam contour  C , and the circularcontour C  into which it is trans-formed by ADHT in the last ex-ample of Section 3.

    Figure 9.  The array used in thelast example of Section 3, afterelimination of weakly excited el-ements.

    Figure 10.  Power pattern of the real field generated by the array of Fig. 9 (projection on the (u, v) plane).

    the transform function  h(φ), which must be obtained numerically. Weuse the same element placement scheme,   M   and  p  as in the previous

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    12/14

    1804 Eirey-Pérez et al.

    Figure 11.  Power pattern of the real field generated by the array of Fig. 9 (perspective view).

    examples. Since there is no symmetry in this footprint,  F tar  must be

    sampled over the whole hemisphere (we use 360  φ-cuts 1◦ apart, with25 equispaced samples in each θ-cut), and instead of using Equation (6)to reconstruct the field, we must use

    F (θ, φ) =12

    m=1

    4mn=1

    I mn

     exp { jk (xmn sin θ cos φ + ymn sin θ sin φ)}   (7)

    This affords a solution with a dynamic range ratio of 120 thatgenerates a power pattern with a peak side lobe level of  −18.95 dB andripple troughs of −1.38 dB. Retouching the excitation distribution with

    T zero   = 1/13 and  T  floor   = 1/10 eliminates 97 elements (31%; Fig. 9),producing a power pattern with a peak side lobe level of   −18.85dBand ripple troughs of  −1.64 dB (Figs. 10 and 11).

    4. CONCLUSION

    Footprint patterns generated by antenna arrays must be evaluated interms of their quality parameters (side lobe level, ripple, etc.) ratherthan the fit of the pattern to an ideal flat-topped column. The quality

    of least-squares fit for the ideal pattern is significantly poorer thanthat of least-squares fit for patterns constructed by angle-dependenthomothetic transformation of a circular footprint obtained by theElliott-Stern method for circular continuous apertures.

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    13/14

    Concentric ring geometry and low dynamic range ratio 1805

    ACKNOWLEDGMENT

    This work was supported by the Spanish Ministry of Science andTechnology through project TEC2008-04485.

    REFERENCES

    1. Schelkunoff, S. A., “A mathematical theory of linear arrays,” Bell Systems Tech. J., Vol. 22, 80–107, 1943.

    2. Rhodes, D. R., “The optimum line source for the best mean-square approximation to a given radiation pattern,”  IEEE Trans.

    Antennas Propag., Vol. 11, 440–446, 1963.3. Schell, A. C. and A. Ishimaru, “Antenna pattern synthesis,”Antenna Theory , R. E. Collin and F. J. Zucker (eds.), Part 1,Chap. 7, 235–305, McGraw-Hill, New York, 1969.

    4. Steyskal, H., “Synthesis of antenna patterns with prescribednulls,”   IEEE Trans. Antennas Propag., Vol. 30, No. 2, 273–279,1982.

    5. Hirasawa, K. and B. J. Strait, “On a method for array design bymatrix inversion,”  IEEE Trans. Antennas Propag., Vol. 19, No. 3,

    446–447, 1971.6. Carlson, B. D. and D. Willner, “Antenna pattern synthesis using

    weighted least squares,”   Proc. Inst. Elect. Eng., Vol. 139, No. 1,Pt. H, 11–16, 1992.

    7. Elliott, R. S. and G. J. Stern, “Shaped patterns from a continuousplanar aperture distribution,”   Proc. Inst. Elect. Eng., Vol. 135,No. 6, Pt. H, 366–370, 1988.

    8. Elliott, R. S. and G. J. Stern, “Footprint patterns obtained byplanar arrays,”   Proc. Inst. Elect. Eng., Vol. 137, No. 2, Pt. H,

    108–112, 1990.9. Ares-Pena, F., J. Fondevila-Gómez, G. Franceschetti, E. Moreno-

    Piquero, and J. A. Rodŕıguez-González, “Synthesis of very largeplanar arrays for prescribed footprint illumination,”  IEEE Trans.Antennas Propag., Vol. 56, No. 2, 584–589, 2008.

    10. Fondevila-Gómez, J., “Śıntesis de diagramas de radiación apartir de agrupaciones de antenas con o sin modulación en eltiempo utilizando técnicas estocásticas o cuasi-anaĺıticas,” Ph.D.Dissertation, 100–101, Dept. Applied Physics, Univ. Santiago de

    Compostela, Santiago de Compostela, Spain, 2007.11. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, “An improved particle swarmoptimization algorithm for pattern synthesis of phased arrays,”Progress In Electromagnetics Research , Vol. 82, 319–332, 2008.

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5

  • 8/9/2019 2012 04 Arbitrary Footprints from Arrays with Concentric Ring Geometry and Low Dynamic Range Ratio.pdf

    14/14

    1806 Eirey-Pérez et al.

    12. Azevedo, J. A. R., “Shaped beam pattern synthesis with non-uniform sample phases,”   Progress In Electromagnetics Research 

    B , Vol. 5, 77–90, 2008.13. Zhou, H.-J., Y.-H. Huang, B.-H. Sun, and Q.-Z. Liu, “Design and

    realization of a flat-top shaped-beam antenna array,”  Progress In Electromagnetics Research Letters , Vol. 5, 159–166, 2008.

    14. Khodier, M. M. and M. Al-Aqeel, “Linear and circular arrayoptimization: A study using particle swarm intelligence,”  Progress In Electromagnetics Research B , Vol. 15, 347–373, 2009.

    15. Gajardo-Silva, G. and L. Landesa, “The Synthesis of complex-angle zeros for on-board antenna arrays,” Progress In Electromag-

    netics Research , Vol. 80, 369–380, 2008.16. Yang, S., Y. Liu, and Q. H. Liu, “Combined strategies

    based on matrix pencil method and tabu search algorithm tominimize elements of non-uniform antenna array,”   Progress In Electromagnetics Research B , Vol. 18, 259–277, 2009.

    17. Mangoud, M. A.-A. and H. M. Elragal, “Antenna array patternsynthesis and wide null control using enhanced particle swarmoptimization,”  Progress In Electromagnetics Research B , Vol. 17,1–14, 2009.

    18. Guney, K., A. Durmus, and S. Basbug, “A plant growthsimulation algorithm for pattern nulling of linear antenna arraysby amplitude control,”  Progress In Electromagnetics Research B ,Vol. 17, 69–84, 2009.

    19. Perez Lopez, J. R. and J. Basterrechea, “Hybrid particle swarm-based algorithms and their application to linear array synthesis,”Progress In Electromagnetics Research , Vol. 90, 63–74, 2009.

    20. Morabito, A. F., T. Isernia, M. G. Labate, M. D’Urso, andO. M. Bucci, “Direct radiating arrays for satellite communications

    via aperiodic tilings,”   Progress In Electromagnetics Research ,Vol. 93, 107–124, 2009.

    21. Bukhsh, W. A., B. L. G. Jonsson, and P. Persson, “Elementposition perturbation for a narrow spot beam with applications tosatellite communication antennas,”  Progress In Electromagnetics Research , Vol. 104, 283–295, 2010.

    22. Zhou, H. J., B. H. Sun, J. F. Li, and Q. Z. Liu, “Efficientoptimization and realization of a shaped-beam planar arrayfor very large array application,”   Progress In Electromagnetics 

    Research , Vol. 89, 1–10, 2009.

       D  o  w  n   l  o  a   d  e   d   b  y   [   C  o  n  c  o  r   d   i  a   U  n   i  v  e  r  s   i   t  y

       L   i   b  r  a  r   i  e  s   ]  a   t   1   3  :   0   9   0   6   F  e   b  r  u

      a  r  y   2   0   1   5