54
22/7/4 Yan-Qing Zhang, Georgia State University 1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 [email protected] Fuzzy Machine Learning Methods for Biomedical Data Analysis

2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 [email protected]

Embed Size (px)

Citation preview

Page 1: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 1

Yanqing Zhang

Department of Computer ScienceGeorgia State UniversityAtlanta, GA 30302-5060

[email protected]

Fuzzy Machine Learning Methods for Biomedical Data Analysis

Page 2: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 2

Outline

• Background

• Fuzzy Association Rule Mining for Decision Support (FARM-DS)

• FARM-DS on Medical Data

• FARM-DS on Microarray Expression Data

• Fuzzy-Granular Gene Selection on Microarray Expression Data

• Conclusion and Future Work

Page 3: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 3

Background• Theory

– Computational Intelligence, Granular Computing, Fuzzy Sets– Knowledge Discovery and Data mining (KDD)– Decision Support system (DS)– Rule-Based Reasoning (RBR), Association Rule Mining

• Application– Bioinformatics, Medical Informatics, etc.

• Concern– Accuracy– Interpretability

Page 4: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 4

Outline

• Background

• Fuzzy Association Rule Mining for Decision Support (FARM-DS)

• FARM-DS on Medical Data

• FARM-DS on Microarray Expression Data

• Fuzzy-Granular Gene Selection on Microarray Expression Data

• Conclusion and Future Work

Page 5: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 5

Motivation – deal with numeric data

• Fuzzy Logic– Feature transform– Fuzzy AR mining

(Zadeh, 1965)

• Traditional Association rule mining algorithm – If X, then Y– Conf = Pr(Y|X) Supp = Pr(X and Y)– don’t work on numeric data

Page 6: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 6

Motivation – decision support

• FARs for classification – Accuracy vs. Interpretability

• Very Few works– Hu et al. 2002

• Combinatorial rule explosion – Chatterjee et al. 2004

• Human intervention

Page 7: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 7

FARM-DS

• Target– Numeric data– Binary classification

• Effectiveness– Accuracy– Interpretability

• Modeling process– Training– Testing

Page 8: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 8

Step 1: Fuzzy Interval Partition

• 1-in-1-out 0-order TSK model

• ANFIS for model optimization and parameter selection (Jang, 1993)

Page 9: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 9

Step 2: Data Abstraction

• Clustering– K-Means

– Fuzzy C-means

• Validation– #clusters

– Optimal cluster– Silhouette Value

negative cluster

positive cluster

))),(min(),(max(

)()),(min()(

kibia

iakibiS

Page 10: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 10

Step 3: Generating Fuzzy Discrete

Transactions • Project the center of each

cluster on each feature• Create transactions

– With positive cluster, +1 is inserted

– With negative cluster, -1 is inserted

i0"."offormthewithnstransactiotheintoinsertedisthen

,if

i1"."offormthewithnstransactiotheintoinsertedisthen

,if

.nstransactiotheintoinsertednotisthen

,if

i

highlow

i

lowhigh

i

lowhigh

f

f

f

Page 11: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 11

Step 3 - example • 5-2 = 3 transactions– 1 f1_1– 1 f1_1– 1 f1_1

f1

f2

• Avoid combinatorial rule explosion– Number of different transactions are decided by number of clusters

Page 12: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 12

Step 4: Association Rule Mining • Association Rule Mining on fuzzy discrete transactions

– Traditional Apriori algorithm (Agrawal and Srikant 1994)

If f1 is low, f2 is high, …, fh is low, then y=1/-1

• Rule pruning:– For a pair of rules A and B, if B is more specific than A (that

means A is included by B), and B has the same support value as A, A is eliminated.

A: If f1 is low, then y=1, sup=50%

B: If f1 is low and f2 is high, then y=1, sup=50%

Page 13: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 13

Testing Phase

Page 14: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 14

Adaptive FARM-DS

• Train

1. Fuzzy intervals partition2. Data abstraction3. Generate fuzzy discrete

transactions4. AR mining

• Test

He, et al. 2006a, IJDMB

Page 15: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 15

Outline

• Background

• Fuzzy Association Rule Mining for Decision Support (FARM-DS)

• FARM-DS on Medical Data

• FARM-DS on Microarray Expression Data

• Fuzzy-Granular Gene Selection on Microarray Expression Data

• Conclusion and Future Work

Page 16: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 16

Empirical Studies

• Classification algorithms

– C4.5 decision trees (Quinlan, 1993)

– Support vector machines (Vapnik, 1995)

– FARM-DS (He, et al. 2006a, IJDMB)

• Accuracy Estimation– 5-folds cross validation

• Interpretability

Page 17: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 17

Evaluation metrics

Bradley, 1997

• Accuracy– Classification Error

– Area under ROC curve (future work)

• Interpretability– Rule numbers

– Average rule lengths

Page 18: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 18

Datasets

Merz, et al. UCI repository of machine learning databases, 1998

Page 19: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 19

Result analysis on Accuracy

• FARM-DS ≈ SVM > C4.5– SVM2 and C4.5 results from (Bennett et al. 1997)

Page 20: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 20

Result analysis on Interpretability

• SVM, high accuracy, hard to interpret

• C4.5, low accuracy , easy to interpret

• FARM-DS, high accuracy, easy to interpret

Page 21: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 21

Interpretability (1)

• FARs extracted by FARM-DS are short and compact, and hence, easy to understand.

– 22 positive rules and 8 negative rules are extracted.

– In average, • the length of a positive rule is 2.6, • the length of a negative rule is 4.3, • and every sample activates

– 3.3 positive rules and – 5.6 negative rules.

Page 22: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 22

Interpretability (2)• FARs may help human experts to correct the

wrongly classified samples.

Page 23: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 23

Interpretability (3)• The larger support of the negative rules may help

human experts to make final correct decisions and find inherent disease-resulting mechanisms.

Page 24: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 24

Interpretability (4)

• FARs are helpful to select important features.– Higher activation frequency means more

important feature

Page 25: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 25

Outline

• Background

• Fuzzy Association Rule Mining for Decision Support (FARM-DS)

• FARM-DS on Medical Data

• FARM-DS on Microarray Expression Data

• Fuzzy-Granular Gene Selection on Microarray Expression Data

• Conclusion and Future Work

Page 26: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 26

Microarray Expression Data

• Extremely high dimensionality• Gene selection• Cancer classification• Rule-based reasoning

Page 27: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 27

Empirical Studies

• Rule-Based Reasoning/Classification

– CART for decision trees modeling (Breiman, et al. 1984)

– ANFIS for fuzzy neural networks modeling (Jang, 1993)

– FARM-DS (He, et al. 2006a, IJDMB)

Page 28: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 28

Evaluation metrics

Bradley, 1997

• Accuracy– Classification Error– Area under ROC curve– Accuracy Estimation

• Leave-one-out cross validation

• Interpretability– Rule numbers– Average rule lengths

Page 29: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 29

AML/ALL leukemia dataset

 

Tang, et al. 2006

Page 30: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 30

Result analysis:AML/ALL leukemia dataset

• Higher accuracy than CART• Easier to interpret than ANFIS

Page 31: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 31

Rules extracted by FARM-DS:AML/ALL leukemia dataset

• IF – gene2 (Y12670),– gene3 (D14659) and – gene5 (M80254) are down-regulated,

• THEN the tissue is ALL(-1)

Page 32: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 32

Prostate cancer dataset

 

Tang, et al. 2006

Page 33: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 33

Result analysis:prostate cancer dataset

• Higher accuracy than CART• Easier to interpret than ANFIS

Page 34: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 34

Rules extracted by FARM-DS: prostate cancer dataset

Page 35: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 35

Outline

• Background

• Fuzzy Association Rule Mining for Decision Support (FARM-DS)

• FARM-DS on Medical Data

• FARM-DS on Microarray Expression Data

• Fuzzy-Granular Gene Selection on Microarray Expression Data

• Conclusion and Future Work

Page 36: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 36

Gene Selection and Cancer Classification on Microarray Expression Data

• Extremely high dimensionality– AML/ALL leukemia dataset 72 * 7129– no more than 10% relevant genes (Golub, et al. 1999)

• Gene selection– accurate classification– helpful for cancer study

Page 37: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 37

Gene Categorization and Gene Ranking

• Informative genes• Redundant genes• Irrelevant genes• Noisy genes

Page 38: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 38

Information Loss

• Noise– Overfitting themselves– Complementary to redundant/irrelevant

genes– Conflict with informative genes

• Imbalanced gene selection• Inflexibility

How to decrease information loss?

Granulation!

Page 39: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 39

Coarse Granulation with Relevance Indexes

22 /1 iiiR 22 /1 iiiR

•Target: remove irrelevant genes

imbalance

imbalance

balance

•Target: tune thresholds to select genes in balance

Page 40: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 40

Fine Granulation with Fuzzy C-Means Clustering

• clustering in the training samples space

• genes with similar expression patterns have similar functions

• a gene may have multiple functions (Fuzzy works here!)

Page 41: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 41

Conquer with correlation-based Ranking

• Lower-ranked genes are removed as redundant genes

Page 42: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 42

Aggregation with Data Fusion

• Pick up genes from different clusters in balance

• An informative gene is more possible to survive – (due to fuzzy clustering)

Page 43: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 43

Original Gene Set

Relevance Indexes -based pre-filtering

Relevant Gene Set

Fuzzy C-Means Clustering

Gene Cluster 1

Gene Cluster 2

Gene Cluster K

Correlation-based Gene Ranking 1

Correlation-based Gene Ranking 2

Correlation-based Gene Ranking K

Final Gene Set

Page 44: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 44

Empirical Study

• Comparison– Signal to Noise (S2N) (Furey, et al. 2000)– Fuzzy-Granular + S2N

– Fisher Criterion (FC) (Pavlidis, et al. 2001)– Fuzzy-Granular + FC

– T-Statistics (TS) (Duan, et al. 2004)– Fuzzy-Granular + TS

Page 45: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 45

Evaluation Methods

)/(

)/(

)/()(

FNTNTNyspecificit

FPTNTNysensitivit

TPFPFNTNTPTNaccuracy

Metrics Accuracy Sensitivity Specificity Area under ROC curve

Estimation Leave-1-out CV .632 bootstrapping

.632 Perf = 0.368 * training perf + 0.632 * testing perf

Page 46: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 46

prostate cancer dataset

 

Page 47: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 47

Result analysis:prostate cancer dataset

Page 48: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 48

Colon cancer dataset

 

Page 49: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 49

Result analysis:colon cancer dataset

Page 50: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 50

Conclusion• High-level data abstraction

– data clustering techniques

• Quantitative data transformed to fuzzy discrete transactions – Fuzzy interval partition – Apriori algorithm for AR mining

• Strong decision support for biomedical study– High accuracy and easy to interpret

• More accurate cancer classification– Eliminate irrelevant/redundant genes to decrease noise– Select informative genes in balance

Page 51: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 51

Future Works

• Applying FARM-DS on other biomedical applications

• Integrating more intelligent data analysis techniques.

• Cloud computing based fuzzy data mining algorithms for big data mining

• GPU based fuzzy data mining algorithms for big data mining

Page 52: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 52

References

• [1] Y. C. He, Y.C. Tang, Y.-Q. Zhang and R. Sunderraman, “Mining Fuzzy Association Rules from Microarray Gene Expression Data for Leukemia Classification,” Proc. of International Conference on Granular Computing (GrC-IEEE 2006), Atlanta, pp. 461-465, May 10-12, 2006.

• [2] Y.C. He and Y.C. Tang, Y.-Q. Zhang and R. Sunderraman, “Adaptive Fuzzy Association Rule Mining for Effective Decision Support in Biomedical Applications,” International Journal of Data Mining and Bioinformatics, Vol. 1, No. 1, pp. 3-18, 2006.

• [3] Y.C. He, Y.C. Tang, Y.-Q. Zhang and R. Sunderraman, “Fuzzy-Granular Gene Selection from Microarray Expression Data,” Proc. of DMB2006 in conjunction with IEEE-ICDM2006, Hong Kong, Dec. 18, 2006, (accepted).

• [4] Y.C. He, Y.C. Tang, Y.-Q. Zhang and R. Sunderraman, “Fuzzy-Granular Methods for Identifying Marker Genes from Microarray Expression Data,” Computational Intelligence for Bioinformatics, Gary B. Fogel, David Corne, and Yi Pan (eds.), IEEE Press, 2007.

Page 53: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 53

Acknowledgments

Thanks goto – Dr. Yuchun Tang – Dr. Yuanchen He

For their hard works on this research project.

Page 54: 2015-12-4Yan-Qing Zhang, Georgia State University1 Yanqing Zhang Department of Computer Science Georgia State University Atlanta, GA 30302-5060 yzhang@gsu.edu

23/4/21 Yan-Qing Zhang, Georgia State University 54

Questions?

Comments?