20
2015 HIGHER SCHOOL CERTIFICATE EXAMINATION 2610 Mathematics Extension 2 General Instructions • Reading time – 5 minutes • Working time – 3 hours • Write using black pen • Board-approved calculators may be used • A table of standard integrals is provided at the back of this paper • In Questions 11–16, show relevant mathematical reasoning and/or calculations Total marks – 100 Section I Pages 2–6 10 marks • Attempt Questions 1–10 • Allow about 15 minutes for this section Section II Pages 7–18 90 marks • Attempt Questions 11–16 • Allow about 2 hours and 45 minutes for this section

2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

2015 HIGHER SCHOOL CERTIFICATE EXAMINATION

2610

Mathematics Extension 2

General Instructions

•Readingtime–5minutes

•Workingtime–3hours

•Writeusingblackpen

•Board-approvedcalculatorsmaybeused

•Atableofstandardintegralsisprovidedatthebackofthispaper

•InQuestions11–16,showrelevantmathematicalreasoningand/orcalculations

Total marks – 100

Section I Pages 2–6

10 marks

•AttemptQuestions1–10

•Allowabout15minutesforthissection

Section II Pages 7–18

90 marks

•AttemptQuestions11–16

•Allowabout2hoursand45minutesforthissection

Page 2: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 2 –

Section I

10 marksAttempt Questions 1–10Allow about 15 minutes for this section

Usethemultiple-choiceanswersheetforQuestions1–10.

131 Whichconichaseccentricity ?3

x2 y2

(A) + = 13 2

x2 y2

(B)32

+22

= 1

x2 y2

(C) − = 13 2

x2 y2

(D) –32 22

= 1

2 Whatvalueofzsatisfies z2 = 7 –24i ?

(A) 4−3i

(B) −4−3i

(C) 3−4i

(D) −3−4i

Page 3: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–3–

3 Whichgraphbestrepresentsthecurve y = (x −1)2 (x + 3)5 ?

–3 1O –1 O 3

–3 1O –1 O 3

(A) (B)

(C) (D)

y y

y y

x x

x x

4 Thepolynomial x3 + x2 −5x +3 hasadoublerootat x = a.

Whatisthevalueofa ?

5(A) −

3

(B) − 1

(C) 1

5(D)

3

Page 4: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–4–

5 Giventhat z = 1 − i, whichexpressionisequaltoz3 ?

⎛ ⎛ −3π ⎞ ⎛ −3π ⎞ ⎞(A) 2 ⎜ cos + isin ⎟⎝ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎠

⎛ ⎛ −3π ⎞ ⎛ −3π ⎞ ⎞(B) 2 2 ⎜ cos + isin ⎟⎝ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎠

⎛ ⎛ 3π ⎞ ⎛ 3π ⎞ ⎞(C) 2 ⎜ cos + isin ⎟⎝ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎠

⎛ ⎛ 3π ⎞ ⎛ 3π ⎞ ⎞(D) 2 2 ⎜ cos + isin ⎟⎝ ⎝ 4 ⎠ ⎝ 4 ⎠ ⎠

⌠6 Whichexpressionisequalto 2

⎮ x sin x dx ?⌡

⌠(A) −x2 cos x − ⎮ 2x cos x dx

⌠(B) −2x cos x + x2

⎮ cos x dx⌡

2 ⌠(C) −x cos x + ⎮ 2x cos x dx

⌠(D) −2x cos x − x2

⎮ cos x dx⌡

7 Thenumbers1,2,...n, for n ≥4, arerandomlyarrangedinarow.

Whatistheprobabilitythatthenumber1issomewheretotheleftofthenumber2?

1(A)

2

1(B)

n

1(C)

2(n − 2)!1

(D)2(n −1)!

Page 5: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–5–

8 Thegraphofthefunction y = ƒ (x) isshown.

x

y

a bO

Asecondgraphisobtainedfromthefunction y = ƒ (x) .

x

y

a bO

Whichequationbestrepresentsthesecondgraph?

(A) y2 = ƒ (x)

(B) y2 = ƒ (x)

(C) y = ƒ (x)

(D) y = f ( x )

Page 6: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 6 –

9 Thecomplexnumberzsatisfies z −1 = 1 .

WhatisthegreatestdistancethatzcanbefromthepointiontheArganddiagram?

(A) 1

(B) 5

(C) 2 2

(D) 2 +1

10 Considertheexpansionof

(1+ x + x2 +!+ xn )(1+ 2x + 3x2 +!+ (n +1)xn ) .

Whatisthecoefficientof xnwhenn = 100?

(A) 4950

(B) 5050

(C) 5151

(D) 5253

Page 7: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 7 –

Section II

90 marksAttempt Questions 11–16Allow about 2 hours and 45 minutes for this section

AnswereachquestioninaSEPARATEwritingbooklet.Extrawritingbookletsareavailable.

In Questions 11–16, your responses should include relevant mathematical reasoning and/orcalculations.

Question 11 (15marks)UseaSEPARATEwritingbooklet.

4 + 3i(a) Express intheform x + iy, wherexandyarereal. 22 − i

⎛ π π ⎞(b) Considerthecomplexnumbers z = − 3 + i and w = 3 cos + isin .⎝ 7 7 ⎠

(i) Evaluate z . 1

(ii) Evaluatearg(z). 1

z (iii) Findtheargumentof . 1

w

1 A Bx + C(c) FindA,BandCsuchthat ( ) = + . 2

x x2 + 2 x x2 + 2

x2 y2

(d) Sketch + = 1 indicatingthecoordinatesofthefoci. 225 16

dy(e) Findthevalueof atthepoint(2,–1)onthecurve x + x2y3 = –2. 3

dx

⎛θ ⎞(f) (i) Showthat cotθ + cosecθ = cot . 2⎝ 2 ⎠

⌠ (ii) Hence,orotherwise,find ⎮ (cotθ + cosecθ )dθ . 1

Page 8: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 8 –

Question 12 (15marks)UseaSEPARATEwritingbooklet.

π(a) Thecomplexnumberzissuchthat z = 2 and arg(z) = .

4

Plot each of the following complex numbers on the same half-page Arganddiagram.

(i) z 1

(ii) u = z2 1 (iii) v = z2 − z 1

(b) The polynomial P(x) = x4 − 4x3 +11x2 −14x +10 has roots a + ib anda + 2ibwhereaandbarerealand b ≠0.

(i) Byevaluatingaandb,findalltherootsofP (x). 3

(ii) Hence,orotherwise,findonequadraticpolynomialwithrealcoefficientsthatisafactorofP (x).

1

(x − 2)(x − 5) a(c) (i) Bywriting intheform mx + b + ,findtheequation

x −1 x −1(x − 2)(x − 5)

oftheobliqueasymptoteof y = .x −1

2

(x − 2)(x − 5) (ii) Hence sketch the graph y = , clearly indicating all

x −1interceptsandasymptotes.

2

Question 12 continues on page 9

Page 9: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–9–

Question12(continued)

(d) Thediagramshowsthegraph y = x +1 for 0≤ x ≤3. Theshadedregionisrotatedabouttheline x =3 toformasolid.

4

x

y

O

1

3

Usethemethodofcylindricalshellstofindthevolumeofthesolid.

End of Question 12

Page 10: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 10 –

Question 13 (15marks)UseaSEPARATEwritingbooklet.

x2 y2 x2 y2

(a) The hyperbolas H : − = 1 and H : − = −1 are shown in the1 a2 2b2 a2 b2

diagram.

LetP (a secq,b tanq ) lieonH1asshownonthediagram.

LetQbethepoint(a tanq,b secq ).

yH2

H1

Q

P

xO

H1

H2

(i) Verify that the coordinates of Q (a tanq, b secq ) satisfy the equationforH2.

1

(ii) ShowthattheequationofthelinePQis bx + ay = ab (tanq + secq ). 2

(iii) ProvethattheareaofrOPQisindependentofq. 3

Question 13 continues on page 11

Page 11: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 11 –

Question13(continued)

(b) Two quarter cylinders, each of radius a, intersect at right angles to form theshadedsolid.

a

a

AhorizontalsliceABCD ofthesolidistakenatheighthfromthebase.YoumayassumethatABCDisasquare,andisparalleltothebase.

A

B

C

D

h

(i) Showthat AB = a2 − h2 . 1

(ii) Findthevolumeofthesolid. 2

Question 13 continues on page 12

Page 12: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 12 –

Question13(continued)

(c) Asmallsphericalballoonisreleasedandrisesintotheair.Attime tseconds,

4ithasradiusrcm,surfacearea S =4pr 2 andvolume V = pr 3.

3

As the balloon rises it expands, causing its surface area to increase at a rate 1

⎛ 4π ⎞ 3of cm2 s−1.Astheballoonexpandsitmaintainsasphericalshape.⎝ 3 ⎠

1dr 1 ⎛ 4 ⎞ 3 (i) Byconsideringthesurfacearea,showthat = π . 2dt 8πr ⎝ 3 ⎠

1dV 1

(ii) Showthat = V 3 . 2dt 2

(iii) Whentheballoonisreleaseditsvolumeis8000 cm3. Whenthevolumeoftheballoonreaches64 000 cm3itwillburst.

Howlongafteritisreleasedwilltheballoonburst?

2

End of Question 13

Page 13: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–13–

Question 14 (15marks)UseaSEPARATEwritingbooklet.

(a) (i) Differentiatesinn –1q cosq,expressingtheresultintermsofsinqonly. 2

π π⌠ 2 n (n −1)⌠ 2

(ii) Hence,orotherwise,deducethat ⎮ sin θ dθ = ⎮ sinn−2θ dθ , 2⌡ n

0 ⌡0

forn > 1.

π⌠ 2

(iii) Find sin4⎮ θ dθ . 1⌡0

(b) Thecubicequation x3 – px + q = 0 hasroots a,bandg.

Itisgiventhat a2 + b 2 + g 2 = 16 and a3 + b 3 + g 3 = –9.

(i) Showthat p =8. 1

(ii) Findthevalueofq. 2

(iii) Findthevalueof a4 + b 4 + g 4. 2

Question 14 continues on page 14

Page 14: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–14–

Question14(continued)

(c) Acarofmass m isdrivenat speedv aroundacircular trackof radius r.Theπ

track isbankedat aconstantangleq  to thehorizontal,where 0 < θ < .At2

thespeedvthereisatendencyforthecartoslideupthetrack.Thisisopposed

byafrictionalforcemN,whereNisthenormalreactionbetweenthecarandthe

track,andm > 0.Theaccelerationduetogravityisg.

N

mNmg

q

that v2 ⎛ tanθ + µ ⎞(i) Show = rg⎜ ⎟ . 3⎝ 1− µ tanθ ⎠

(ii) AttheparticularspeedV,where V 2 = rg,thereisstillatendencyforthcartoslideupthetrack.

Usingtheresultfrompart(i),orotherwise,showthat m < 1.

e 2

End of Question 14

Page 15: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

–15–

Question 15 (15marks)UseaSEPARATEwritingbooklet.

(a) AparticleAofunitmasstravelshorizontallythroughaviscousmedium.Whent = 0,theparticleisatpointOwithinitialspeedu.TheresistanceonparticleA duetothemedium iskv 2,wherevisthevelocityoftheparticleattimetandk isapositiveconstant.

Whent = 0, asecondparticleBofequalmassisprojectedverticallyupwardsfromOwiththesameinitialspeeduthroughthesamemedium.Itexperiencesbothagravitational forceanda resistancedue to themedium.The resistanceonparticleB iskw 2,wherew is thevelocityof theparticle B at time t.Theaccelerationduetogravityisg.

1 1 (i) ShowthatthevelocityvofparticleAisgivenby = kt + . 2

v u

(ii) ByconsideringthevelocitywofparticleB,showthat 3

1 ⎛ −1 ⎛ k ⎞ ⎛ k ⎞ ⎞t = ⎜ tan ⎜u −⎟ tan−1

⎜w ⎟ ⎟ .gk ⎝ ⎝ g ⎠ ⎝ g ⎠ ⎠

(iii) ShowthatthevelocityVofparticleAwhenparticleBisatrestisgivenby

1

1 1 k= + tan−1 ⎛ k ⎞u

V u g ⎜⎝ g ⎟ .⎠

2 g (iv) Hence,ifuisverylarge,explainwhy V ≈ . 1

π k

Question 15 continues on page 16

Page 16: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 16 –

Question15(continued)

(b) Supposethat x ≥ 0 andnisapositiveinteger.

1 (i) Showthat 1− x ≤ ≤ 1 .

1+ x2

1 ⎛ 1 ⎞(ii) Hence,orotherwise,showthat 1− ≤ n ln 1+ ≤ 1. 22n ⎝ n ⎠

1 ⎞ n

(iii) Hence,explainwhy lim 1+ = e. 1n→∞⎝ n ⎠

x + y(c) Forpositiverealnumbersx and y, xy ≤ . (DoNOTprovethis.)

2

x2 + y2

(i) Prove xy ≤ ,forpositiverealnumbersxandy. 12

( 4 a2 + b2 + c2 + d2ii) Prove abcd ≤ , forpositive realnumbersa,b,c

4andd.

End of Question 15

2

Page 17: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 17 –

Question 16 (15marks)UseaSEPARATEwritingbooklet.

(a) (i) Atablehas3rowsand5columns,creating15cellsasshown. 2

Counters are to be placed randomly on the table so that there is onecounterineachcell.Thereare5identicalblackcountersand10identicalwhitecounters.

Showthattheprobabilitythatthereisexactlyoneblackcounterineach

columnis81

1001.

(ii) The table is extended to have n rows and q columns. There arenqcounters,whereqareidenticalblackcountersandtheremainderareidenticalwhitecounters.Thecountersareplacedrandomlyonthetablewithonecounterineachcell.

LetPnbe theprobability thateachcolumncontainsexactlyoneblackcounter.

2

nq

Showthat P = .n ⎛ nq⎞⎜ ⎟⎝ q ⎠

(iii) Find lim Pn .n→∞

2

Question 16 continues on page 18

Page 18: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 18 –

Question16(continued)

(b) Letnbeapositiveinteger.

(i) Byconsidering (cosα + isinα )2n ,showthat

2n2n ⎛ ⎞ 2n−2 2 ⎛2n⎞cos(2nα ) = cos α − ⎜ ⎟ cos α sin α + 2n−4

⎜ ⎟ cos α sin4α −!⎝ 2 ⎠ ⎝ 4 ⎠

n 1 ⎛ 2n+ (−1) − ⎞+! ⎜ ⎟ cos2α sin2n−2α + (−1)n sin2nα .

⎝2n − 2⎠

2

Let T (x) = cos(2ncos−1x2n ) ,for −1 ≤ x ≤1.

(ii) Showthat

T ( 2 ⎛2n⎞) = −x x n − x2n 2⎜ ⎟ (1− x2) ⎛2n⎞ 2 n

+ x2n−4 (1− x2) +!+ (−1)n⎜ ⎟ (1− x2) .2n ⎝ 2 ⎠ ⎝ 4 ⎠

2

(iii) ByconsideringtherootsofT x2n( ),findthevalueof 3

⎛ π ⎞ ⎛ 3π ⎞ ⎛ (4n −1)π ⎞cos cos ! cos⎜ ⎟ .⎝ 4n⎠ ⎝ 4n⎠ ⎝ 4n ⎠

(iv) Provethat

⎛2n⎞ ⎛2n⎞ ⎛2n⎞ ⎛2n⎞ ⎛ nπ ⎞1− ⎜ ⎟ + ⎜ ⎟ − ⎜ ⎟ +!+ (−1)n = 2n⎜ ⎟ cos .

⎝ 2 ⎠ ⎝ 4 ⎠ ⎝ 6 ⎠ ⎝2n⎠ ⎝ 2 ⎠

2

End of paper

Page 19: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

BLANK PAGE

–19–

Page 20: 2015 HSC Mathematics Extension 2 - Board of Studies · 2015-10-21 · 2015. EXAMINATION. 2610. Mathematics Extension 2. General Instructions • Reading time – 5 minutes • Working

– 20 –

STANDARD INTEGRALS

©2015BoardofStudies,TeachingandEducationalStandardsNSW

xn dx = 1n +1

xn+1 , n ≠ −1; x ≠ 0, if n < 0⌠

⌡⎮

1x

dx = ln x , x > 0⌠

⌡⎮

eax dx = 1a

eax , a ≠ 0⌠

⌡⎮

cosax dx = 1a

sinax , a ≠ 0⌠

⌡⎮

sinax dx = − 1a

cosax , a ≠ 0⌠

⌡⎮

sec2 ax dx = 1a

tanax , a ≠ 0⌠

⌡⎮

secax tanax dx = 1a

secax , a ≠ 0⌠

⌡⎮

1

a2 + x2dx = 1

atan−1 x

a, a ≠ 0

⌡⎮

1

a2 − x2dx = sin−1 x

a, a > 0, − a < x < a

⌡⎮

1

x2 − a2dx = ln x + x2 − a2( ), x > a > 0

⌡⎮

1

x2 + a2dx = ln x + x2 + a2( )⌠

⌡⎮

NOTE : ln x = loge x , x > 0