31
Control Systems Bode diagrams L. Lanari

2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

  • Upload
    others

  • View
    4

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Control Systems

Bode diagramsL. Lanari

Page 2: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 2

Outline

• Bode’s canonical form for the frequency response

• Magnitude and phase in the complex plane

• The decibels (dB)

• Logarithmic scale for the abscissa

• Bode’s plots for the different contributions

Page 3: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 3

Frequency responseThe steady state response of an asymptotically stable system P(s)

to a sinusoidal input is given byu(t) = sin �t

yss(t) = |P (j�)| sin(�t+ \P (j�))

gain curve

(or magnitude)

phase curve

|P (j�)|

\P (j�)

Frequency response P (j�)

(P(j!) is the restriction of the transfer function to the imaginary axis P(j!)|s = j!

� 2 R+ = [0,+1)for

same frequency as inputamplification/attenuation depends on the system at the frequency of the input

a complex number p can always be represented in terms of its magnitude and phase

p = |p|ej\p

(|p|,\p)

Page 4: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 4

F (s) = K 0 1

sm

Qk(s� zk)

Q�(s

2 + 2��⇥n�s+ ⇥2n�)Q

i(s� pi)Q

z(s2 + 2�z⇥nzs+ ⇥2

nz)

Bode canonical form

pole/zero representation of the transfer function

with m such that

• m = 0 if no pole or zero in s = 0

• m < 0 if m zeros in s = 0

• m > 0 if m poles in s = 0

remarks

• numerator and denominator are by hypothesis coprime

• denominator is monic

• K’ is not the system gain

Page 5: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams

• the terms and are relative to

‣ complex conjugate zeros (in )

‣ complex conjugate poles (in )

5

Bode canonical form

s = �` ± j⇥`

(s2 + 2��⇥n�s+ ⇥2n�) (s2 + 2�z⇥nzs+ ⇥2

nz)

s = �z ± j⇥z

!n⇤ =p

↵2⇤ + �2

⇤⇤ = ��⇤/⌅n⇤ = ��⇤/p�2⇤ + ⇥2

with

• the terms (s - zk) and (s - pi) are relative to

‣ real zeros (in s = zk)

‣ real poles (in s = pi)

‣ natural frequency

‣ damping coefficient

Page 6: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 6

s� zk = �zk(1� 1/zks) = �zk(1 + �ks) with �k = �1/zk

s� pi = �pi(1� 1/pis) = �pi(1 + �is) with �i = �1/pi

F (s) = K 0 1

sm

Qk(�zk)

Q�(⇤

2n�)

Qk(1 + ⇥ks)

Q�(1 + 2��/⇤n�s+ s2/⇤2

n�)Qi(�pi)

Qz(⇤

2nz)

Qi(1 + ⇥is)

Qz(1 + 2�z/⇤nzs+ s2/⇤2

nz)

F (s) = K1

sm

Qk(1 + ⇥ks)

Q�(1 + 2��/⇤n�s+ s2/⇤2

n�)Qi(1 + ⇥is)

Qz(1 + 2�z/⇤nzs+ s2/⇤2

nz)

K = [smF (s)]s=0 for any m R 0K = K 0Q

k(�zk)Q

�(�2n�)Q

i(�pi)Q

z(�2nz)

Bode canonical form

factoring out the constant terms

with ¿i and ¿k being time constants

defining

Bode canonical form

how to compute K

Page 7: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 7

Ks = F (s)���s=0

= F (0)

K = Ks , m = 0

Gains

K = [smF (s)]s=0 for any m R 0generalized gain

Note that

• for a system with no poles in s = 0 (i.e. m negative or zero) we have defined as

dc-gain (or static gain)

if m < 0 (zeros in s = 0) we have F(0) = 0

• static and generalized gain coincide only when m = 0

• for an asymptotically stable system, the step response tends to the static gain Ks = F(0)

F (s) = K1

sm

Qk(1 + ⇥ks)

Q�(1 + 2��/⇤n�s+ s2/⇤2

n�)Qi(1 + ⇥is)

Qz(1 + 2�z/⇤nzs+ s2/⇤2

nz)= 1 for s = 0

Page 8: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 8

Bode canonical form

Examples

F (s) =s� 1

2s2 + 6s+ 4=

s� 1

2(s+ 1)(s+ 2)= �1

4

1� s

(1 + s)(1 + s/2)

F (s) =s(s� 1)

2(s+ 1)2(s+ 2)= �1

4

s(1� s)

(1 + s)2(1 + s/2)

F (s) =s� 1

2s(s+ 1)(s+ 2)= �1

4

1� s

s(1 + s)(1 + s/2)

K = �1

4= Ks

K = �1

4Ks = 0

K = �1

4@ Ks

Page 9: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 9

F (j⇤) = K1

(j⇤)m

Qk(1 + j⇤⇥k)

Q�(1 + 2��j⇤/⇤n� + (j⇤)2/⇤2

n�)Qi(1 + j⇤⇥i)

Qz(1 + 2�zj⇤/⇤nz + (j⇤)2/⇤2

nz)

Bode canonical form

has 4 elementary factors

1. constant K (generalized gain)

2. monomial j! (zero or pole in s = 0)

3. binomial 1 + j!¿ (non-zero real zero or pole)

4. trinomial 1 + 2³(j!)/!n + (j!)2/!n2 (complex conjugate pairs of zeros or poles)

frequency response

so first check which kind of root you have and then factor it out

Page 10: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 10

F (j�) = Re[F (j�)] + jIm[F (j�)]

Bode diagrams

magnitude of the frequency response as a function of the angular frequency !

angle or phase of the frequency response as a function of the angular frequency !

|F (j�)|

\F (j�)

for any real value of the angular frequency ! the frequency response F(j!) is a complex number

|F (j�)|

\F (j�)

F(j!)

F (j�) = |F (j�)|ej\F (j�)

|F (j�)| =p

Re[F (j�)]2 + Im[F (j�)]2 \F (j�) = atan2(Im[F (j�)],Re[F (j�)])

Im[F(j!)]

Re[F(j!)]

Page 11: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 11

Phase

Phase[F.G] = Phase[F ] + Phase[G]

Phase

F

G

�= Phase[F ]� Phase[G]

Phase⇥1G

⇤= �Phase[G]

the phase of a product is the sum of the phases

the phase of a ratio is the difference of the phases

and therefore

since

very useful since we can find the contribution to the

phase of each term and then just do an algebraic sum

Page 12: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 12

atan2(⇥,�) =

8>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

arctan⇣

�↵

⌘if � > 0 (I & IV quadrant)

arctan⇣

�↵

⌘+ ⇤ if ⇥ � 0 and � < 0 (II quadrant)

arctan⇣

�↵

⌘� ⇤ if ⇥ < 0 and � < 0 (III quadrant)

⇡2 sign(⇥) if � = 0 and ⇥ 6= 0

undefined if � = 0 and ⇥ = 0

Phase

|F (j�)|

\F (j�)

F(j!)Im[F(j!)]

Re[F(j!)]

principal argument takes on values

in (- ¼, ¼ ] and is implemented by

the function with two arguments

atan2

P = ® + j ¯

for

III

III IV

Page 13: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 13

|F (j�)|dB = 20 log10 |F (j�)|

|F.G|dB = |F |dB + |G|dB

����1

F

����dB

= � |F |dB

|F |dB ⇥ +⌅ if |F | ⇥ ⌅

|F |dB ⇤ �⌅ if |F | ⇤ 0

|0.1|dB = �20 dB

|1|dB = 0dB

|10|dB = 20 dB |100|dB = 40 dB

��p2��dB ⇡ 3 dB

Magnitudein order to have the same useful property we need to go through some logarithmic function

decibels (dB)

same nice properties

as phase

Page 14: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 14

10−3

10−2

10−1

100

101

−60

−40

−20

0

20

20

log

10(|

x|)

x in logarithmic scale

10−3

10−2

10−1

100

101

0

5

10

|x|

x in logarithmic scale

1 2 3 4 5 6 7 8 9 10−60

−40

−20

0

20

20

log

10(|

x|)

x in linear scale

Logarithmic scale

we use a logarithmic (log10) scale for the abscissa (angular frequency !)

a decade corresponds to multiplication by 10

log10(!) becomes a straight line

if ! is in a logarithmic scale

very useful when we add

different contributions

Page 15: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 15

0 2 4 6 8 100

100

200

300

|F(j

ω)|

linear scale

1 2 3 4 5 6 7 8 9 10−20

0

20

40

60

|F(j

ω)|

dB

linear scale

10−1

100

101

−20

0

20

40

60

|F(j

ω)|

dB

logarithmic scale

Logarithmic scaleadvantages

• quantities can vary in large range (both ! and magnitude)

• easy to build the magnitude plot in dB of a frequency response given in its Bode canonical

form from the magnitudes of the single terms

• easy to represent series of systems

same data

different scales

for abscissa and

ordinates

this is the scale we are going to use

Page 16: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 16

Bode diagrams

magnitude in dB of the frequency response as a function of the angular

frequency ! with logarithmic scale for !

angle or phase of the frequency response as a function of the angular

frequency ! with logarithmic scale for !\F (j�)

|F (j�)|dB

we need to find the magnitude (in dB) and phase for the 4 elementary factors

1. constant K (generalized gain)

2. monomial j! (zero or pole in s = 0)

3. binomial 1 + j!¿ (non-zero real zero or pole)

4. trinomial 1 + 2³(j!)/!n + (j!)2/!n2 (complex conjugate pairs of zeros or poles)

� 2 R+ = [0,+1)for

Page 17: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 17

Constant

magnitude

phase

Re

Im

K

20 log10 |K|

\K

K1 =p10K3 = �

p10

K2 = 0.5

10−2

10−1

100

101

102

−10

−6

0

10

20

frequency (rad/s)

Magnitude (dB)

|K1|dB, |K3|dB

|K2|dB

10−2

10−1

100

101

102

−180

−150

−100

−50

0

frequency (rad/s)

Phase (deg)

K1, K2

K3

|0.5|dB ⇥ �6 dB

|�10|dB = 10dB

|�⇥10|dB = 10dB

\�p10 = �180� = �⇡

\p10 = 0�

\0.5 = 0�

Page 18: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 18

Monomial - Numerator

Re

Im

j!j!

90°|j�|dB = 20 log10 �

|j�|dB = 20x

magnitude

log scale

phase

10−2

10−1

100

101

102

−40

−20

0

20

40

frequency (rad/s)

Magnitude (dB)

10−2

10−1

100

101

102

0

20

40

60

8090

frequency (rad/s)

Phase (deg)

20 dB/dec

Page 19: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 19

Monomial - Denominator

magnitude

phase

from properties of log and phase

10−2

10−1

100

101

102

−40

−20

0

20

40

frequency (rad/s)

Magnitude (dB)

10−2

10−1

100

101

102

−90−80

−60

−40

−20

0

frequency (rad/s)

Phase (deg)

-20 dB/dec

Page 20: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 20

Binomial - Numerator

|1 + j⇥� |dB = 20 log10p

1 + ⇥2�2

p1 + ⇥2�2 �

8<

:

1 if ⇥ ⇥ 1/|� |

⌅⇥2�2 if ⇥ ⇤ 1/|� |

1/|� |

|1 + j⇥� |dB �

8<

:

0 dB if ⇥ ⇥ 1/|� |

20 log10 ⇥ + 20 log10 |� | if ⇥ ⇤ 1/|� |

⇥⇤ = 1/|� | |1 + j�/|� | |dB = 20 log10⇥2 � 3 dB

magnitude

approximation wrt the cutoff frequency (or corner frequency)

and therefore

at the cutoff frequency

two half-lines approximation: 0 dB until the cutoff frequency, + 20dB/decade after

1 + j!¿

Page 21: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 21

Binomial - Numerator

phase depends on the sign of ¿

Re

Im

1

1 + j!¿

j!¿

¿ > 0

ReIm

1

j!¿

¿ < 0

see how the phase changes as ! increases

Page 22: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 22

Binomial - Numerator phase depends on the sign of ¿

case ¿ > 0

case ¿ < 0

\(1 + j⇥�) �

8<

:

0 if ⇥ ⇥ 1/|� |

⇡2 if ⇥ ⇤ 1/|� | and � > 0

\(1 + j⇥�) ⇥

8<

:

0 if ⇥ ⇤ 1/|� |

�⇡2 if ⇥ ⌅ 1/|� | and � < 0

the two asymptotes are connected by a segment starting a decade before (0.1/| ¿ | ) the cutoff

frequency and ending a decade after (10/| ¿ |). The approximation is a broken line.

⇥⇤ = 1/|� |at the cutoff frequency \(1 + j�/|� |) =

8<

:

⇡4 if � > 0

�⇡4 if � < 0

1 + j!¿

0

¼/2

-¼/2

1/| ¿ |

0.1/| ¿ | 10/| ¿ |

Page 23: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 23

Binomial - numerator1 + j!¿

magnitude

phase¿ > 0

−10

03

10

20

30

40

frequency (rad/s)

Magnitude (dB)

−90

−45

0

frequency (rad/s)

Phase (deg)

0

45

90

frequency (rad/s)

Phase (deg)

1/| ¿ |

0.1/| ¿ | 10/| ¿ |

phase¿ < 0

0.1/| ¿ | 10/| ¿ |1/| ¿ |

Page 24: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 24

Binomial - denominator1 /(1 + j!¿)

−40

−30

−20

−10

−30

10

frequency (rad/s)

Magnitude (dB)

−90

−45

0

frequency (rad/s)

Phase (deg)

0

45

90

frequency (rad/s)

Phase (deg)

magnitude

phase¿ > 0

1/| ¿ |

0.1/| ¿ | 10/| ¿ |

phase¿ < 0

0.1/| ¿ | 10/| ¿ |1/| ¿ |

Page 25: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 25

Trinomial

����1 + 2�

⇥n(j⇥) +

(j⇥)2

⇥2n

���� =

����1�⇥2

⇥2n

+ j2�⇥

⇥n

����

=

s✓1� ⇥2

⇥2n

◆2

+

✓4�2

⇥2

⇥2n

|TRINOMIAL| ⇥

8>><

>>:

1 if � ⇤ �n

r⇣�2

�2n

⌘2=

�2

�2n

if � ⌅ �n

|TRINOMIAL|dB ⇥

8<

:

0 dB if � ⇤ �n

40 log10 � � 20 log10 �2n if � ⌅ �n

magnitude

approximation wrt !n

Page 26: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 26

Trinomial

|�| 0 0.5 1/⌅2 ⇥ 0.707 1

|TRIN |dB in ⇥n �⇤ 0 dB 3 dB 6 dB

in ! = !n the magnitude | TRINOMIAL | is equal to 2 | ³ |

large variation of the magnitude in ! = !n depending upon the value of the damping coefficient ³

no approximation around the natural frequency !n

Page 27: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 27

Trinomial

\✓1 + 2

⇤n(j⇤) +

(j⇤)2

⇤2n

◆=

8>>>>>><

>>>>>>:

0 if ⇤ ⌧ ⇤n

⇥ if ⇤ � ⇤n and � � 0

�⇥ if ⇤ � ⇤n and � < 0

Phase

transition between 0 and ¼ (or - ¼ ) is symmetric wrt !n and becomes more abrupt as

| ³ | becomes smaller. When ³ = 0 the phase has a discontinuity in !n

!"

#$# %

#

! !

&'

!#()

!

#

(

)"

"

"

"

"" " "How does a generic complex root

varies in the plane as a function of !

Page 28: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 28

Trinomial - numerator

−40

−20

0

20

40

60

frequency (rad/s)

Magnitude (dB)

0

1

0.30.1

0.5

0.7

0.30.1

0.5

0.7

0

45

90

135

180

frequency (rad/s)

Phase (deg)

01

0.1

0.3

0.5

0.7

0.1

0.3

0.5

0.7

−180

−135

−90

−45

0

frequency (rad/s)

Phase (deg) 0.01

1

magnitude

phase

phase

⇣ � 0

� < 0

0.1 !n 10 !n!n

0.1 !n 10 !n!n

Page 29: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 29

Trinomial - denominator

−60

−40

−20

0

20

40

frequency (rad/s)

Magnitude (dB) 0

1

−180

−135

−90

−45

0

frequency (rad/s)

Phase (deg) 0

1

0

45

90

135

180

frequency (rad/s)

Phase (deg)

0.011

magnitude

phase

phase

⇣ � 0

� < 0

0.1 !n 10 !n!n

0.1 !n 10 !n!n

Page 30: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 30

Trinomial

roots =

( �!n if ⇣ = 1

!n if ⇣ = �1

When | ³ | = 1 the trinomial reduces to a product of two identical binomials (real roots)

✓1 + 2

⇥ns+

s2

⇥2n

�=±1

=

✓1± s

⇥n

◆2

and therefore the magnitude and phase coincides with that of a double binomial with corner

frequency1

|⌧ | = !n

2⇥ (3 dB) = 6dB (numerator)

2⇥ (�3 dB) = �6 dB (denominator)

that is in ! = !n when | ³ | = 1

example: MSD system with critical value for the damping (µ2 = 4km)

Page 31: 2019 Lec10 Bode diagrams - dis.uniroma1.itlanari/ControlSystems/CS... · • Bode’s plots for the different contributions. Lanari: CS - Bode diagrams 3 ... advantages • quantities

Lanari: CS - Bode diagrams 31

Trinomial

|F (j⇥r)| =1

2|�|p1� �2

!r = !n

p1� 2⇣2

|�| < 1/⇥2 � 0.707if the magnitude of a trinomial factor at the denominator has a peak

at the resonance frequency

resonance peak

(similarly for the anti-resonance peak)

−20

15

14

34

frequency (rad/s)

Magnitude (dB)

0.01

−40

−20

0

20

frequency (rad/s)

Magnitude (dB)

0.01

0.3

0.1

0.5

resonancepeak

anti-resonancepeak