41
20/06/22 1 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

Embed Size (px)

Citation preview

Page 1: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 1

Solitons: from kinks to magnetic

monopoles

Richard MacKenzie

Département de Physique, U. Montréal

U. Miss, 23 March, 2010

Page 2: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 2

Outline1. What is a soliton? Brief history of...

2. Solitons in everyday life

3. Example in 1 dimension : conducting polymers

4. Topological detour: spontaneous symmetry breaking

5. Solitons in 2d : superconducting vortices

6. Solitons in 3d : magnetic monopoles

7. A few applications

Page 3: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 3

1. What is a soliton?Definition: a solution to a set of partial differential equations which is localized in space, which is either time dependent or does not change its form as a function of time.

or

A localized wave which propagateswithout dispersion

Page 4: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 4

History of solitionsFirst observation: John Scott Russell, 1834

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

Page 5: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 5

Soliton on the Scott Russell Aqueduc, Edinburgh, 12 July, 1995

Page 6: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 6

2. Solitons in everyday life

Page 7: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 7

Bicycle rack solitons

A topological problem encountered in the parking of bicycles

Page 8: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 8

Bicyce rack: a non-artist’s misconception:

Page 9: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 9

Formation of a bicycle soliton

Page 10: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 10

Two «ground states»:

Page 11: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 11

Another example inspired by

everyday life:

Page 12: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 12

3. Solitons in conducting polymers

Page 13: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 13

Two ground states:

«Peierls Instability»

Page 14: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 14

Mathematical description

Order parameter:

«dimerisation» : φn=(-)nun→φ(x)

where un=displacement of nth C atom

Energy:

E=∑n{k(φn-φn-1)2+V(φn)} →

∫dx{(dφ/dx)2+V(φ)}

Page 15: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 15

Potential energy density:

Page 16: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 16

Soliton («kink»):

|←several C atoms→|

Page 17: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 17

4. A topological detourTwo classes of soliton:

«Nontopological» soliton: owes its existence to nonlinearities which act against dispersion (e.g. waves observed by JSR)

«Topological» soliton: owes its existence to a multiplicity of ground states, giving rise to topologically non-trivial field configurations

Page 18: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 18

Nontopological vs topological

Page 19: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 19

Multiplicity of ground states: A rare exception?

No! It’s a fact of life with spontaneous symmetry breaking (SSB)

Symmetry: φ→-φ V(-φ)=V(φ) mais φ= -v→φ=+v

Page 20: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 20

Examples of SSB Ferromagnetism: spontaneous appearance of

magnetization

Broken symmetry: spin rotation SO(3)→SO(2)Order parameter: magnetizationSpace of ground states: S2 (surface of a sphere)

Page 21: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 21

Superconductivity (SC):

Order parameter: wave function of Cooper pairs (superconducting electrons) – complex scalar field φ

Broken symmetry: rotation of the phase of φ

Space of ground states: S1 (circle)

Page 22: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 22

Electro-weak symmetry in the Standard Model of particle physics:

Order parameter: Higgs field (two complex fields (φ1,φ2) )

Broken symmetry: «rotations» of the Higgs field: SU(2)xU(1) → U(1) (electromag.)

Space of ground states: S3

| φ1|2 + |φ2|2 = v2

Page 23: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 23

Grand Unified Theories (GUTs) Chiral symmetry Supersymmetry Family replication symmetry (?) Lorentz group? etc

Other examples of SSB:

Page 24: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 24

5. Solitons in 2d: SC vortexOrder parameter: complex field φ

How to look for solitons: study the space of finite-energy field configurations

One contribution to the energy of a field configuration: potential energy

U=∫d2x V(φ(x))

For this to be finite, V(φ)→0 for r→∞ :

|φ|→v -- but phase is arbitrary.

Page 25: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 25

Here are two possibilities:

trivial (vacuum) topologically nontrivial

Page 26: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 26

Can we make the soliton go away?

Mathematical description: finite energy ↔ map from spatial infinity to the space of ground states: S1→ S1. Take-home buzz word: homotopy π1(S

1)=Z

Page 27: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 27

And the gradient energy…?

«It can be shown» that for the soliton,

∫d2x (∂φ)2 →∞ !!!

Is all lost? No! Gauge symmetry comes to the rescue. If the U(1) symmetry is «gauged»,

∂φ→(∂-ieA)φ

A: vector potential (electromag.)

For φ in the form of a soliton, we can find an A with which the gradient energy is finite.

Page 28: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 28

Unexpected bonus: soliton contains magnetic flux

Page 29: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 29

Abrikosov lattice: Type II superconductor in a sufficiently strong magnetic field: field penetrates by forming a lattice of vortices (Abrikosov 1957; Nobel Prize in Physics, 2003!!!)

Page 30: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 30

6. Solitons in 3d: magnetic monopoles

Toy model : triplet of real fields (φ1,φ2,φ3) symmetric under rotations SO(3) SSB : SO(3)→SO(2)~U(1) Space of ground states : S2

symmetry gauged : non-abelian gauge theory (unbroken symmetry: U(1) e.m.)

Page 31: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 31

Existence of solitons (3d) follows from the topological result : π2(S2)=Z

Soliton:

Page 32: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 32

As with the vortex, the gradient energy diverges.

Again, this can be remedied via the (non-abelian) gauge field.

This time, the gauge field describes a magnetic flux coming from the soliton: far from it, the magnetic field is a Coulomb field; the soliton is a magnetic monopole (« ’t Hooft-Polyakov monopole »).

Does this occur in the Standard Model? No... but any GUT (or model which reduces to a GUT) has magnetic monopoles.

Page 33: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 33

7. A few «applications»

(a) Quantization of electric charge.

Observational fact : The charge of every particle we know is a multiple of e (or e/3 with quarks)

Question : WHY?

Page 34: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 34

Dirac (1931) : If a magnetic monopole existed, the quantum mechanics of a charged particle in the presence of the monopole does not make sense unless the electric charge is quantized. (Thus, the fact that electric charge does seem to be quantized is suggestive of the existence of magnetic monopoles!)

Modern context : In field theory, charge need not be quantized... but in GUTs,

(i) electric charge is quantized;

(ii) monopoles do exist.

Page 35: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 35

(b) Cosmology, phase transitions, topological defects

Following the Big Bang, the Universe expanded and cooled, causing (via SSB) phase transitions : eg

SU(5) → SU(3)xSU(2)xU(1) → SU(3)xU(1)

Page 36: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 36

Depending on the details of the SSB, many possibilities exist :

Page 37: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 37

Subsequent cooling : topological defects become regions of overdensity → seeds for the formation of structure in the Universe

Page 38: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 38

(c) Large extra dimensions – where are they?

If the Universe is of dimension > 3+1, the extra dimensions could be small (Kaluza-Klein models, superstrings) or large (D-branes, Randall-Sundrum, etc)

One way to reconcile the existence of large extra dimensions with our observed 3+1d Universe is if we live in the core of a 3-dimensional topological defect.

Page 39: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 39

Toy model:

Field giving rise to solitons : φ

Fields of ordinary matter : ψ,ξ,…

Page 40: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

21/04/23 40

8. What I said Pay attention to where you park your

bicycle! Topological solitons ; importance of

spontaneous symmetry breaking examples in 1d (polymers), 2d

(vortices), 3d (magnetic monopoles) a couple of «applications»

Page 41: 21/10/20151 Solitons: from kinks to magnetic monopoles Richard MacKenzie Département de Physique, U. Montréal U. Miss, 23 March, 2010

Thank you!

21/04/23 41