288
Alcatel-Lucent GSM G2 BTS Hardware Description BTS Document Sub-System Description Release B10 3BK 21248 AAAA TQZZA Ed.03

212480000e03.pdf DRFU BTS

Embed Size (px)

Citation preview

Page 1: 212480000e03.pdf DRFU BTS

Alcatel-Lucent GSM

G2 BTS Hardware Description

BTS Document

Sub-System Description

Release B10

3BK 21248 AAAA TQZZA Ed.03

Page 2: 212480000e03.pdf DRFU BTS

Status RELEASED

Short title G2 BTS HW. Descr.

All rights reserved. Passing on and copying of this document, useand communication of its contents not permitted without writtenauthorization from Alcatel-Lucent.

BLANK PAGE BREAK

2 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 3: 212480000e03.pdf DRFU BTS

Contents

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.1 BTS Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.2 Alphabetical Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.3 Common Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.3.2 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.3.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.3.4 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 DRFU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.2 SCP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Functional Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2.2 QUICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2.4 TKBUS Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.2.5 SCP Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 MFP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.1 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.2 MFP Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.3 DPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.4 MFP Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 TGU Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.5 TRXMUX Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Time Slot Assigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.5.2 Downlink Reformatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.5.3 Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Encoder Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.7 Decoder Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.8 Demodulator Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.9 Baseband Interface Encryption/Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.10 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.10.2 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.10.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.10.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.10.5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 DRFU Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432.11.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432.11.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442.11.3 DRFU Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 DRFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 G1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.1.2 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.2 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.4 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.3.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.3.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3BK 21248 AAAA TQZZA Ed.03 3 / 288

Page 4: 212480000e03.pdf DRFU BTS

Contents

4 FUCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2 MFP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.3 SCP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3.2 Serial Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3.3 Interrupt Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.3.4 LAPD Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.3.5 Reset and Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.3.6 Token Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.4.2 Reset Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.4.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.4.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.5.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.5.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.5.4 Backplane Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 FICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.2 FICE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Master Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.2.2 Channel Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.2.3 Frequency Hopping Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.2.4 Base Station Interface Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.2.5 Frame Clock Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.1 Internal Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.2 Station Unit Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.3 Clock Driver Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.4 Internal Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.5 Base Station Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.6 LAPD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.3.7 Frequency Hopping Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4.2 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.5.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.5.3 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735.5.4 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.5.5 Backplane Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 DADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786.2 DADE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 ICI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.2.2 Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806.2.3 Decryption Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806.2.4 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816.2.5 Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.2.6 Watchdog Reset and Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.2.7 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 5: 212480000e03.pdf DRFU BTS

Contents

6.2.8 Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.3.2 Reset Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.3.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.3.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.4.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856.4.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.4.4 Backplane Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 SCFE/SACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887.2 OMU Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Microprocessor and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897.2.2 Timing and Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.2.3 Driver Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.2.4 Token Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.2.5 Asynchronous Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.2.6 Base Station Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 EACU Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.3.1 Microcontroller and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.3.2 Input/Output System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.3.3 Timing and Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927.3.4 Q1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937.4.2 Reset Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957.4.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957.4.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967.5.2 SCFE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977.5.3 SACE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987.5.4 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997.5.5 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 STSE/STSR/STSP/ESTS/ESTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048.2 STSE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2.1 Module Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2.2 STSE Master Frequency Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2.3 STSP Master Frequency Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2.4 STSE/STSP Master Clock and Frame Number Generator . . . . . . . . . . . . . . . . . 1078.2.5 STSR Master Clock and Frame Number Generator . . . . . . . . . . . . . . . . . . . . . . . 1088.2.6 Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098.2.7 Frequency Hopping Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3.2 Trimming Potentiometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3.3 Reset Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3.4 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118.3.5 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128.4.2 STSE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138.4.3 STSP/STSR Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3BK 21248 AAAA TQZZA Ed.03 5 / 288

Page 6: 212480000e03.pdf DRFU BTS

Contents

8.4.4 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158.4.5 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 RTED/RTEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209.1.1 RTE Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209.1.2 Functional Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2 Receiver Board Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219.3 Digital Processing Unit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219.4 Transmitter Board Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229.5 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.5.1 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229.5.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.6 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239.6.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239.6.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239.6.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249.6.4 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10 TXDH/TXGH/TXGM/TEGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12510.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.1.1 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12610.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.2 Transmitter Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12710.2.1 Carrier Unit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12810.2.2 Power Control and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12910.2.3 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12910.2.4 GMSK Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12910.2.5 I/Q Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12910.2.6 Upconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12910.2.7 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13010.2.8 Power Coupling and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13010.2.9 Transmitter Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13110.3.1 Display States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13110.3.2 Fatal Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13210.3.3 DCL2 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13210.3.4 Alarm Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13310.3.5 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13410.3.6 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13410.3.7 Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13510.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13510.4.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13610.4.3 Output Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13610.4.4 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11 RXDD/RXGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011.1.1 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011.1.3 Functional Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.2 ARXE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14211.2.1 Signal Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14211.2.2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.3 Digital Board Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14211.3.1 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14211.3.2 A-D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.4 SRXE Board Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 7: 212480000e03.pdf DRFU BTS

Contents

11.4.1 Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14311.4.2 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.5 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14311.5.1 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14311.5.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.6 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14411.6.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14411.6.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14511.6.3 RF Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14511.6.4 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

12 FED8/FEG2/FEG8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14812.1.1 RFE Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14812.1.2 GSM 900 RFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14812.1.3 GSM 1800 RFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

12.2 RFE Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14912.2.1 RF Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14912.2.2 Directional Coupler and Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14912.2.3 Step Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15012.2.4 Amplifier Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15012.2.5 Power Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15012.2.6 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

12.3 Antenna Diversity Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15112.3.1 FEG2/FEG8 only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15112.3.2 FED8 only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15212.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15212.4.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15212.4.3 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

12.5 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15412.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15412.5.2 Front Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15512.5.3 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15712.5.4 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

13 TMAD/RMCD/TMAG/RMCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15913.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16013.2 TMAD/TMAG Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

13.2.1 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16113.2.2 Band Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.3 Coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.4 Pilot Tone Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.5 Pilot Tone Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.6 Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.7 Remote DC Feed T-Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.8 DC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.9 Overvoltage Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16213.2.10 Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

13.3 RMCD/RMCG Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16413.3.1 Overvoltage/Lightning Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16513.3.2 Remote DC Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16513.3.3 Continuously Variable Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16513.3.4 Pilot Tone Detector 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16513.3.5 Test Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16613.3.6 Amplification Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16613.3.7 Pilot Tone Detector 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16613.3.8 One-to-Eight Power Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3BK 21248 AAAA TQZZA Ed.03 7 / 288

Page 8: 212480000e03.pdf DRFU BTS

Contents

13.3.9 Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16613.3.10 Band Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16613.3.11 Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

13.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16713.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16713.4.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16813.4.3 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16813.4.4 Special Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

13.5 TMAD/TMAG Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17013.5.1 Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17013.5.2 Front and Side Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17113.5.3 RF Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

13.6 RMCD/RMCG Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17213.6.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17213.6.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17313.6.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17614.1.1 GSM 900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17614.1.2 GSM 1800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17614.1.3 Logical Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

14.2 RTC Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17714.2.1 Forem GSM 1800 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17814.2.2 Forem GSM RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17914.2.3 Celwave GSM RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18014.2.4 Celwave GSM 1800 RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18114.2.5 BCCH-Carrier Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18214.2.6 Isolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18214.2.7 Cavity Block and Cable Harness/Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

14.3 Forem RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18314.3.1 Transmit Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18314.3.2 Antenna VSWR Alarm Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18314.3.3 Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18414.3.4 DC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

14.4 Celwave RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18514.4.1 Transmit Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18514.4.2 VSWR Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18514.4.3 Motherboard/Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

14.5 GSM RTC Extension/Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18614.6 Adjustments and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

14.6.1 Initial Cavity Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18614.6.2 Operational Periodic Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

14.7 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7.3 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18714.7.4 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14.8 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18914.8.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18914.8.2 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19915.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

15.1.1 WBC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20015.1.2 DUPG/DUPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20015.1.3 DUD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20115.1.4 WBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 9: 212480000e03.pdf DRFU BTS

Contents

15.1.5 DUPD/DUPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20315.1.6 DUD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

15.2 WBC Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20515.2.1 Isolator with Power Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20515.2.2 Summing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20515.2.3 Transmitter Module (WBC and DUD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20615.2.4 Transmit-Receive Module (DUPD/DUPG/DUD2) . . . . . . . . . . . . . . . . . . . . . . . . . . 20615.2.5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20715.2.6 Control Board (DUD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

15.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20815.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20815.3.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20915.3.3 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

15.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21015.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21015.4.2 Front Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21015.4.3 Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21215.4.4 Rear Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

16 ADPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21616.2 Alcatel-Lucent Mobile Communications’ ADPS Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

16.2.1 Common Mode Choke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21716.2.2 AC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.3 Power Factor and Switch-on Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.4 Battery Inhibit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.5 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.6 DC/DC Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.7 Capacitor-Choke-Capacitor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.8 Inhibit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21816.2.9 Output Voltage Monitor and Alarm Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

16.3 Alcatel-Lucent Converters’ ADPS Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21916.3.1 Input Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.2 Inrush Current Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.3 AC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.4 DC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.5 Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.6 Converter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22016.3.7 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22116.3.8 Output Voltage/Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22116.3.9 Output Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22116.3.10 Undervoltage for AC/DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22116.3.11 Power Fail Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

16.4 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22216.4.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22216.4.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22216.4.3 Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

16.5 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22316.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22416.5.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22416.5.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

17 MBPS/FCPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22717.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22817.2 DC/DC Power Supplies Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

17.2.1 MBPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22917.2.2 FCPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23017.2.3 Input Filter and Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

3BK 21248 AAAA TQZZA Ed.03 9 / 288

Page 10: 212480000e03.pdf DRFU BTS

Contents

17.2.4 Auxiliary and Monitor Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23117.2.5 DC/DC Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23117.2.6 Output Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

17.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23317.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23317.3.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23317.3.3 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23317.3.4 FCPS Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23417.3.5 MBPS Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23417.3.6 Safety Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23517.3.7 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23517.3.8 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

17.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23617.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23617.4.2 MBPS Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23717.4.3 MBPS Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23817.4.4 FCPS Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23917.4.5 FCPS Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

17.5 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24117.5.1 Climatic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24117.5.2 Mechanical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

17.6 EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24217.6.1 Low Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24217.6.2 High Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24217.6.3 Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

17.7 ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

18 DCDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24518.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

18.1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24618.1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24618.1.3 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

18.2 DCDB Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24718.2.1 Input Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24718.2.2 Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24718.2.3 Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

18.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24818.3.1 Mini-BTS with Two Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24818.3.2 BTS with up to Eight Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24918.3.3 Indoor Sectorized BTS with 3 x 2 Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25018.3.4 Outdoor Sectorized BTS with 3 x 2 Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

18.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25218.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25218.4.2 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

19 SMBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25619.2 SMBI Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

19.2.1 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25719.2.2 G.703 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25819.2.3 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25819.2.4 Central Clock Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25819.2.5 Framer/G.704 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25819.2.6 PCM Time Slot Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25819.2.7 Bit Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25919.2.8 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

19.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26019.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 11: 212480000e03.pdf DRFU BTS

Contents

19.3.2 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26219.3.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26219.3.4 DIP Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26219.3.5 Abis Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

19.4 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26419.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26419.4.2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26519.4.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26619.4.4 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

20 CFU1/CFUA/CFUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26920.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

20.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27020.1.2 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27120.1.3 Typical Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

20.2 Functional Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27320.2.1 Fans and Speed Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27320.2.2 DC/DC Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27320.2.3 Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

20.3 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27420.3.1 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27420.3.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

20.4 CFU1 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27420.4.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27420.4.2 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

20.5 CFUT Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27620.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27620.5.2 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

20.6 CFUA Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27820.6.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27820.6.2 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

21 MCIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28021.2 O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

21.2.1 External Alarm Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28021.2.2 Q1 Test Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28021.2.3 Jumper Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

21.3 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28121.3.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28121.3.2 Front and Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28221.3.3 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28321.3.4 Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

22 CUDP/FUDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28522.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28622.2 CUDP Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28622.3 FUDP Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28722.4 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28822.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

3BK 21248 AAAA TQZZA Ed.03 11 / 288

Page 12: 212480000e03.pdf DRFU BTS

Figures

FiguresFigure 1: DRFU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2: DRFU Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3: DRFU Side View Showing the Position of the DFCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4: DRFE Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5: FUCO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 6: FUCO Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 7: FUCO Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 8: FICE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 9: Channel Encoder Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 10: FICE Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 11: FICE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 12: DADE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 13: DADE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 14: DADE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 15: OMU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 16: EACU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 17: SCFE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 18: SACE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 19: SCFE/SACE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 20: STSE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 21: STSE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 22: STSP/STSR Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 23: STSE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 24: RTE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 25: RTE Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 26: RTE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 27: Transmitter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 28: Transmitter Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 29: Transmitter Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 30: Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 31: Receiver Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 32: Receiver Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 33: FED8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 34: FEG2 and FEG8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 35: FEG2 Front Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 36: FEG8 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 37: FED8 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 38: RFE Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 39: Antenna Pre-amplifier Logical Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 13: 212480000e03.pdf DRFU BTS

Figures

Figure 40: Tower Mounted Amplifier Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 41: Receiver Multicoupler Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure 42: Tower Mounted Amplifier Front and Side Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 43: Receiver Multicoupler Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 44: Receiver Multicoupler Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 45: RTC Logical Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Figure 46: Forem RC4D/RC8D Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 47: FRBG/FREG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Figure 48: CRBG/CREG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Figure 49: Celwave RC4D/RC8D Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Figure 50: FRBG Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Figure 51: FRBG Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Figure 52: FREG Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure 53: FREG Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure 54: Forem RC4D Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Figure 55: Forem RC8D Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Figure 56: Forem RC4D/RC8D Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 57: CRBG Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 58: CRBG Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Figure 59: CREG Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Figure 60: CREG Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure 61: Celwave RC4D Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure 62: Celwave RC8D Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Figure 63: Celwave RC4D/RC8D Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Figure 64: WBC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Figure 65: DUPD/DUPG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Figure 66: DUD2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Figure 67: Forem WBC Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 68: Celwave WBC Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 69: DUPD Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 70: DUD2 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 71: DUPG Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Figure 72: WBC/DUPD Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Figure 73: DUD2 Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Figure 74: DUPG Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Figure 75: Alcatel-Lucent Mobile Communications’ ADPS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Figure 76: Alcatel-Lucent Converters’ ADPS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Figure 77: ADPS Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Figure 78: ADPS Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Figure 79: MBPS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

3BK 21248 AAAA TQZZA Ed.03 13 / 288

Page 14: 212480000e03.pdf DRFU BTS

Figures

Figure 80: FCPS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Figure 81: MBPS Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Figure 82: MBPS Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Figure 83: FCPS Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Figure 84: FCPS Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Figure 85: DCDB in a Mini-BTS with Two Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Figure 86: DCDB in a Mini-BTS with Two Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Figure 87: DCDB in a BTS with up to Eight Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Figure 88: DCDB in a Sectorized Indoor BTS with 3 x 2 Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Figure 89: DCDB in a Sectorized Outdoor BTS with 3 x 2 Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Figure 90: DCDB Equipment Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Figure 91: SMBI Logical Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Figure 92: SMBI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Figure 93: Typical Abis Interface to BSI Mapping at a BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Figure 94: Abis Interface Impedance Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Figure 95: SMBI Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Figure 96: SMBI Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Figure 97: CFU1, CFUT, CFUA and Temperature Sensor Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Figure 98: CFU1 and CFUT/CFUA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Figure 99: CFU1 Mechanical Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Figure 100: CFUT Mechanical Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Figure 101: CFUA Mechanical Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Figure 102: MCIB Front and Side Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Figure 103: Equipped MCIB Rear View Inside the MCI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Figure 104: CUDP Front Panel and Backplane Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Figure 105: FUDP Front Panel and Backplane Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

14 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 15: 212480000e03.pdf DRFU BTS

Tables

TablesTable 1: Alphabetical Submodule Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 2: SCP Logic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 3: DRFU Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4: Status LEDs Y1 - Y4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 5: Channel Use Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 6: DRFU External Interface Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 7: DRFE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 8: DRFE Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 9: DRFE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 10: FUCO Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 11: FUCO Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 12: FICE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 13: FICE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 14: FICE Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 15: FICE BSIA Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 16: FICE BSIB Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 17: FICE BSSTE Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 18: FICE FHI/FUTA Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 19: Arbiter-generated Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 20: Arbiter-generated Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 21: DADE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 22: DADE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 23: SCFE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 24: OMU Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 25: EACU LEDs Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 26: SCFE/SACE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 27: SCFE Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 28: SCFE MMI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 29: SACE MMI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 30: SCFE/SACE EAC Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 31: STSE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 32: STSE/STSP/STSR Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 33: STSE Front Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 34: STSE MMI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 35: STSE TEST Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 36: STSE CLK IN Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 37: RTE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Table 38: Transmitter Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 39: Transmitter Display States During Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3BK 21248 AAAA TQZZA Ed.03 15 / 288

Page 16: 212480000e03.pdf DRFU BTS

Tables

Table 40: Transmitter Initialization Fatal Error Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Table 41: DCL2 Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Table 42: Normal Operation Alarm Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Table 43: Transmitter Output Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 44: Transmitter Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 45: Receiver Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table 46: RFE Alarm Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Table 47: RFE Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Table 48: RFE Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 49: RFE Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Table 50: RFE Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Table 51: Antenna Pre-amplifier Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Table 52: Antenna Pre-amplifier Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Table 53: RMCD/RMCG Alarm and Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Table 54: Receiver Multicoupler/Tower Mounted Amplifier Performance Characteristics . . . . . . . . . . . . . . . 169

Table 55: Tower Mounted Amplifier Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Table 56: Receiver Multicoupler Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Table 57: RTC LED Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Table 58: RTC Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Table 59: RTC Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Table 60: FRBG/CRBG/RC4D/RC8D RS-232 Front Panel Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Table 61: WBC LED Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Table 62: WBC Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Table 63: WBC Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Table 64: ADPS LED Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Table 65: ADPS Basic Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table 66: ADPS Dynamic Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table 67: ADPS Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Table 68: Power Supply LED Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Table 69: FCPS Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Table 70: Additional MBPS Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Table 71: MBPS/FCPS Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Table 72: DC/DC Power Supplies Climatic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Table 73: DC/DC Power Supplies Mechanical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Table 74: DC/DC Power Supplies EN 55022 Class B Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Table 75: DCDB Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Table 76: LEDs A1/A2 on SMBI in Ring Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Table 77: LED A1 on SMBI in Star Configuration or End of Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Table 78: LED A1 on Second SMBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Table 79: Abis Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

16 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 17: 212480000e03.pdf DRFU BTS

Tables

Table 80: SMBI Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Table 81: SMBI Front Panel Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Table 82: Cooling Fan Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Table 83: Control Board Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Table 84: CFU1 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Table 85: CFUT Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Table 86: CFUA Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Table 87: MCIB Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Table 88: Types of Dummy Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

3BK 21248 AAAA TQZZA Ed.03 17 / 288

Page 18: 212480000e03.pdf DRFU BTS

Tables

18 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 19: 212480000e03.pdf DRFU BTS

Preface

Preface

Purpose This document describes the hardware submodules used in the GenerationTwo family of Base Transceiver Station equipment.

This document is applicable to all hardware generations and variants, includingboth GSM 900 and GSM 1800. GSM 1800 is also known as Digital CellularSystem.

What’s New In Edition 03Update for new equipment naming.

In Edition 02Update of system title.

In Edition 01First oficial release of document.

Audience This manual is intended for:

Commissioning personnel

System support engineers

Training department (for reference use)

Any other personnel interested in the BTS hardware.

Assumed Knowledge The reader must have a general knowledge of mobile telecommunicationssystems, terminology and BTS functions.

3BK 21248 AAAA TQZZA Ed.03 19 / 288

Page 20: 212480000e03.pdf DRFU BTS

Preface

20 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 21: 212480000e03.pdf DRFU BTS

1 Introduction

1 Introduction

The Introduction contains listings of, and references to, the submodulesdescribed in this document.

Submodules are listed in both module/functional unit order, and alphabeticalorder.

This chapter also contains general information applicable to all submodules.

3BK 21248 AAAA TQZZA Ed.03 21 / 288

Page 22: 212480000e03.pdf DRFU BTS

1 Introduction

1.1 BTS SubmodulesThis document describes the hardware of the G2 BTS submodules,Replaceable Items. These are arranged in the following order:

Frame Unit submodules

Station Unit submodules

Carrier Unit submodules

Coupling Unit submodules

Miscellaneous submodules.

Miscellaneous submodules are those which do not form part of a BTSfunctional unit.

Unit Name Submodule Type Submodule Name

DRFUSingle-Boards

DRFE

FUCO

FICE

Frame Unit

Three-Boards

DADE

SCFEControl

SACE

STSE

STSR

Timing and Switching

STSP

ESTSExtended Cell Timing

ESTR

RTEG

Station Unit

RTE

RTED

TXGM

TXGH

Transmitter

TXDH

Extended Cell TEGM

RXGD

Carrier Unit

Receiver

RXDD

22 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 23: 212480000e03.pdf DRFU BTS

1 Introduction

Unit Name Submodule Type Submodule Name

FEG2

FEG8

RFE

FED8

RMCG

TMAG

RMCD

Receiver Multicoupler

TMAD

FRBG

FREG

CRBG

CREG

RC4D

RTC

RC8D

WB1G

WB2G

WB2D

DUD2

DUPG

Coupling Unit

WBC

DUPD

3BK 21248 AAAA TQZZA Ed.03 23 / 288

Page 24: 212480000e03.pdf DRFU BTS

1 Introduction

Unit Name Submodule Type Submodule Name

ADPS (AC/DC)

MBPS (DC/DC)

Power Supply

FCPS (DC/DC)

Power Distribution DCDB

BIE SMBI

CFU1

CFUT

CFU

CFUA

Connection Box MCIB

CUDP

Miscellaneous

Dummy Front Panels

FUDP

24 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 25: 212480000e03.pdf DRFU BTS

1 Introduction

1.2 Alphabetical ListingThe following table alphabetically lists all the indoor BTS submodules, withchapter references.

Submodule Reference

ADPS ADPS (Section 16)

CFU1 CFU1/CFUA/CFUT (Section 20)

CFUA CFU1/CFUA/CFUT (Section 20)

CFUT CFU1/CFUA/CFUT (Section 20)

CRBG CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

CREG CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

CUDP CUDP/FUDP (Section 22)

DADE 6

DCDB DCDB (Section 18)

DRFE DRFE (Section 3)

DRFU DRFU (Section 2)

DUD2 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

DUPD WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

DUPG WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

ESTR STSE/STSR/STSP/ESTS/ESTR(Section 8)

ESTS STSE/STSR/STSP/ESTS/ESTR(Section 8)

FCPS MBPS/FCPS (Section 17)

FED8 FED8/FEG2/FEG8 (Section 12)

FEG2 FED8/FEG2/FEG8 (Section 12)

FEG8 FED8/FEG2/FEG8 (Section 12)

FICE FICE (Section 5)

3BK 21248 AAAA TQZZA Ed.03 25 / 288

Page 26: 212480000e03.pdf DRFU BTS

1 Introduction

Submodule Reference

FRBG CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

FREG CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

FUCO FUCO (Section 4)

FUDP CUDP/FUDP (Section 22)

MBPS MBPS/FCPS (Section 17)

MCIB MCIB (Section 21)

RC4D CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

RC8D CRBG/CREG/FRBG/FREG/RC4D/RC8D(Section 14)

RMCD TMAD/RMCD/TMAG/RMCG (Section13)

RMCG TMAD/RMCD/TMAG/RMCG (Section13)

RTED RTED/RTEG (Section 9)

RTEG RTED/RTEG (Section 9)

RXDD RXDD/RXGD (Section 11)

RXGD RXDD/RXGD (Section 11)

SACE SCFE/SACE (Section 7)

SCFE SCFE/SACE (Section 7)

SMBI SMBI (Section 19)

STSE STSE/STSR/STSP/ESTS/ESTR(Section 8)

STSP STSE/STSR/STSP/ESTS/ESTR(Section 8)

STSR STSE/STSR/STSP/ESTS/ESTR(Section 8)

TEGM TXDH/TXGH/TXGM/TEGM (Section10)

TMAD TMAD/RMCD/TMAG/RMCG (Section13)

26 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 27: 212480000e03.pdf DRFU BTS

1 Introduction

Submodule Reference

TMAG TMAD/RMCD/TMAG/RMCG (Section13)

TXDH TXDH/TXGH/TXGM/TEGM (Section10)

TXGH TXDH/TXGH/TXGM/TEGM (Section10)

TXGM TXDH/TXGH/TXGM/TEGM (Section10)

WB1G WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

WB2D WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

WB2G WB3D/WB1G/WB2G/DUPD/DUD2/DUPG(Section 15)

Table 1: Alphabetical Submodule Listing

3BK 21248 AAAA TQZZA Ed.03 27 / 288

Page 28: 212480000e03.pdf DRFU BTS

1 Introduction

1.3 Common Information

1.3.1 Operating Temperature

This section contains information common to all submodules.

The recommended operating temperature range for the BTS submodules is:

Minimum temperature: -10 o C

Maximum temperature: +70 o C.

1.3.2 Grounding

To ensure through grounding, all frames and front panels etc., are fixed usingconductive screws. Conductive lacquers are used where appropriate.

1.3.3 Dimensions

The dimensions of the BTS submodules are usually specified in terms ofthe following units:

U, where 1 U = 44.45 mm

T, where 1 T = 5.08 mm.

1.3.4 Standards

G2 BTS equipment complies with the following standards:

ETS 300 342-2 EMC for European Digital Cellular Telecommunications

Systems

GSM recommendation for Base Station equipment 11.20, prETS 300.

28 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 29: 212480000e03.pdf DRFU BTS

2 DRFU

2 DRFU

This chapter provides a detailed description of the DRFU.

3BK 21248 AAAA TQZZA Ed.03 29 / 288

Page 30: 212480000e03.pdf DRFU BTS

2 DRFU

2.1 IntroductionThe DRFU (Dual Rate Frame Unit) consists of a single plug-in unit. It providesframe-level functionality for G2 BTSs. The DRFU provides the BTS with digitalbaseband processing for eight time slots on a full-duplex basis. An on-boardDC/DC Converter is used to convert the power to 3.3 V, which is requiredfor operation of the DRFU.

A supervision circuit disables the DC/DC Converter if the DRFU output fallsbelow 2.8 V for more than one second. It also disables the 5 V supply ifthe DC/DC Converter fails.

The DRFU backplane connector pin-outs are compatible with G2 BTSequipment. However, an adaptor kit is available for operation with GenerationOne equipment. The DRFU is implemented on G1 BTS equipment with theaid of the DRFE module.

DEMAD

SCP Dual−Port RAM

MFP

BED

TRXMUX

Encoder

Decoder

TGU

Debug 3Debug 2 Clock Interfaces

DCL1Interfaces

MML ECPL

Multiplexer Management LinkEntity Control Parallel LinkECPLRadio Signalling Link

Frequency Hopping Interfaces

Base Station Interface

Interface to DRFE Unit (G1)

PHYLAC

Test Interface

Debug 1

RSL

DEMND

Demodulator Antenna DiversityDEMADDEMND Demodulator No Diversity

(G2)

RSLMML

Figure 1: DRFU Block Diagram

The DRFU consists of the following functional blocks:

SCP

MFP

TGU

TRXMUX

Encoder

Decoder

Demodulator

BED.

30 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 31: 212480000e03.pdf DRFU BTS

2 DRFU

2.2 SCP FunctionsThe SCP microprocessor is a 32-bit device, with a performance of 20 MIPS.

2.2.1 Functional Entities

The SCP microprocessor provides control over the following DRFU functionalentities:

Quad Integrated Communication Controller (QUICC)

Memory

Token Bus Controller

SCP Logic.

The SCP functional entities are described in the following sections.

2.2.2 QUICC

The QUICC device:

Generates chip select signals

Controls and refreshes the DRAM

Provides watchdog control and supervision.

The QUICC also provides the following serial interfaces:

Debug 1 and 2 test interfaces

Multiplexer Management Link

Radio Signalling Link.

2.2.3 Memory

The SCP has the following memory functional-requirements:

DRAM

DRAM multiplexer

Non-volatile memory

Dual Port RAM.

2.2.3.1 DRAMThe DRAM is 4 Mbyte in size, organized in 4 x 8 bits (32 bits wide). All thecontrol signals for accessing the DRAM are generated by the QUICC.

2.2.3.2 DRAM MultiplexerThis device is used to generate row and column addresses for the DRAM.

3BK 21248 AAAA TQZZA Ed.03 31 / 288

Page 32: 212480000e03.pdf DRFU BTS

2 DRFU

2.2.3.3 Non-volatile MemoryThe SCP utilizes 2 Mbyte Flash EPROM memory for the storage of programcode and data. This is a block erasable, non-volatile memory, which is writeprotected, with a minimum of 100,000 write/erase cycles per block. The blocksize is 64 kbyte (6 bits wide).

2.2.3.4 DPRThe DPR is used for high-speed/high-volume communication between the SCPmicrocontroller and the MFP. The DPR capacity is 2 kbyte (8 bits wide).

2.2.4 TKBUS Controller

The TKBUS Controller’s primary function is to prevent data collisions on theSCP busses. It provides control of the Data and Address Bus, Chip SelectBus and the Interrupt Request Bus.

2.2.5 SCP Logic

The SCP logic consists of a single, programmable, logic device (gate array). Itprovides the majority of the microprocessor support logic.

The main SCP logic functions are defined in the following table.

Function Definition

Bus request logic Arbitrates between the QUICC, TKBUS and the SCP microprocessorto prevent bus collisions.

Reset and clock generation Generates the local clocks and the reset signal for the various SCPfunctional blocks. The reset function indicates the source of the resetevents to the QUICC.

Dynamic Bus Sizer Performs the task of multiplexing accesses to the 32-bit SCPmicroprocessor data bus.

Interrupt Controller Detects interrupts from the QUICC, TKBUS and the MFP. It mapsthe interrupts to the microprocessor, and provides the interruptacknowledge signal to the interrupting device.

LED and Control Register There are ten LED indicators, located on the front panel. The LCRcontrols LEDs 3 to 10. LEDs 3 to 8 are software controlled and areconnected to a write-only register with a master reset function. TheLCR also controls the TKBUS relay.

Table 2: SCP Logic Functions

32 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 33: 212480000e03.pdf DRFU BTS

2 DRFU

2.3 MFP FunctionsThe MFP consists of the following functional entities:

DSP

MFP Memory

DPR

MFP Logic.

The MFP functional entities are described in the following sections.

2.3.1 DSP

The MFP main component is a high-speed DSP with a performance of 30 Mips.

The DSP is connected to the SCP via the following three bus interfaces:

IRQ Bus

CS Bus

DA Bus.

MFP to SCP data transfers are controlled by an interrupt management function,via a connection to the SCPL.

The DSP uses its host interface for SCP controlled communication with theSCP processor.

2.3.2 MFP Memory

The MFP uses EPROM and RAM. The DSP firmware is executed from theEPROM, and a 384 kbyte 8-bit RAM is used for data manipulation.

2.3.3 DPR

The DPR is used for high volume data transfer to/from the SCP microprocessor.

3BK 21248 AAAA TQZZA Ed.03 33 / 288

Page 34: 212480000e03.pdf DRFU BTS

2 DRFU

2.3.4 MFP Logic

The MFP logic provides the DSP support logic. This includes memory chipselect, reset signal generation and interrupt priority handling.

The MFPL also connects the MFP to the Entity Control Parallel Link. The ECPLprovides a parallel connection between the MFP and other DRFU functionalentities, such as signalling, control and O&M.

The ECPL interfaces the following DRFU functional blocks to the MFP:

TGU

TRXMUX

Encoder

Decoder

Demodulator

BED.

Each of the above functions are monitored and controlled by reading statusregisters and writing to control registers.

2.4 TGU FunctionsThe TGU provides system clocks and timing signals. The TGU basicallyconsists of a PHYLAC which provides an interface to the MFP and the BTSmaster clock unit.

PHYLAC The PHYLAC generates all internal clocks from a 26 MHz masterclock source.

It provides the following functionality:

Master clock supervision

Local clock generation

Sequencing of the other MFPU functions.

The PHYLAC detects and reports any clock errors to the MFP. It switchesbetween two external links to the master clock unit if an error is detected. ThePHYLAC can be programmed for automatic or manual link selection.

34 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 35: 212480000e03.pdf DRFU BTS

2 DRFU

2.5 TRXMUX FunctionsThe TRXMUX submultiplexes the Traffic Channel data between the BSI and theFrame Unit functions. RSL channels are transferred transparently.

The TRXMUX consists of the functional entities:

TCH Time Slot Assigner

Downlink Reformatter

Status and Control Registers.

Each TRXMUX functional entity is described in the following sections.

2.5.1 Time Slot Assigner

The TCH Time Slot Assigner handles the extraction and insertion of TCHdata on BSI time slots.

The time slots used on the BSI are programmed through two Status andControl configuration registers.

The Time Slot Assigner handles the transfer of MML and RSL data betweenthe BSI and SCP:

MML data is carried in a 64 kbit/s channel of the BSI

Downlink RSL data (from the BSC) is extracted from the BSI and passed tothe SCP.

2.5.2 Downlink Reformatter

The Downlink Reformatter provides an interface for downlink TCH data transferto the Encoder. The data contains eight full-rate or 16 half-rate channelspacked into two-bit nibbles. The net TCH data rate is 128 kbit/s (the remainingcapacity of the 2 Mbit/s interface is unused).

The data is presented through four independent 2 Mbit/s synchronousinterfaces, each containing two full-rate or four half-rate channels. The channelsare packed into two-bit nibbles and have a net data rate of 32 kbit/s.

2.5.3 Status and Control Registers

The Status and Control function provides a set of TRXMUX control registers,which are accessible via the ECPL.

3BK 21248 AAAA TQZZA Ed.03 35 / 288

Page 36: 212480000e03.pdf DRFU BTS

2 DRFU

2.6 Encoder FunctionsThe Encoder encodes the downlink channels.

The following functions are included as part of this process:

Rate adaptation

Channel encoding

Fast Associated Control Channel bit stealing

Burst building

Multi-frame building

Burst control (generation of encryption level and power control information).

The Encoder hardware contains a single high-speed DSP with a performanceof 66 Mips. DSP data manipulation is achieved with 192 kbytes of static RAMorganized in 24 bit words (3 x 8 bits).

The DSP provides two 2 Mbit/s serial interfaces for the incoming and outgoingTCH data streams. The DSP host interface is used for connection to the ECPL.Reset signals are provided by the MFP.

2.7 Decoder FunctionsThe Decoder decodes the demodulated and decrypted uplink channels.

The following functions are included as part of this process:

De-interleaving

FACCH detection

Convolutional and block decoding

Rate adaptation

Discontinuous Transmission (mechanism) frame detection

Time Alignment

Random Access Channel load measurement

Uplink quality estimation

Idle channel monitoring

Filtering of the Time Of Arrival and received signal level

Bit Error Rate measurement.

The Decoder employs four DSPs with an operating capability of 66 Mips(with 192 kbyte data manipulation RAMs).

Serial Interfaces The Decoder has four synchronous serial interfacesconnected to the BED. The data rate for each interface is 13 MHz. Eachinterface carries the demodulated uplink data and frame signalling for one DSP.One DSP provides the processing capability to decode two full-rate TCHs (orfour half-rate TCHs).

Software running on the DSPs individually decodes the TCHs. The decodeddata streams are passed to the TRXMUX using 2 Mbit/s serial interfaces.

36 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 37: 212480000e03.pdf DRFU BTS

2 DRFU

2.8 Demodulator FunctionsThe Demodulator demodulates the uplink channels.

The following functions are included in this process:

Buffering of uplink data

Equalization

Carrier frequency offset compensation

GMSK demodulation

TOA estimation

Signal-to-Noise Ratio measurement.

The Demodulator uses two DSPs with an operating capability of 66 Mips(they are identical to those used in the Encoder). Both have 96 kbyte of RAMused for data manipulation. One DSP is used for antenna diversity, the otheris for no antenna diversity.

Serial Interfaces The Demodulator has two 13 MHz Radio Frequency serialinterfaces connected to the BED. One interface is the Demodulator withAntenna Diversity and the other is the Demodulator with No Diversity. Eachinterface carries the modulated uplink data for one DSP. One DSP providesthe processing capability to demodulate four full-rate TCHs (or eight half-rateTCHs).

Software, running on each DSP, individually demodulates the TCHs. Thedemodulated data streams are passed back to the BED using further serialinterfaces from the DSPs. All inputs and outputs are routed via 13 MHzsynchronous interfaces.

3BK 21248 AAAA TQZZA Ed.03 37 / 288

Page 38: 212480000e03.pdf DRFU BTS

2 DRFU

2.9 Baseband Interface Encryption/DecryptionThe BED consists of a single field-programmable logic device.

It performs the following functions:

Generates timing and clock signals for all the BED functions

Provides timing interrupts and reset signals for the Encoder, Decoder

and Demodulator

Provides the clocks and interface lines for transferring the downlink TCH

data from the Encoder

Encrypts the downlink data according to the GSM-defined cipheringalgorithms

Stores the encryption configurations and cipher keys specified by the

BSC on a call-by-call basis

Provides the clocks and interface lines for transferring the downlink data

Transfers the uplink data from a parallel-to-serial interface to the

Demodulator

Provides the clocks and interface lines for transferring the uplink TCHdata from the Demodulator

Configures the Decryption block on a time slot basis

Decrypts the uplink data according to the GSM-defined ciphering algorithms

Provides the clocks and interface lines for transferring the uplink data to

the Decoder

Manages the FHI

Provides a set of BED supervision registers, accessible via the ECPL.

38 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 39: 212480000e03.pdf DRFU BTS

2 DRFU

2.10 O&MThis section describes the O&M functions of the DRFU.

The following information is provided:

LEDs

External Interfaces

Replacement

Power Supply

Electrical Parameters.

2.10.1 LEDs

The function of each DRFU status LED is described in the following table.

LED Color Function

POWER ON

P5V | S5V/3.3V

Green (x 2) Both LEDs are lit when primary 5V(P5V), 3.3V and secondary 5V (S5V)power is applied to the unit.

FAULT Red (x 2) These LEDs have the same function.They are both switched on after poweron or a reset. Standby state causesthe LEDs to blink.

The LEDs are switched off if a ’nofault’ condition is detected, autotest isrunning or the system is initializing.

Y1 | Y2 Yellow (x 2)

Y3 | Y4 Yellow (x 2)

The on/off state of Y1|Y2 and Y3|Y4,combined with the state of the redFault LED, indicates the status of theDRFU.

These LEDs are operated undersoftware control.

G1 | G2 Yellow (x 2) These LEDs indicate whether theDRFU Configuration Connector is setfor G1 or G2 operation. G1 is on for G1operation, G2 is on for G2 operation. Ifboth the LEDs are on, or both are off,there is a fault.

Table 3: DRFU Status LEDs

3BK 21248 AAAA TQZZA Ed.03 39 / 288

Page 40: 212480000e03.pdf DRFU BTS

2 DRFU

The following table shows the status of LEDs Y1 - Y4 for each possible state ofthe DRFU. The status of the red LED is included for clarification.

Status Red Y1 Y2 Y3 Y4

Reset triggered On Off Off Off Off

Fault detected by autotest. On Off On On On

- X X

Hardware autotest faultreport.

On X

Software problem. Off X

A restart can be accepted. X Off

Out of order.

A reload as required.

On Off Off

X On

- X X

No clock available. Off Off

BSI link not available. Off On

FHI link not available. On Off

Standby.

BSI link and FHI link notavailable.

Blink Off Off

On On

- X X

Destructive Frame Unittests. RAM contentsdeleted.

On Off

Non-destructive tests. Off Off

Non-SCP non-destructivetests triggered by FU.

Off On

Autotestrunning.

Non-SCP non-destructivetests triggered by OMU(restart command).

Off Off On

On On

40 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 41: 212480000e03.pdf DRFU BTS

2 DRFU

Status Red Y1 Y2 Y3 Y4

- X X

Wait for software load(power on or reloadtriggered by OMU).

On Off

Downloading andconfiguring with OMUmessages going on.

On Blink

FU autonomous recovery:autostart after non-SCP[mu ]P fault or restart afterstand by.

Off On

Initialization

Restart triggered by OMU.

Off Off Off

On On

- X X X X

O&M configurationcompleted, waiting fortelecom configurationcompletion.

Blink Off Off Off

Telecom configurationcompleted and all TimeSlots are spare (orblocked).

On Off Off Off

Operational

Fully operational and atleast one TS is not spare.

Off

On

Table 4: Status LEDs Y1 - Y4

3BK 21248 AAAA TQZZA Ed.03 41 / 288

Page 42: 212480000e03.pdf DRFU BTS

2 DRFU

The following table shows the channel identification for LEDs Y2-Y4 aftercompletion of operational configuration.

Channel Status Y2 Y3 Y4

Not configured. Off Off Off

Configured and no RACH received. On Off Off

Broadcast ControlChannel RACH.

Configured and at least one RACHreceived.

Blink Off Off

Not configured. Off Off Off

Configured, no channel activated. Off On Off

StandaloneDedicated ControlChannel.

Configured and at least one channelactivated.

Off Blink Off

Not configured. Off Off Off

Configured, no channel activated. Off Off On

TCH

Configured and at least one channelactivated.

Off Off Blink

Table 5: Channel Use Indication

2.10.2 External Interfaces

The DRFU front panel has ten LEDs and four Sub-D 9-pin female connectorinterfaces.

A push button is located at the bottom of the front panel. It allows a softwarereset of the DRFU.

2.10.3 Replacement

Removal and insertion of the DRFU, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the DRFU is not permitted.

2.10.4 Power Supply

Power is supplied to the DRFU via the backplane connectors at +5 VDC,that is, primary 5 V (P5V).

The DRFU requires an operating voltage of 3.3 VDC. An on-board DC/DCConverter provides the conversion from 5 VDC to 3.3 VDC.

42 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 43: 212480000e03.pdf DRFU BTS

2 DRFU

2.10.5 Electrical Parameters

The DRFU’s electrical parameters are given in the following table.

Parameter Value

Input voltage 5 VDC +/- 10 %

Nominal voltage 3.3 VDC +/- 5 %

Output voltage ripple 33 mV max.

Current consumption 5 A (Imax.)

0.5 A (Imin.)

Short-circuit current limitation 10 A

Power consumption < 25 W

Efficiency [le ] 85 % at Imax.

2.11 DRFU Physical DescriptionThe DRFU is a single plug-in unit, which is mounted in a standard 19" subrack.This section describe the physical details of the DRFU.

It provides the following information:

Dimensions

Front Panel

Connectors.

2.11.1 Dimensions

The physical dimensions of the DRFU are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 233 mm

Width: 10 T 50 mm

Depth: - 280 mm

3BK 21248 AAAA TQZZA Ed.03 43 / 288

Page 44: 212480000e03.pdf DRFU BTS

2 DRFU

2.11.2 Front Panel

The DRFU front panel layout is shown below.

LEDs

POWER ON

FAULT

RESET

Y1 | Y2

External InterfaceConnectors

BSIA

DEBUG 1

DEBUG 2

DEBUG 3(FUTA)

Y3 | Y4

G1 | G2

P5V | S5V/3.3V

DEBUG 4TRX1

Fixing Hole

Fixing Hole

Handle

Handle

Figure 2: DRFU Front Panel Layout

44 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 45: 212480000e03.pdf DRFU BTS

2 DRFU

2.11.3 DRFU Connectors

2.11.3.1 Front

Connector Designation

BSIA Serial interface for monitoring the Abis Interface (for G1operation only).

DEBUG 1 MMI Interface for firmware downloads to the SCP FlashEPROM.

DEBUG 2

DEBUG 4

TRXI

Serial interface to SCP for Diane debug tool.

Not Used.

Not Used.

DEBUG 3

FUTA

Serial interface to MFP for Diane debug tool.

A Frame Unit Test Adaptor is required, in someapplications, to interface to the debug tool.

Table 6: DRFU External Interface Connectors

The following table explains what each front panel connector is used for.

2.11.3.2 RearThe DRFU has two female backplane connectors.

2.11.3.3 DFCCDFCC is used to configure the DRFU for operation with G1 or G2 BTSequipment. The DFCC is a removable plug-in connector. The orientation of theconnector to the backplane configures the DRFU for G1 or G2 operation. Thecorrect orientation is indicated on the top of the DFCC.

DFCC

Backplane Connectors

External Interface Connectors

Figure 3: DRFU Side View Showing the Position of the DFCC

3BK 21248 AAAA TQZZA Ed.03 45 / 288

Page 46: 212480000e03.pdf DRFU BTS

2 DRFU

46 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 47: 212480000e03.pdf DRFU BTS

3 DRFE

3 DRFE

This chapter provides a detailed description of the DRFE.

3BK 21248 AAAA TQZZA Ed.03 47 / 288

Page 48: 212480000e03.pdf DRFU BTS

3 DRFE

3.1 IntroductionIf a DRFU is deployed on G1 equipment, a DRFE (Dual Rate Frame UnitExtension) is required. This is because the subrack backplane connections onG1 and G2 BTS equipment are different.

The DRFU DCL1 interface connections are only compatible with G2 BTSequipment. The DRFE provides an interface to the external DCL1 signals,which carry BTS operations and maintenance information to the OMU.

The DRFE also provides a voltage-level ’translation’ function between G1and G2 equipment.

3.1.1 G1 Configuration

When the DRFU is deployed in G1 equipment, it must be configured so that theDCL1 signals can be interfaced to the SCP. This configuration is achieved bychanging the orientation of the DFCC.

3.1.2 Self-test

When power is applied to the unit, a self-test is carried-out on the DCL1interface. Two LEDs on the front of the DRFE module indicate the result of theself-test. The LEDs are operated under the control of the DRFU.

48 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 49: 212480000e03.pdf DRFU BTS

3 DRFE

3.2 O&MThis section describes the O&M functions of the DRFE.

3.2.1 LEDs

The DRFE front panel has four status LEDs. Their function is described inthe following table.

LED Color Function

POWER ON Green (x 2) Both LEDs are lit when power is applied to the unit.

FAULT Red (x 2) These LEDs have the same function. They are switched on afterpower on, or a reset, while a self-test is carried out on the DCL1interface.

The LEDs are switched off by the DRFU if a ’no fault’ conditionis detected.

Table 7: DRFE Status LEDs

3.2.2 Replacement

Removal and insertion of the DRFE, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the DRFE is not permitted.

3.2.3 Power Supply

Power is supplied to the DRFE via the backplane connectors at +5 VDC.

3.2.4 Electrical Parameters

The DRFE’s electrical parameters are given in the following table.

Parameter Value

Input voltage 5 VDC +/- 10 %

3BK 21248 AAAA TQZZA Ed.03 49 / 288

Page 50: 212480000e03.pdf DRFU BTS

3 DRFE

Parameter Value

Current consumption 1 A (Imax.)

0.1 A (Imin.)

Power consumption < 5 W

Table 8: DRFE Electrical Parameters

3.3 Physical DescriptionThe DRFE is a single plug-in unit, which is mounted in a standard 19" subrack.This section describe the physical details of the DRFE.

50 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 51: 212480000e03.pdf DRFU BTS

3 DRFE

3.3.1 Dimensions

The physical dimensions of the DRFE are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 233 mm

Width: 5 T 25 mm

Depth: - 280 mm

Table 9: DRFE Physical Dimensions

3.3.2 Front Panel

The layout of the DRFE front panel is shown below.

POWER ON

FAULT LEDs

Fixing Hole

Fixing Hole

Handle

Handle

Figure 4: DRFE Front Panel Layout

3BK 21248 AAAA TQZZA Ed.03 51 / 288

Page 52: 212480000e03.pdf DRFU BTS

3 DRFE

52 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 53: 212480000e03.pdf DRFU BTS

4 FUCO

4 FUCO

This chapter provides a detailed description of the FUCO.

3BK 21248 AAAA TQZZA Ed.03 53 / 288

Page 54: 212480000e03.pdf DRFU BTS

4 FUCO

4.1 IntroductionThe FUCO (Frame Unit Controller) is a part of the Frame Unit. It controls theoperation of the FICE and DADE. The primary purpose of the FUCO is tocontrol the protocols used at various levels of the Frame Unit.

The unit handles:

LAPD communication with Mobile Stations, including frame checking and

radio link management

LAPD communication with the BSC

Layer 2 communication with the OMU

Layer 3 communication, which handles the following:

Transparent routing of messages

Processing and routing of non-transparent messages.

The FUCO is functionally divided between the SCP and MFP, which are linkedby dual port memory.

54 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 55: 212480000e03.pdf DRFU BTS

4 FUCO

Dual Port RAM (Transfer Memory)

Microprocessor

Interrupt Controller

Reset andWatchdog

DSP

ICISerial Link

LAPD Controller

DMA

DMA

Memory

Token Bus Controller

DCL1

Serial Links (for test purposes)

SerialCommunication

Module

Host Interface

LAPD Links (to

FICE/DADE)

SCP Functions

MFP Functions

Clocks

To FICE/DADE

Clocks DMA Direct Memory AccessICI Internal Control Interface

Figure 5: FUCO Block Diagram

3BK 21248 AAAA TQZZA Ed.03 55 / 288

Page 56: 212480000e03.pdf DRFU BTS

4 FUCO

4.2 MFP FunctionsThe MFP is a DSP with associated memory and control ports. The DSPfirmware is executed from the EPROM. The DSP communicates with the SCPmicroprocessor via the dual port RAM.

The MFP provides the following functions:

Multi-frame management

O&M processing for Frame Unit traffic and signalling interfaces

Communication with the SCP for O&M and signalling channel processing.

A serial interface is used for an MMI.

The Internal Control Interface is used to communicate with the FICE. It carriesFrame Unit O&M information and signals exchanged with the Mobile Station.

The clocks are sent to the FICE and DADE for timing.

56 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 57: 212480000e03.pdf DRFU BTS

4 FUCO

4.3 SCP FunctionsThe SCP consists of seven functional blocks, which operate under the controlof a microprocessor.

The SCP microprocessor has three basic functions:

SCP basic control

Clock generation

Data transfer control.

An oscillator and divider circuits provide operating clocks for the microprocessorand its peripheral components. These components can be separated intofunctional blocks as follows:

The SCP consists of the following functional blocks:

Memory

Serial Communications

Interrupt Control

LAPD Controller

Reset and Watchdog

Token Bus Controller.

4.3.1 Memory

The microprocessor system has the following memory available:

1 Mbyte of DRAM

128 kbytes fast SRAM (Static Random Access Memory).

Upon completion of the start-up sequence, the software is loaded into the RAM,from where it is executed. This maximizes performance and removes theneed for wait states.

The DRAM is used for high-speed communication between the SCPmicrocontroller and the MFP DSP. One port of this memory is connected tothe microprocessor and the other port to the DSP.

4.3.2 Serial Communications

The Serial Communications Module provides the following functions:

A real time programmable clock

Internal Input/Output for loading Logic Cell Arrays

Two serial communication ports used for integration, testing and debugging

purposes.

3BK 21248 AAAA TQZZA Ed.03 57 / 288

Page 58: 212480000e03.pdf DRFU BTS

4 FUCO

4.3.3 Interrupt Control

The Interrupt Control module manages the microprocessor interrupts priorities(from the external and communication devices). It then transmits the interruptsto the microprocessor.

4.3.4 LAPD Controller

The LAPD Controller provides a 64 kbit/s link using the LAPD protocol. Thislink is used for signalling communication between the BSC and Mobile Stations.It does this via a PCM frame on the Abis interface.

4.3.5 Reset and Watchdog

The Reset and Watchdog module performs the following functions:

FUCO card reset (initiated by power-up, watchdog, front panel push button

or MFP)

Watchdog monitoring

Direct Memory Access priority management

Wait cycle insertion after access to slow packages

Initialization of dynamic RAM controller.

The watchdog counter is periodically reset by microprocessor software. If thesoftware crashes, this does not occur and the timer expires initiating a reset.

4.3.6 Token Bus Controller

The Token Bus Controller provides a 1 Mbit/s Token Bus link (conformingto IEEE 802.4).

This link provides the DCL1 connection to the OMU. It is used to download theFUCO and other Frame Unit software, and to transfer O&M messages.

58 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 59: 212480000e03.pdf DRFU BTS

4 FUCO

4.4 O&MThis section describes the O&M functions of the FUCO.

The following information is provided:

LEDs

Reset Button

Replacement

Power Supply.

4.4.1 LEDs

The following table lists the status LEDs located on the front panel.

LED Description

POWER ON Power supply present

FAULT System fault

1 Self-tests running

2 SCP microprocessor load

Table 10: FUCO Status LEDs

4.4.2 Reset Button

A reset button, located on the front panel, is used for initializing the FUCO unit.

4.4.3 Replacement

Removal and insertion of the FUCO, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the FUCO is not permitted.

4.4.4 Power Supply

Power is supplied to the board via the backplane connectors at +5 VDC +/-5 %.

3BK 21248 AAAA TQZZA Ed.03 59 / 288

Page 60: 212480000e03.pdf DRFU BTS

4 FUCO

4.5 Physical DescriptionThe FUCO is a multilayer board which plugs into a standard 19" subrack. Thefollowing sections describe the physical details of the FUCO.

It provides the following information:

Dimensions

Front Panel

Rear View

Backplane Connectors.

4.5.1 Dimensions

The physical dimensions of the FUCO are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 5 T 25.4 mm

Depth: - 280 mm

Table 11: FUCO Physical Dimensions

60 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 61: 212480000e03.pdf DRFU BTS

4 FUCO

4.5.2 Front Panel

The following figure shows the FUCO front panel.

LEDs

Handle

POWER ON

FAULT

1

2

Equipment Labels

Fixing Hole

Handle

Fixing Hole

RESET

Figure 6: FUCO Front Panel Layout

3BK 21248 AAAA TQZZA Ed.03 61 / 288

Page 62: 212480000e03.pdf DRFU BTS

4 FUCO

4.5.3 Rear View

The figure below shows a rear view of the FUCO.

Upper Connector

Mechanical Keycoder

Lower Connector

Multilayer Board

Figure 7: FUCO Rear View

4.5.4 Backplane Connectors

The FUCO has two 96-pin female backplane connectors. These mate with theappropriate male connectors on the backplane of the subrack.

The connectors can be mechanically coded to inhibit insertion of an incorrectboard into the subrack. The key coder, adjacent to the upper rear connector,has 12 keying positions. A pin on the subrack backplane mates with a gap inthe FUCO key.

62 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 63: 212480000e03.pdf DRFU BTS

5 FICE

5 FICE

This chapter provides a detailed description of the FICE.

3BK 21248 AAAA TQZZA Ed.03 63 / 288

Page 64: 212480000e03.pdf DRFU BTS

5 FICE

5.1 IntroductionThe FICE (Frame Unit Interface and Channel Encoder) is a part of the FrameUnit.

It operates under the control of the FUCO, and provides the following FrameUnit functions:

Channel EncoderThe Channel Encoder encodes eight independent downlink full-ratechannels.

Frequency Hopping Interface

The FHI is the Frame Unit’s interface with the Frequency Hopping Unit(FHU). It handles:

Uplink traffic received from the Carrier Unit, which is passed to theDemodulator. (The Demodulator is implemented as part of a separate

board)

Downlink traffic sent from the Channel Encoder to the Carrier Unit.

Base Station Interface Adapter

The BSIA is the Frame Unit interface with the BSI. It handles:

Uplink traffic received from the Channel Decoder, which is sent to the

BSC. (The Channel Decoder is implemented as part of a separate board)

Downlink traffic received from the BSC, to be processed by the Channel

Encoder.

Frame Clock Unit.

The Frame Clock Unit provides all the timing signals for the Frame Unit.

64 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 65: 212480000e03.pdf DRFU BTS

5 FICE

Status

Command

Status

Command

FIFO

Status

Clock Distribution

BSIBSS Test Equipment

BSIA

FHI

Master Controller

ICI

FUCO FHU

Dual links to Frequency Hopping Unit

Clock Driver Interface

Command

FCLU

IPI

Serial Interface

LEDsDual links to Base Station Interface

IPI

ICI

IPI

Master Data Bus

Clock Interface

Channel Decoder

Dual Station Unit

FUCO

Demodulator

FUCO

Data Bus

Channel Encoder

LAPD Interface

First−In First−Out shift registerFIFO Internal Parallel InterfaceIPI

Figure 8: FICE Block Diagram

3BK 21248 AAAA TQZZA Ed.03 65 / 288

Page 66: 212480000e03.pdf DRFU BTS

5 FICE

5.2 FICE FunctionsThe FICE contains the following functional blocks:

Master Controller

Channel Encoder

Frequency Hopping Interface

Base Station Interface Adapter

Frame Clock Unit.

5.2.1 Master Controller

The Master Controller controls the interface between the FUCO and the BSIA,FCLU and FHI.

When FUCO commands and messages are received on the ICI, the MasterController converts them to a status and command format. This is used bythe FICE elements.

During start-up, the FICE is checked; the Master Controller runs tests triggeredby the FUCO. After a reset, the Master Controller initializes the FCLU, FHIand BSIA.

While operational, the Master Controller also processes uplink traffic datareceived from the Channel Decoder. To conform with BSI timing, incomingdata is converted from an 8-bit parallel form to a serial stream. It is thensent to the BSIA.

5.2.2 Channel Encoder

The Channel Encoder manages and processes eight time slots, each of whichcarries the signals for one full-rate channel.

The Channel Encoder performs the following functions:

Baseband functions, which are:

Channel encoding and interleaving

Encryption

Burst and TDMA multi-frame building.

Rate adaptation for the data and speech channels

Control of the BTS transmitter power which involves:

Routing of the power value

Dummy burst insertion

Discontinuous transmission.

In-band signalling and remote transcoder synchronization.

66 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 67: 212480000e03.pdf DRFU BTS

5 FICE

BSIA FUCO FCLU

Serial Interface ICI Clock Distribution

FHI

LCA2

HOST SSI+ IRQA HOST SSI+ IRQA HOST SSI+ IRQA HOST SSI+ IRQAIRQB IRQB IRQB

DSP DSP DSP DSP

32K x 24 RAM

IRQB

2x32K x 24 RAM

2x32K x 24 RAM

2x32K x 24 RAM

2x

ICIController

Interface Logic

Interface Logic

Host

DSP

SSI+ IRQB

Test Feedback

Watchdog and Reset Circuitry

LCA1

IRQA

Master

Slave 0 Slave 1 Slave 2 Slave 3

IPI

32K x 24 RAM64K x 8 EPROM

FIFO First−In First−OutIRQx Interrupt Request xSSI Synchronous Serial Interface

FIFO 1

Interface Logic

Figure 9: Channel Encoder Block Diagram

5.2.2.1 DSPsThe main elements of the Channel Encoder are DSPs, a First-In First-Out shiftregister and LCAs.

There are five DSPs:

Four slave DSPs, which each process two channels

One master DSP which initializes and controls the Channel Encoder,

collects traffic from the BSIA and supplies the slave DSPs.

In addition to normal program and data memory, the master DSP contains anEPROM. Otherwise, all DSPs are identical.

3BK 21248 AAAA TQZZA Ed.03 67 / 288

Page 68: 212480000e03.pdf DRFU BTS

5 FICE

5.2.2.2 LCAsThere are two LCAs.

The first has three functions:

Extraction of data from the serial interface with the BSIA and passing this

to the master DSP

Generation of incoming time slot information from FCLU clock signals. LCA1

identifies the time slot and the two bits used by each channel, and passes

this on to the slave DSP blocks. LCA1 also monitors the activity on each ofthe clocks, and delivers their status to the master DSP

Management of the ICI lines. This involves sending the request status to theFUCO, decoding commands received from the FUCO, and routing FUCO

messages to the DSPs.

The second LCA contains the output interface logic. It performs the followingfunctions:

Control of the output of data from the slave DSPs to the FIFO

Control of the output of data from the FIFO to LCA2 (i.e., to itself)

Encryption of the data

Output to the FHI.

A watchdog monitors the DSPs for hang-up behavior.

5.2.3 Frequency Hopping Interface

The FHI connects the Frame Unit with the FHU. This link is used to carrydownlink data from the Channel Encoder to the Carrier Unit, via the FHU. Italso carries uplink data from the Carrier Unit to the Demodulator, via the FHU.

There is link redundancy. The FHI hardware provides automatic link selection.

5.2.4 Base Station Interface Adapter

The BSIA transfers data from the BSI to the Channel Encoder and FUCO, andfrom the Channel Decoder and FUCO to the BSI.

There is BSI link redundancy. The BSIA provides automatic link selection.

5.2.5 Frame Clock Unit

The FCLU regenerates the clock signals it receives from the Station Unit, anddistributes the clocks for synchronization.

The FCLU receives the Octal Bit Clock, the TDMA Frame Clock and the FrameNumber from the Station Unit. It generates the TSCLK itself, so that there areeight TSCLK periods to one FCLK period.

The clock signals are supplied from the Station Unit with a dual-redundant link.If both links fail, the FCLU generates its own auxiliary clock signals.

In general, the clock supervisors can tolerate one missing clock pulse. Forexample, when there is a switch from local to the Station Unit clocks. If a moreserious error occurs, all Frame Unit functions receive a clock error interrupt.

68 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 69: 212480000e03.pdf DRFU BTS

5 FICE

5.3 InterfacesThe FICE has the following interfaces:

Internal Control Interface

Station Unit Clock Interface

Clock Driver Interface

Internal Parallel Interface

Base Station Interface

LAPD Interface

Frequency Hopping Interface.

5.3.1 Internal Control Interface

The ICI is a high-speed serial interface. This is used by the FUCO to controlthe other boards in the Frame Unit and distribute clock signals. The interfaceoperates using a master-slave mechanism: ’slave’ boards can only react tocommands from the FUCO ’master’ .

5.3.2 Station Unit Clock Interface

The Station Unit Clock Interface consists of dual-redundant RS-485 links whichcarry OBCLK, FCLK and FN signals from the Station Unit to the FCLU.

5.3.3 Clock Driver Interface

The Clock Driver Interface is used to distribute clock signals from the FCLU tothe rest of the Frame Unit.

5.3.4 Internal Parallel Interface

The IPI is a fast interface internal to the Frame Unit.

It is used to:

Pass the uplink data stream from the FHI to the Demodulator

Receive the uplink data stream from the Channel Decoder and pass it tothe BSIA

Carry the downlink data stream from the Channel Encoder to the FHI.

5.3.5 Base Station Interface

Each BSI is a dual-redundant RS-485 link which carries traffic signals betweenthe BSC equipment and the BSIA.

5.3.6 LAPD Interface

The LAPD interface is a serial link which carries data between the FUCO andBSIA, and also from BSIA to the Channel Encoder.

3BK 21248 AAAA TQZZA Ed.03 69 / 288

Page 70: 212480000e03.pdf DRFU BTS

5 FICE

5.3.7 Frequency Hopping Interface

The FHI is a dual-redundant asynchronous RS-485 link. It carries trafficsignals between the FICE and FHU.

5.4 O&MThis section describes the O&M functions of the FICE.

The following information is provided:

LEDs

Replacement

Power Supply.

5.4.1 LEDs

The following table lists the status LEDs located on the front panel.

LED Description

POWER ON Power supply present

FAULT System fault

1 Channel Encoder operation

2 Frame Unit Interface operation

Table 12: FICE Status LEDs

All LEDs remain on during the autotests, and go out when the autotests aresuccessfully completed.

5.4.2 Replacement

Removal and insertion of the FICE, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the FICE is not permitted.

5.4.3 Power Supply

Power is supplied to the board via the backplane connectors at +5 VDC +/- 5 %.

70 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 71: 212480000e03.pdf DRFU BTS

5 FICE

5.5 Physical DescriptionThe FICE is a multilayer board which plugs into a standard 19" subrack. Thissection describes the physical details of the FICE.

It provides the following information:

Dimensions

Front Panel

Front Panel Connectors

Rear View

Backplane Connectors.

5.5.1 Dimensions

The physical dimensions of the FICE are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 5 T 25.4 mm

Depth: - 280 mm

Table 13: FICE Physical Dimensions

3BK 21248 AAAA TQZZA Ed.03 71 / 288

Page 72: 212480000e03.pdf DRFU BTS

5 FICE

5.5.2 Front Panel

The layout of the FICE front panel is shown in the figure below.

LEDs

Connectors

FHI/FUTA

Handle

POWER ON

FAULT

1

2

1 = Channel Encoder2 = Frame Unit Interface

(with pin 1 shown)BSSTE

BSIB

BSIA

Equipment Labels

Fixing Hole

Handle

Fixing Hole

Figure 10: FICE Front Panel Layout

72 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 73: 212480000e03.pdf DRFU BTS

5 FICE

5.5.3 Front Panel Connectors

The following table describes the FICE front panel connectors.

Connector Designation Type

BSIA BSI cable connection toBSI1

Sub-D 9-pin (female)

BSIB Backup link to BSI2 Sub-D 9-pin (female)

BSSTE Test interface Sub-D 15-pin (female)

FHI/FUTA Test interface Sub-D 9-pin (female)

Table 14: FICE Front Panel Connectors

The following table shows the pin assignments for the BSIA connector.

Pin Signal

1 EGA

2 TXDAT

3 FRMAT

4 CLKAT

5 RXDAT

6 TXDAF

7 FRMAF

8 CLKAF

9 RXDAF

Table 15: FICE BSIA Connector

3BK 21248 AAAA TQZZA Ed.03 73 / 288

Page 74: 212480000e03.pdf DRFU BTS

5 FICE

The following table shows the pin assignments for the BSIB connector.

Pin Signal

1 EGB

2 TXDBT

3 FRMBT

4 CLKBT

5 RXDBT

6 TXDBF

7 FRMBF

8 CLKBF

9 RXDBF

Table 16: FICE BSIB Connector

The following table shows the pin assignments for the BSSTE connector.

Pin Signal

1 TXDTT

2 TXDTF

3 FRMTT

4 FRMTF

5 CLKTT

6 CLKTF

7 RXDTT

8 RXDTF

9 EGT

10 CLKRT

11 NC

12 NC

13 NC

74 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 75: 212480000e03.pdf DRFU BTS

5 FICE

Pin Signal

14 NC

15 NC

Table 17: FICE BSSTE Connector

NC = Not Connected

The following table shows the pin assignments for the FHI/FUTA connector.

Pin Signal

1 FHIFUAT

2 Shield A

3 FHIFUBT

4 FUTA_TXD

5 FUTA_RXD

6 FHIFUAF

7 Shield B

8 FHIFUBF

9 FUTA_GND

Table 18: FICE FHI/FUTA Connector

3BK 21248 AAAA TQZZA Ed.03 75 / 288

Page 76: 212480000e03.pdf DRFU BTS

5 FICE

5.5.4 Rear View

The figure below shows a rear view of the FICE.

Upper Connector X100

Mechanical Keycoder

Lower Connector X101

Multilayer Board

Figure 11: FICE Rear View

5.5.5 Backplane Connectors

The FICE has two 96-pin female backplane connectors. These mate with theappropriate male connectors on the backplane of the subrack.

The FICE can be mechanically coded to inhibit insertion of an incorrect boardinto the subrack. The key coder, adjacent to the upper rear connector, has12 keying positions. A pin on the subrack backplane mates with a gap inthe FICE key.

76 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 77: 212480000e03.pdf DRFU BTS

6 DADE

6 DADE

This chapter provides a detailed description of the DADE.

3BK 21248 AAAA TQZZA Ed.03 77 / 288

Page 78: 212480000e03.pdf DRFU BTS

6 DADE

6.1 IntroductionThe DADE (Demodulator and Channel Decoder with Antenna Diversity) isa single board forming part of the Frame Unit. It provides the Frame Unitdemodulation and decoding functions in the uplink signal path.

The DADE takes the sample bursts from the FHI and builds traffic/signallingchannel frames. It can handle eight independent channels. If antenna diversityis used, the DADE averages the two received signals during decoding.

ICIController

ClockManagement

Timing

Triggers

Watchdog

Reset and Clock

Control

IPI (from FHU)

Octal Bit Clock TSCLKFrame Clock

IPI (to FICE)

Decoder

External Reset

Demodulator Demodulator

Decryption

Unit

DSP 4 to 7

FIFO

DSP 0 to 3

FIFO

DSP 8 to 11

FIFO

DSP 0

DSP 11

:

DSP 0

DSP 11

:

DSP 0

DSP 11

:

Arbiter

ICI

Internal Timing

Figure 12: DADE Block Diagram

78 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 79: 212480000e03.pdf DRFU BTS

6 DADE

6.2 DADE FunctionsThis section describes the DADE functions.

The DADE consists of the following functional blocks:

ICI Controller

Demodulator

Decryption Unit

Decoder

Arbiter

Watchdog Reset and Clock Control

Clock Management.

6.2.1 ICI Controller

The ICI is a high-speed serial interface, used by the FUCO to control the othersubmodules in the Frame Unit. The ICI Controller interprets ICI messages toand from the FUCO.

The downlink part of the ICI is a multi-point network. Messages originating fromthe FUCO are simultaneously transferred to all Frame Unit submodules withDSPs. The messages contain the target submodule and DSP address. The ICIcontroller interprets the command and routes the link to the addressed DSP.

The uplink lines on the ICI are separate point-to-point connections. If any of theDSPs requires an uplink to the FUCO, it requests this via the ICI controller.

3BK 21248 AAAA TQZZA Ed.03 79 / 288

Page 80: 212480000e03.pdf DRFU BTS

6 DADE

6.2.2 Demodulator

The Demodulators (DSP0 to DSP7) perform demodulation of the two diversitychannels:

The first diversity channel is demodulated by DSP0 to DSP3

The second diversity channel is demodulated by DSP4 to DSP7.

Under DSP arbiter control, each DSP fetches a block of input data. It thenperforms the demodulation processing functions and passes the result to theIPI. (The IPI is the data interface for the Frame Unit. It carries the data streamfrom the FHI, through the DADE).

The following functions are performed:

Buffering of the digitized samples (in the FIFOs)

Decryption

GMSK demodulation

Estimation of the channel impulse response

TOA estimation

Estimation and correction of the carrier frequency offset

Equalization based on estimated channel impulse response

Soft decision output

SNR measurement.

Each DSP provides the processing capability to handle two time slots.

DSP 0 contains an additional EEPROM and acts as the master DSP. This DSPconfigures the other DADE components at power-up.

6.2.3 Decryption Unit

The Decryption Unit decrypts the demodulated data it receives from theDemodulator DSPs.

All data sent from the demodulator to the decoder passes through thedecryption unit. If decryption is enabled by the FUCO, the data stream isdecrypted. Otherwise the data passes through unchanged.

80 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 81: 212480000e03.pdf DRFU BTS

6 DADE

6.2.4 Decoder

The Decoder decodes the demodulated and decrypted signal. DSP8 toDSP11 perform this task.

The demodulated data (from the demodulator) undergoes complex processing,which involves the following functions:

Quality estimation for link control

De-interleaving

Convolutional decoding

Block decoding

FACCH detection

Signalling packet extraction

Silence Indication frame detection

Rate adaptation

Inband control of Transcoder

Processing of test data

Filtering of TOA

Filtering of received signal level

Carrier Unit monitoring

Access burst decoding.

3BK 21248 AAAA TQZZA Ed.03 81 / 288

Page 82: 212480000e03.pdf DRFU BTS

6 DADE

6.2.5 Arbiter

The arbiter generates the timing triggers for the demodulator and decoderDSPs, and enables signals for the IPI. The triggers are generated separatelyfor each DSP and sent to the DSPs. Their timing is automatically adjusted totake account of propagation delays.

The following table describes the triggers generated by the arbiter.

Trigger Definition

Start trigger Sent to each DSP in turn, at intervals of one time slot. The triggers for DSP0to DSP3 and DSP4 to DSP7 are sent simultaneously.

Transfer trigger Sent to each DSP in turn, from DSP0 to DSP7, at intervals of one time slot.

Frame clock trigger Sent to all DSPs simultaneously to mark the pulse of the absolute frame clock.

Table 19: Arbiter-generated Triggers

The following table describes the signals generated by the arbiter.

Signal Definition

FIFO read enable Generated for each DSP, and mark the periods when each DSP is allowed toread input data.

Internal bus grant Generated for each DSP, to mark the periods when:

DSP0 to DSP7 are allowed to write data to the decryption unit

DSP8 to DSP11 are allowed to send output data to the IPI.

Table 20: Arbiter-generated Signals

6.2.6 Watchdog Reset and Clock Control

The Watchdog, Reset and Clock Control functions supervise the properworking of the DSPs.

A periodic watchdog signal is acknowledged when each DSP executes theFIFO-reset driver routine. This occurs each time the DSP reads input data.

6.2.7 Reset Sources

The reset circuitry must ensure proper starting of the DADE after reset orpower-up.

There are four different reset sources:

Power-on reset

Master reset from FUCO

Local reset by the reset button

Watchdog reset.

82 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 83: 212480000e03.pdf DRFU BTS

6 DADE

6.2.8 Clock Management

Auxiliary clocks are generated for each DSP. These are only enabled duringautotest. The operational clocks are externally generated by the FICE.

The incoming clocks are supervised by the DSP arbiter, where they areregenerated. In general, all clock inputs can tolerate one missing clock pulse.

If a serious error occurs, all DSPs receive a clock error interrupt. A red LED onthe front panel illuminates and an alarm is raised at the FUCO. All subsequentactions are triggered by the FUCO.

6.3 O&MThis section describes the O&M functions of the DADE.

The following information is provided:

LEDs

Reset Button

Replacement

Power Supply.

6.3.1 LEDs

The following table lists the status LEDs located on the front panel.

LED Description

POWER ON Power supply present

FAULT System fault

Table 21: DADE Status LEDs

6.3.2 Reset Button

A reset button, located on the front panel, is used for initializing the DADE unit.

6.3.3 Replacement

Removal and insertion of the DADE, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the DADE is not permitted.

6.3.4 Power Supply

Power is supplied to the DADE via the backplane connectors at +5 VDC +/- 5 %.

3BK 21248 AAAA TQZZA Ed.03 83 / 288

Page 84: 212480000e03.pdf DRFU BTS

6 DADE

6.4 Physical DescriptionThe DADE is a multilayer board which plugs into a standard 19" subrack. Thissection describes the physical details of the DADE.

It provides the following information:

Dimensions

Front Panel

Rear View

Backplane Connectors.

6.4.1 Dimensions

The physical dimensions of the DADE are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 5 T 25.4 mm

Depth: - 280 mm

Table 22: DADE Physical Dimensions

84 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 85: 212480000e03.pdf DRFU BTS

6 DADE

6.4.2 Front Panel

The DADE front panel is shown in the figure below.

FAULT

RESET

Button

LEDs

Handle

Handle

Fixing Hole

Fixing Hole

POWER ON

Equipment Labels

Figure 13: DADE Front Panel

3BK 21248 AAAA TQZZA Ed.03 85 / 288

Page 86: 212480000e03.pdf DRFU BTS

6 DADE

6.4.3 Rear View

The rear view of the DADE is shown below.

c b a

Upper Connector

Mechanical Keycoder

Lower Connector

Multilayer Board

1

32

A

B

C

D

EF

G

H

I

J

K

L

M

1

32

c b a

Figure 14: DADE Rear View

6.4.4 Backplane Connectors

The DADE is fitted with two 96-pin female connectors. These mate with theappropriate male connectors on the backplane of the subrack.

The DADE is mechanically coded to inhibit insertion of an incorrect submoduleinto the subrack. The key coder, adjacent to the upper rear connector, mateswith a pin on the subrack backplane.

86 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 87: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7 SCFE/SACE

This chapter provides a detailed description of the SCFE/SACE.

3BK 21248 AAAA TQZZA Ed.03 87 / 288

Page 88: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.1 IntroductionThe SCFE (Station Unit Control Function Entity) is a primary component of aBTS Station Unit. It provides all the O&M and alarm handling functions for asingle-carrier BTS.

In order to perform these functions, the SCFE consists of two distinct functionalblocks:

OMU, which co-ordinates all O&M actions inside the BTS

EACU, which collects alarms from equipment within and outside the BTS,and also provides outputs for control purposes.

For larger BTSs, a SACE is additionally employed. The SACE (Station UnitAlarm Collection Entity) does not contain an OMU (Operational MaintenanceUnit), just an EACU for additional input and output lines.

The EACU communicates with the OMU via the DCL2 (Q1 Bus) (ServiceInterface (V.11) (Q1)).

Although the OMU and EACU are physically located on the SCFE, they areconsidered as separate functional blocks.

88 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 89: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.2 OMU FunctionsThe OMU has the following functional blocks:

Microprocessor and Memory

Timing and Control Logic

Driver Logic

Token Bus Interface

Asynchronous Interface

Base Station Interface.

A B

DCL1

MMI

Timing and Control Logic

Asynchronous Interface

Data Bus

Address Bus

Microprocessor + Memory

Token Bus Interface

Base Station Interface

BSIA BSIB

DCL2 (EACU)LEDs

Driver Logic

BA

Figure 15: OMU Block Diagram

7.2.1 Microprocessor and Memory

The OMU is designed around a highly integrated 32-bit microprocessor. Bootcode is held in an EPROM. At power up, this code downloads operationalsoftware from the BSC.

3BK 21248 AAAA TQZZA Ed.03 89 / 288

Page 90: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.2.2 Timing and Control Logic

The Timing and Control Logic block includes the following functions:

Real time clock

System timer, watchdog and event counter

Reset circuitry

Board status and control registers

Memory access parity generator/checker.

7.2.3 Driver Logic

The Driver Logic provides a number of outputs for front panel status indicationLEDs.

7.2.4 Token Bus Interface

The Token Bus Interface provides a DCL1 connection. DCL1 is used for O&Mcommunication between the OMU and the Frame Units, including softwaredownloading to the Frame Units.

7.2.5 Asynchronous Interface

The Asynchronous Interface has two independent, full duplex channels: A andB. Channel A provides the physical connection to the DCL2.

This is used for supervisory communication between the OMU and otherBTS components:

Carrier Units

Remotely Tunable Combiner

Station Unit Timing and Switching Entity

Radio Test Equipment

EACU (for supervision on non-intelligent devices).

Channel B is wired to the MMI RS-232 connector on the front panel, to whichthe BTS Terminal can be connected.

7.2.6 Base Station Interface

The BSI is used for O&M signalling and data transfer between the BTSand the BSC. The information transferred in both directions is organizedinto LAPD frames.

For the purposes of BSI communication, the OMU always operates as a slavedevice. It receives clock and frame synchronization signals from the BSI.

The OMU has two redundant BSI connections: link A and link B. If link Acarries a clock signal it is automatically selected. If it ceases to carry a clocksignal, link B is selected. This function can be switched off so that link B ispermanently selected.

90 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 91: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.3 EACU FunctionsThe EACU (External Alarm Collection Unit) has the following functional blocks:

Microcontroller and Memory

Input/Output System

Timing and Control Logic

Q1 Interface.

Supervised Devices

Off−board

Input/Output System

Q1 Interface

Data Bus

Address Bus

Microcontroller + Memory

OMU (SCFE only)

BA

Relay

DCL2

Timing and Control Logic

ControlAlarm/Control Lines

Figure 16: EACU Block Diagram

7.3.1 Microcontroller and Memory

The EACU is designed around a highly integrated 32-bit microcontroller. AnEPROM contains the program code and RAM is used for storing operationaldata.

When powered up, the EACU’s microcontroller starts executing firmware heldin the EPROM. Self-test routines are run, including checks to ensure that theDCL2 and input and output lines are functioning correctly.

3BK 21248 AAAA TQZZA Ed.03 91 / 288

Page 92: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.3.2 Input/Output System

The EACU constantly checks its alarm inputs (up to a maximum of 32), andupdates its internal database when changes occur.

The OMU periodically polls the EACU for details of the condition of theEACU’s inputs.

Example alarms are:

RFE fault

Antenna Voltage Standing Wave Ratio too high

BCCH-Carrier Switch Status

Power supply failure

Cooling Fan Unit failure.

Sixteen outputs are provided for control purposes. The OMU can change thestate of the output port by sending a message, containing the appropriateport number, to the EACU.

The EACU software performs message interpretation and controls of outputports.

Examples controls are:

BCCH Carrier Switch positioning

RFE and Combiner alarm line test

Power supply ON/OFF switching.

The EACU has no knowledge of the purpose of each input or output; mappingsare handled by the OMU.

7.3.3 Timing and Control Logic

The Timing and Control Logic block includes watchdog and reset circuitry.

7.3.4 Q1 Interface

The Q1 Interface block provides the physical connection to the DCL2.

92 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 93: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.4 O&MThis section describes the O&M functions of the SCFE.

The following information is provided:

LEDs

Reset Buttons

Replacement

Power Supply.

7.4.1 LEDs

The following table lists the status LEDs located on the SCFE front panel.

LED Description

POWER Power supply present

FAULT System fault

OMU 0, 1, 2 Driven by software, and indicates the status of the OMU. Not present on theSACE.

EAC 0, 1, 2 Driven by software, and indicates the status of the EACU.

Table 23: SCFE Status LEDs

The following table shows the status of the OMU LEDs.

Description OMU 2 OMU 1 OMU 0

OMU Reset

OMU Restart

Off

Off

Off

On

Off

Off

OMU self-test running

Self-test failure: RAM test

Self-test failure: Inverse parity check

Self-test failure: Timer test

Self-test failure: Serial interface test

Self-test failure: Token Bus test

Self-test failure: BSI test

Self-test failure: Test of Real Time Clock and RAM

On

Off

Off

Off

Off

Off

Off

Off

On

Off

Off

On

On

Blink

Blink

Blink

On

On

Blink

On

Blink

Off

On

Blink

If a failure appears in a self-test, the LEDs remain in the state of this test for at least 30 seconds(permanently if the OMU is halted).

3BK 21248 AAAA TQZZA Ed.03 93 / 288

Page 94: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

Description OMU 2 OMU 1 OMU 0

Download of file descriptions.

Download of OMU software configuration files.

Download of Frame Unit Controller software.

Download of Frame Unit configuration.

Failure during download of file descriptions.

Failure during download of software and configuration files.

Failure during download of Frame Unit Controller software.

Failure during download of Frame Unit configuration.

On

On

On

On

On

On

On

On

Off

Off

Off

On

On

Toggled

Toggled

Toggled

Off

On

Toggled

Off

Toggled

Off

On

Toggled

If a failure appears during downloading of a file packet, the corresponding failure state is displayed for atleast 15 seconds.

Initialization of DCL1 or DCL2 units.

Failure during initialization of DCL2 unit.

Failure during initialization of DCL1 unit.

Failure during initialization of DCL1 and DCL2 units.

OMU operational after BTS initialization.

Toggled

Toggled

Toggled

Toggled

Toggled

Off

Off

On

On

Toggled

Off

On

Off

On

Toggled

Table 24: OMU Status LEDs

Note: The frequency of toggling indicates processor load (whereas blinking frequencyis constant).

The following table shows the status of the EACU LEDs.

Description EAC 2 EAC 1 EAC 0

A task is running On - -

EACU is receiving data via a DCL2 - On -

OMU and EACU are connected to external DCL2 - - On

EACU and OMU are disconnected - - Off

EACU connected to external DCL2; OMU is logically OFF (normalcondition for the SACE)

- - Blink

Table 25: EACU LEDs Status

94 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 95: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.4.2 Reset Buttons

Reset buttons, located on both units’ front panels, are used for initializing theSCFE/SACE units.

7.4.3 Replacement

Hot insertion of the SCFE/SACE is permitted.

7.4.4 Power Supply

Power is supplied to the SCFE/SACE via the backplane connectors:

+5 VDC +/- 5 %

+12 VDC +/- 5 %.

3BK 21248 AAAA TQZZA Ed.03 95 / 288

Page 96: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.5 Physical DescriptionThe SCFE/SACE boards are multilayer printed boards fitted with a singlebackplane connector. This section describes the SCFE/SACE physicalcharacteristics.

It provides the following information:

Dimensions

SCFE Front Panel

SACE Front Panel

Front Panel Connectors

SCFE/SACE Rear View.

7.5.1 Dimensions

The dimensions of the SCFE/SACE are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 4.5 T 22.86 mm

Depth: - 233.4 mm

Table 26: SCFE/SACE Physical Dimensions

96 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 97: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.5.2 SCFE Front Panel

The following figure shows the front panel of the SCFE. It includes the twohardware status LEDs, six software-controlled LEDs, Reset button switchand three connectors.

LEDs

Thumb Tab

POWER ON

FAULT

OM

CEN

EAC

MMIEquipment

Labels

Fixing Hole

Thumb Tab

Fixing Hole

21

U 0

EA

21

C 0

RESET Reset Button

Centronics Connector

EACU Connector

MMI Connector

Figure 17: SCFE Front Panel

3BK 21248 AAAA TQZZA Ed.03 97 / 288

Page 98: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.5.3 SACE Front Panel

The following figure shows the SACE front panel. The SACE front panel issimilar to that of the SCFE. The only difference is that it does not have thethree OMU LEDs.

LEDs

Thumb Tab

Equipment Labels

Fixing Hole

Thumb Tab

Fixing Hole

Reset Button

Centronics Connector

EACU Connector

MMI Connector

POWER ON

FAULT

CEN

EAC

MMI

EA

21

C 0

RESET

Figure 18: SACE Front Panel

98 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 99: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.5.4 Front Panel Connectors

The following table describes the front panel connectors.

Connector Designation Type

MMI Connects to the BTS Terminal. Sub-D 9-pin(female)

EAC Allows connection of external alarm signalson the SCFE/SACE.

Sub-D 15-pin(female)

CEN For factory use only. Sub-D 25-pin(female)

Table 27: SCFE Front Panel Connectors

The following table shows the pin assignments for the MMI connector of theSCFE.

Pin SCFE Description

1 DCD Receive line signal detector (data carrier detect)

2 RXD Receive data

3 TXD Transmit data

4 DTR Data terminal ready

5 GND Signal ground

6 DSR Data set ready

7 RTS Request to send

8 CTS Clear to send

9 SWI For factory use only

Table 28: SCFE MMI Connector

3BK 21248 AAAA TQZZA Ed.03 99 / 288

Page 100: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

The following table shows the pin assignments for the MMI connector of theSACE.

Pin Signal Description

1 NC Not connected

2 RXD Receive data

3 TXD Transmit data

4 NC Not connected

5 GND Signal ground

6 NC Not connected

7 NC Not connected

8 NC Not connected

9 SWI For factory use only

Table 29: SACE MMI Connector

The following table shows the pin assignments for the External AlarmConnection.

100 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 101: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

Pin Signal

1 EAC_IN_0

2 EAC_IN_1

3 EAC_IN_2

4 EAC_IN_3

5 EAC_IN_4

6 EAC_IN_5

7 EAC_IN_6

8 EAC_IN_7

9 EAC_IN_8

10 EAC_IN_9

11 EAC_IN_10

12 EAC_IN_11

13 VCC_16

14 EAC_OUT_16

15 GND

Table 30: SCFE/SACE EAC Connector

3BK 21248 AAAA TQZZA Ed.03 101 / 288

Page 102: 212480000e03.pdf DRFU BTS

7 SCFE/SACE

7.5.5 Rear View

The following figure shows the rear view of the SCFE/SACE, includingconnector. The SCFE/SACE and their slots are mechanically coded to preventinsertion of an incorrect board.

Octagonal Coding Guide

Connector

Octagonal Coding Guide

Multilayer Board

Fixing Hole

Fixing Hole

Figure 19: SCFE/SACE Rear View

102 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 103: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8 STSE/STSR/STSP/ESTS/ESTR

This chapter provides a detailed description of the STSE.

3BK 21248 AAAA TQZZA Ed.03 103 / 288

Page 104: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.1 IntroductionThe STSE variants provide two main functions:

Generation and distribution of timing signals to other BTS modules

Frequency Hopping (to reduce the effect of co-channel interference andmultipath distortion - non-extended cell variants only).

In any non-extended cell BTS, either an STSE, STSP or STSR is used. Inthe master BTS an STSE or STSP is used, whereas in a collocated (slave)BTS, an STSR is used.

The difference between the three variants is only in the system clocks. TheSTSE and STSP produce the clocks themselves (the selection of STSE orSTSP depends on the type of local network); the STSR simply repeats theclocks from a local "master" BTS.

Extended Cell In extended-cell BTS:

The ESTS is used instead of an STSE

The ESTR is used instead of the STSR.

The extended cell submodules generate modified timing signals to compensatefor the longer Air Interface delays.

Note: Unless otherwise stated, references to the STSE, STSP or STSR include theESTS or ESTR as appropriate. References to the STSE includes all variants.

104 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 105: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2 STSE FunctionsThe STSE consists of the following functional blocks:

Module Controller

Master Frequency Generator

Master Clock and Frame Number Generator

Clock Distribution

FHU.

The following figure shows a functional block diagram of the STSE variants.

13 MHz

13 MHz

Oven Alarm

Redundant MCFNG

OBCLK, FCLK

MCFNG REFCLK Carrier Units, RTE, Five collocated BTSs

Redundant MCFNG

OBCLK, FCLK

T1, T2, T3 TSCK

FN serial

FCLK

ARFCN

Frame Units Carrier Units

RTE

FHI Links

Clock Distribution

FHU

Module Controller

MFG (STSE/STSP

only)

FN serial

Status and Control

OBCLK, FCLK

FN serial

OBCLK, FCLK

Frame Units and Five collocated BTSs

Carrier Units and RTE

Redundant MCFNG

FN serial

MMI

DCL2

Host Interface

Alarms

Status and Control

FN parallel

Terminal

Redundant MCFNG

SCFE

FN serial

Tuning Control (STSP only)

SMBI4.096 MHz Reference (STSP only)

MCFNG Master Clock and Frame Number Generator

13 MHz

FN parallel

Figure 20: STSE Block Diagram

The MFG, MCFNG and Clock Distribution blocks generate and distributethe clocks.

The FHU dynamically connects the Frame Units and Carrier Units to performfrequency hopping.

When antenna diversity is not used, duplication of the STSE providesredundancy. When antenna diversity is used, the second FHU handles thesecond (diversity) signal path. In this case, only the clock generation functionsare redundant.

It is also possible to handle antenna diversity with only one STSE in the’non-redundant configuration’ (when using [le ] 4 transmitters).

The following sections describe each of the STSE functions.

3BK 21248 AAAA TQZZA Ed.03 105 / 288

Page 106: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2.1 Module Controller

The Module Controller primarily handles messages on the DCL2 to supervisethe blocks (according to the OMU).

The Module Controller is the only DCL2 node on the STSE. Therefore,the Module Controller is responsible for forwarding commands to the otherfunctional blocks and relaying their reactions to the OMU.

The Module Controller converts the FN sent by the MCFNG to a serial format.This serial FN is distributed to the Clock Distribution and redundant MCFNG.The serial FN from the redundant MCFNG is converted into parallel formand sent to its own MCFNG.

The STSP connection between the Module Controller and MFG is used to tunethe MFG and monitor any MFG alarms. An EEPROM holds the MFG’s tuningcharacteristics (which vary between STSPs).

8.2.1.1 MicrocontrollerThe Module Controller is based on a 32-bit microcontroller with associatedmemory and support functions. It has several memory-mapped registers forcommunication with the MCFNG and Clock Distribution blocks (and MFGon the STSP).

8.2.1.2 InterfacesThe Host Interface is used for communication between the Module Controllerand the FHU.

The Module Controller also offers an MMI similar to RS-232, to which aterminal can be connected.

8.2.2 STSE Master Frequency Generator

The STSE MFG produces a stabilized 13 MHz clock signal. This is distributedto the local MCFNG and to the MCFNG of the redundant STSE. The clocksignal is generated by an Oven Controlled Crystal Oscillator.

Note that power must be applied to the OCXO for 15 minutes before its outputis stable. During this period, an "oven alarm" signal is generated.

The MFG is not equipped on the STSR/ESTR.

8.2.3 STSP Master Frequency Generator

The STSP is a version of the STSE which can be used where the localnetwork’s PCM clock is extremely stable.

The STSP MFG produces a tuned, stable, 13 MHz clock signal which isdistributed to the local MCFNG and to the MCFNG of the redundant STSP.

106 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 107: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2.3.1 Internal Crystal OscillatorThe internal OCXO is synchronized with a 4.096 MHz signal derived from thePCM clock in the SMBI. Due to the PCM synchronization, no manual frequencyadjustment is ever needed. (This is in contrast to the STSE, where the OCXOis free running and requires periodic calibration).

The OCXO is electronically tunable. The frequency is regulated by softwarerunning on the Module Controller, by measuring the number of cycles occurringover a long period. The period is timed using the 4.096 MHz PCM clock.

If the 4.096 MHz reference signal is not available, the tuning adjustment of theOCXO is kept constant (at the last tuned setting).

8.2.3.2 AlarmsAn alarm is raised in the following situations:

During warm up (beginning at power up, and ending after 15 minutes)

If the OCXO tuning voltage is out of range (OCXO is no longer tunable)

If there is an oven defect in the OCXO

If there is a write/read defect in the EEPROM.

8.2.4 STSE/STSP Master Clock and Frame Number Generator

The MCFNG on the STSE/STSP receives the 13 MHz clock and ovenalarm from the MFG. It also receives these from the MFG of the redundantSTSE/STSP (if present). One of the Reference Clock signals is selected. Thisis distributed to the Divider, the RTE, up to eight Carrier Units, and up tofive collocated BTSs.

In turn the MCFNG provides as output the REFCLK, OBCLK, FCLK and FN.

The REFCLK used in the Carrier Unit as a synthesizer reference is producedin this block. All the necessary drivers to distribute this clock are located inthis area.

To fulfill the redundancy requirements, the redundant MCFNGs aresynchronized together. The OBCLK and FCLK are exchanged between theMCFNG and the redundant MCFNG. So that each MCFNG can react quickly tothe failure of the other, there is a direct status and Control link between the twoMCFNGs. The status of each MCFNG is held in a status register accessible toboth. This is updated following any change of status.

The MCFNG has six operational modes:

Master Mode

Slave Mode

Normal Mode

Independent Mode

Faulty Mode

Disconnected Mode.

3BK 21248 AAAA TQZZA Ed.03 107 / 288

Page 108: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2.4.1 Master ModeThe MCFNG in Master Mode does not take into account the external referencefrom the slave MCFNG. Instead, it watches the status Control Link indicatingwhether the synchronization has succeeded.

8.2.4.2 Slave ModeThe MCFNG in Slave Mode generates its own FN in synchronization withthe external reference FN.

8.2.4.3 Normal ModeNormal Mode is the operational mode of both master and slave MCFNG,if no alarms occur.

Normal Mode is entered when the synchronization of both MCFNGs issuccessful. Each MCFNG generates the various clocks and the FN, andverifies its synchronization with the other MCFNG.

8.2.4.4 Independent ModeThe MCFNG enters Independent Mode if redundancy is lost. Only the OMUcan order this mode (except if an internal alarm occurs, leading to the MCFNGentering Faulty Mode). In this mode, each MCFNG generates its timingindependently regardless of the second MCFNG’s status.

8.2.4.5 Faulty ModeIn Faulty Mode the MCFNG is disconnected from the links to the BTS. Absenceof clocks from the faulty MCFNG is detected by the BTS clock receivers of theother (redundant) MCFNG.

8.2.4.6 Disconnected ModeIn Disconnected Mode, the MCFNG is disconnected from the links. TheMCFNG waits for delay parameters and then for a mode change command.

8.2.5 STSR Master Clock and Frame Number Generator

The MCFNG on the STSR works as a presence detector for the clocks comingfrom the master BTS. It then repeats them within the slave BTS. If a clock isabsent, an alarm is raised.

In an STSR, no synchronization between the redundant MCFNGs is performed.The MCFNG on the STSR has only Normal, Faulty and Disconnected modes ofoperation.

108 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 109: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2.6 Clock Distribution

The Clock Distribution block receives the signals FCLK, OBCLK (directly fromthe MCFNG) and the serial FN (converted by the Module Controller). Theseclocks are monitored and their status reported to the Module Controller. TheClock Distribution block distributes the clocks within the BTS and additionallyup to five collocated BTS.

The FN signal is not synchronized with TDMA timing and is sentasynchronously. It is available after the beginning of each new frame as soonas the Frame Unit, Carrier Unit and FHU require it for TDMA timing. TheFN is sent one frame in advance.

To avoid introducing distribution delays, each clock is distributed in the sameway to each BTS entity.

Timing The Timing Generation in the Clock Distribution block produces theclocks for the FHU timing.

Synchronization of remote BTS units is implemented using an STSR on theremote BTS. The MCFNG of the STSR repeats the clocks but performs nostatus, control or synchronization functions.

A relative shift delay between the local BTS and the remote BTS isprogrammable via the Module Controller. The total delay for each link (i.e.,distribution delay plus programmed delay) is equal for all collocated BTSs.

3BK 21248 AAAA TQZZA Ed.03 109 / 288

Page 110: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.2.7 Frequency Hopping Unit

The FHU dynamically connects the Frame Units and Carrier Units in both thetransmit and receive direction. Up to eight Frame Unit and Carrier Units can beused, the Carrier Units transmitting on a fixed frequency.

8.2.7.1 FHU AlgorithmA frequency hopping algorithm generates a pseudo-random or periodicconnection sequence. This enables the subsequent time slots, used by aMobile Station, to hop between a set of frequencies.

Non-extended cell variants change the connections dynamically on a time-slotbasis given by a Frequency Hopping algorithm. Extended cell variants do notallow frequency hopping. In these submodules the Frame Unit-to-CarrierUnit connections are fixed.

8.2.7.2 FHU ControllerA Frequency Hopping Controller, based around a high performance DSP,executes the algorithm. This calculates the FHU switch configurations. Whenfrequency hopping is used, the switch is configured once every time slot.Additionally, the DSP reads the results of the local loop test (performed via theRTE) and reports any errors to the Module Controller.

The algorithm parameters are downloaded during startup of the FHU, oron command of the OMU.

8.2.7.3 FHU SwitchThe FHU switch is an 8 x 8 bidirectional switching matrix which provides theFrame Unit to Carrier Unit switching connections.

As clocks are generated and supervised elsewhere on the board, the FHUdoes not perform monitoring of each single clock. Only the absence of TSCKand/or FCLK causes an alarm to be raised here.

110 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 111: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.3 O&MThis section describes the O&M functions of the STSE.

The following information is provided:

LEDs

Trimming Potentiometer

Reset Buttons

Replacement

Power Supply.

8.3.1 LEDs

The following table lists the hardware status LEDs located on the front panel.

Marking Description

POWER ON Power supply present

FAULT System fault

Table 31: STSE Status LEDs

8.3.2 Trimming Potentiometer

The STSE front panel has an access point for a 13 MHz clock-trimmingpotentiometer, labelled TRIM.

8.3.3 Reset Buttons

Reset buttons, located on each unit’s front panel, are used for initializingthe STSE and STSP/STSR units.

8.3.4 Replacement

Hot insertion of the STSE is permitted.

8.3.5 Power Supply

Power is supplied via the backplane connectors at:

+5 VDC +/- 5 %

+12 VDC +/- 5 %.

3BK 21248 AAAA TQZZA Ed.03 111 / 288

Page 112: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.4 Physical DescriptionThe STSE is a single plug-in unit, which is mounted in a standard 19" subrack.This section describes the physical details of the STSE.

It provides the following information:

Dimensions

Front panels

Front panel connectors

Rear view.

The STSE variants are multilayer boards, which plug into a standard 19"subrack. The boards and their slots are mechanically coded to preventincorrect board insertion. The following sections describe the physical details ofthe STSE variants.

8.4.1 Dimensions

The physical dimensions of the STSE variants are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 6.5 T 33.0 mm

Depth: - 280 mm

Table 32: STSE/STSP/STSR Physical Dimensions

112 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 113: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.4.2 STSE Front Panel

The following figure shows the front panel of the STSE. It includes the statusLEDs, the three connectors, the TRIM access point and the reset button.

LEDs

Thumb Tab

POWER ON

FAULT

CLK

TEST

MMIEquipment

Labels

Fixing Hole

Thumb Tab

Fixing Hole

RESET Reset Button

CLK IN Connector

TEST Connector

MMI Connector

TRIMTrimming Potentiometer

IN

Figure 21: STSE Front Panel

3BK 21248 AAAA TQZZA Ed.03 113 / 288

Page 114: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.4.3 STSP/STSR Front Panel

The following figure shows the STSP/STSR front panel. It is identical to theSTSE front panel except it does not have a trimming potentiometer.

LEDs

Thumb Tab

POWER ON

FAULT

Equipment

Labels

Fixing Hole

Thumb Tab

Fixing Hole

RESET Reset Button

CLK IN Connector

TEST Connector

MMI Connector

CLK

TEST

MMI

IN

Figure 22: STSP/STSR Front Panel

114 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 115: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.4.4 Front Panel Connectors

The following table describes the front panel connectors.

Connector Designation Type

MMI Provides a serial (RS-232) debug interface,internally connected to the ModuleController.

Sub-D 9-pin(female)

TEST Allows test access to the FN, REFCLK,FCLK and OBCLK signals. Each outputconforms to RS-422.

Sub-D 9-pin(female)

CLK IN This is used if the board is (or is configuredas) an STSR rather than an STSE/STSP.

Sub-D 9-pin(female)

Table 33: STSE Front Panel Connectors

The following table lists the MMI connector pin-out.

Pin Signal

1 NC

2 RX

3 TX

4 NC

5 GND

6 NC

7 NC

8 NC

9 NC

Table 34: STSE MMI Connector

NC = Not Connected

3BK 21248 AAAA TQZZA Ed.03 115 / 288

Page 116: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

The following table lists the TEST connector pin-out.

Pin Signal

1 GND

2 FN-

3 FCLK-

4 OBCLK-

5 REFCLK-

6 FN+

7 FCLK+

8 OBCLK+

9 REFCLK+

Table 35: STSE TEST Connector

The following table lists the CLK IN connector pin-out.

Pin Signal

1 GND

2 FNIN-

3 FCLKIN-

4 OBCLKIN-

5 REFCLKIN-

6 FNIN+

7 FCLKIN+

8 OBCLKIN+

9 REFCLKIN+

Table 36: STSE CLK IN Connector

116 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 117: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

8.4.5 Rear View

The following figure shows the rear view of all variants. It includes the subrackconnector.

c b a

1

Octagonal Coding Guide

Octagonal Coding Guide

Connector

Multilayer Board

Fixing Hole

Fixing Hole

80

Figure 23: STSE Rear View

3BK 21248 AAAA TQZZA Ed.03 117 / 288

Page 118: 212480000e03.pdf DRFU BTS

8 STSE/STSR/STSP/ESTS/ESTR

118 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 119: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9 RTED/RTEG

This chapter provides a detailed description of the RTE.

3BK 21248 AAAA TQZZA Ed.03 119 / 288

Page 120: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9.1 IntroductionThe RTE (Radio Test Equipment) provides a mechanism for testing the BTSbaseband and radio signal paths. It provides a single channel loopback pathbetween the BTS transmitter and receiver. This allows the Station Unit to sendtest information to the transmitter and then receive the same information viathe receiver. This check ensures that all the data processing, modulation,demodulation and conversion steps are functioning correctly. Thus all the unitsbetween the Frame Unit and the Coupling Unit are tested in both the downlinkand uplink directions.

The signals processed by the RTE are not subject to disturbances on the radiopath. The RTE input is directly connected to the output from the Combiner; theRTE output is directly fed into the RFE.

9.1.1 RTE Variants

Two functionally identical variants of RTE are used, depending on the systemtype:

RTED for GSM 1800 networks

RTEG for GSM 900 networks.

9.1.2 Functional Boards

The RTE contains the following boards:

RXRT

DRTE

TXRT

The RTE consists of three boards, as shown in the following figure.

Receiver Board

DigitalTransmitter

BoardProcessing

Unit

ControlControl

I/Q

Diversity RFE 2

Diversity RFE 1

Delayed I/Q Baseband

Station Unit

Baseband

Combiner

Figure 24: RTE Block Diagram

120 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 121: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9.2 Receiver Board FunctionsThe RXRT down converts the RF signal from the combiner. This processconverts one particular (programmable) downlink frequency into a 45 MHz(GSM 900) or 199 MHz (GSM 1800) Intermediate Frequency signal. The signalis amplified to a fixed level. A second down-conversion removes the 45 MHz(GSM 900) or 199 MHz (GSM 1800) carrier. The signal is then demodulatedinto I and Q baseband components for output to the DRTE.

The incoming RF signal is filtered by a bandpass filter, which suppressesinterference outside the downlink frequency range.

9.3 Digital Processing Unit FunctionsThe DRTE manages the loop test. Under command of the Station Unit, theDRTE activates the RXRT and TXRT, setting them to receive and transmit dataon the frequency pair specified. The downlink data received is converted tobaseband I and Q signals in digital form. The data is processed by a DSP andthen, after a time delay, is converted back into analog I and Q baseband signals.

Received power is measured and the transmit power is set accordingly.

Interfaces The following interfaces exist between the DRTE and the StationUnit.

The DCL2, which is used for command and status report communicationwith the Station Unit

The Clock interface to the Station Unit, which carries the OBCLK, FCLK andREFCLK signals. It provides the RTE with the timing signals necessary

for operation

Frequency Hopping Controller Link, which carries the ARFCN. This is sentover the FHC link, so that the RTE knows which channel to test.

3BK 21248 AAAA TQZZA Ed.03 121 / 288

Page 122: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9.4 Transmitter Board FunctionsThe TXRT upconverts baseband I and Q signals generated by the DRTE to therequired transmit carrier frequency.

The signal is filtered to ensure that only frequencies in the uplink arepresent. The output power is carefully controlled so that it meets the GSMrecommendations.

At the output, the signal is split to allow testing of BTS with antenna diversity.

9.5 O&MThis section describes the O&M functions of the RTE.

The following information is provided:

Replacement

Power Supply.

9.5.1 Replacement

Removal and insertion of the RTE, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the RTE is not permitted.

9.5.2 Power Supply

Power is supplied to the RTE via the backplane connectors:

+5 VDC +/- 2 %, 1 A (RTEG)

+5 VDC +/- 2 %, 0.5 A (RTED)

+12 VDC +/-2 %, 1 A.

122 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 123: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9.6 Physical DescriptionBoth RTE variants have identical physical characteristics. They are enclosedwithin a metal box conforming to the standard 19" rack dimensions. Thissection describes the physical details of the RTE variants.

It provides the following information:

Dimensions

Front Panel

Rear View

Connectors.

9.6.1 Dimensions

The following table shows the physical dimensions of the RTE.

Dimension Size (Units) Size (mm)

Height: 3 U 133.3 mm

Width: 10 T 50.8 mm

Depth: - 280 mm

Table 37: RTE Physical Dimensions

9.6.2 Front Panel

The following figure shows the RTE front panel, including the IN/OUTconnectors.

Fixing Hole

Fixing Hole

Thumb Tab

Equipment Labels

RF OUT Connector

IN

OUT

RF IN Connector

DIV OUT

DIV RF OUT Connector

Figure 25: RTE Front Panel

3BK 21248 AAAA TQZZA Ed.03 123 / 288

Page 124: 212480000e03.pdf DRFU BTS

9 RTED/RTEG

9.6.3 Rear View

The RTE rear panel is shown in the following figure.

Rear Connector

Fixing Hole

Fixing Hole

Figure 26: RTE Rear View

9.6.4 Connectors

Three SMA-type female 50 Ohm RF connectors are used for RF input, RFnon-diversity output and RF diversity output.

124 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 125: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10 TXDH/TXGH/TXGM/TEGM

This chapter provides a detailed description of the transmitters.

3BK 21248 AAAA TQZZA Ed.03 125 / 288

Page 126: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.1 IntroductionThe primary function of the transmitter is to convert a Digitally EncodedTransmitter Data stream to a modulated RF signal. The output channelfrequency is programmable within the downlink band.

10.1.1 Variants

The following table lists the types of transmitter that are available. The variantused depends on the system type and power requirements of the cell.

Transmitter Description

TXGH - 50 W output power

TXGM - 30 W output power

GSM 900

TEGM - 30 W output power for extended-cells.

GSM 1800 TXDH - 25 W output power

Table 38: Transmitter Variants

Throughout this chapter, references to the transmitter are applicable to allvariants unless otherwise stated.

10.1.2 Functions

The transmitter converts the digital data stream coming from the FHI into aGMSK-modulated RF signal. It does this by using the local oscillator signalcoming from the Synthesizer Transmitter Board. This GMSK-modulated RFsignal is amplified to the required transmit power in a multi-stage amplifier.

The output power of the transmit amplifier is adjustable under control of theDigital Transmitter Board. This is needed for the power ramping of the burstand power control purpose.

Channel frequency selection is controlled by communication with the StationUnit.

The Transmitter functional blocks and interfaces are illustrated in the followingfigure.

126 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 127: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

GMSK Modulator

Power Amplifier

Power Coupling

and Detection

Transmitter Frequency Synthesizer

DisplayPower Control and Alarms

Carrier Unit Control

FHI

DCL2

Clocks

Data & Clock

I

QRF−Output

Analog Transmitter Board Power Amplifier Transmitter Board

RF

Power Control

Temp. Sensor

Forward & Reverse Power Measurement

Display BoardDigital Transmitter Board

Synthesizer Transmitter Board

Receiver

Control

RFUpconverter

IF Local Oscillator

I/Q Modulator

IF

Local Oscillator Signal

Figure 27: Transmitter Block Diagram

10.2 Transmitter FunctionsThe transmitter contains the following functional blocks:

Carrier Unit control

Power control and alarms

Display

GMSK Modulator

I/Q Modulator

Upconverter

Power Amplifier

Power coupling and detection

Transmitter Frequency Synthesizer.

The following sections describe the functional blocks.

3BK 21248 AAAA TQZZA Ed.03 127 / 288

Page 128: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.2.1 Carrier Unit Control

The Carrier Unit Control block:

Supervises the transmitter and receiver

Generates clocks and programs the transmitter and receiver synthesizers.

The block also monitors the alarm lines of external and internal units. Ittranslates any alarms to error codes for the Station Unit and front panel display.

The main functions are summarized below:

Communication with the Station Unit via the DCL2

Selecting the clocks from the redundant clock buses

Generating the Carrier Unit internal timing for the transmitter and receiver

Selecting the FHI link

Controlling the transmitter and receiver frequency synthesizers (set under

Station Unit control)

Providing the Display Interface with the channel number, alarm code andinitialization states

Booting and supervising the Power Control and Alarms DSP

Assembling status information and transmitting it to the receiver

Receiving the transmit data stream from the FHU

Buffering and transmitting up to two receive data streams (preprocessed

I, Q samples) from the receiver

Testing the hardware at the FHI Link

Supervising and collecting alarms of the Carrier Unit and reporting themto the Station Unit.

The TEGM differs from the TXGM in timing generation. It uses time-advancedtransmission to compensate for the long Air Interface delay in extended cells.

128 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 129: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.2.2 Power Control and Alarms

The Power Control and Alarms block provides digital control of the pulsedPower Amplifier. This guarantees the GSM specified spectrum, output powerand envelope.

The Power Control and Alarms DSP performs the following additional functions:

Carrier Unit control communication

Transmit data stream processing

Alarm processing.

The following information is received from the Power Amplifier TransmitterBoard:

Forward power measurement

Reverse power measurement

Temperature.

Alarms are raised if the reflected power is too high, or if the temperaturebecomes too high.

10.2.3 Display

The front panel display shows transmitter states during the initializationphase. Once the transmitter is operational, the channel number and alarmcode are shown.

10.2.4 GMSK Modulator

The GMSK Modulator converts the digital transmit data stream into twobaseband signals, I and Q.

This is achieved by differentially encoding the input, and generating an addresswhich points to sine and cosine values in an EPROM. The digital values areconverted to analog signals, amplified and filtered to form the baseband signals.

10.2.5 I/Q Modulator

The I/Q Modulation block translates the baseband signal to the IF. It splits the IFlocal oscillator signal into two 90 o phase-shifted components. These are mixedwith the I and Q baseband signals.

10.2.6 Upconverter

The Upconverter translates the IF signal to the Downlink RF frequency.

The I/Q Modulator and Upconverter effectively phase modulate the RF carrierwith the baseband signals, while ensuring that the RF amplitude remainsconstant.

3BK 21248 AAAA TQZZA Ed.03 129 / 288

Page 130: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.2.7 Power Amplifier

The Power Amplifier boosts the RF output from the Upconverter, in severalstages, to the required output power. In the control amplifier stages, attenuatorsused for power regulation are controlled by the Power Control and Alarms block.Also, the Power Amplifier supply voltage is switchable via control lines.

A temperature sensor mounted near the power stage is monitored by the PowerControl and Alarms block. If the temperature exceeds 75 o C, a Temperature BAlarm is displayed on the front panel and an alarm is raised at the Station Unit.If the temperature exceeds 80 o C the amplifier is powered down, a TemperatureA Alarm is displayed, and a further alarm is raised at the Station Unit.

10.2.8 Power Coupling and Detection

The Power Coupling and Detection block contains a directional coupler forpower measurements. It also contains a circulator for deflecting any reflectedpower, to a termination, if the output connector is disconnected.

Forward and reverse power is measured and reported to the Power Controland Alarms block.

10.2.9 Transmitter Frequency Synthesizer

The Transmitter Frequency Synthesizer supplies local oscillator signals to theI/Q Modulator and Upconverter. The frequency of the local Upconverter signalis produced by a Voltage Controlled Oscillator. This is locked to the 13 MHzreference clock from the Station Unit. Frequency programming is supervisedby the Carrier Unit Control block. The actual frequency to be synthesized isdecided by the Station Unit.

If the Frequency Generator is faulty, an alarm signal is generated and theappropriate alarm code is displayed on the front panel.

130 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 131: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.3 O&MThis section describes the O&M functions of the Transmitter.

The following information is provided:

Display States

Replacement

Power Supply.

10.3.1 Display States

The front panel display states during initialization for the transmitter are shownin the following table.

Display Description

-0- Disable Carrier Unit Control module

888 Test display

-1- Display test successful

-2- RAM test

-3- Initialization of the PSD ports

L0- Reset LCA

L1- Clear contents of LCA

L2- Downloading the LCA configuration

L3- Ready with downloading the LCA

L4- Test if downloading was successful by the D/P bit

-4- Start the Carrier Unit Control module

-5- Reading the Carrier Unit interface

-6- Reset the clock alarms

P0- Reset the Power Control and Alarms processor (if minimumone clock link available)

P1- Booting the Power Control and Alarms processor (if minimumone clock link available)

- Successful initialization

Table 39: Transmitter Display States During Initialization

3BK 21248 AAAA TQZZA Ed.03 131 / 288

Page 132: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.3.2 Fatal Error

If a fatal error occurs during initialization the channel number segments displaythe moving message ’—HELP—’. The error codes displayed in this messageare listed in the following table.

Display Description

1 RAM error

2 LCA configuration error

Table 40: Transmitter Initialization Fatal Error Display

After successful initialization, the transmitter waits for configuration data. Inthis state the channel number segments display a dash, and the alarm codesegment shows the alarm codes 3, 8 and a dash.

10.3.3 DCL2 Error

If any DCL2 error is detected in a message to the transmitter, the error type isshown, as listed in the following table.

ChannelSegments Alarm Code Segment Description

-E- 1 Q1-relay faulty

-E- 2 Invalid message

Table 41: DCL2 Error Code

The transmit power is indicated by a dash (transmit power OFF) and a blank(transmit power ON) at the alarm code segment.

132 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 133: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.3.4 Alarm Codes

The Alarm Codes displayed during normal operation are listed in the followingtable.

AlarmCode Description

0 FHI Link Alarm

Fault at one or both FHI links

1 Receiver Self-test Alarm

Fault at Receiver - or Diversity processor

2 Receiver Alarm

Wrong operation point of the LNA

Fault at the high gain path.

Power difference between I and Q-path >20 dB.

3 Receiver-Synthesizer Alarm.

One or both Receiver synthesizers not locked.

4 VSWR Alarm.

Reflected RF power is too high, VSWR = 2.5 - 4.0.

5 Transmitter Power Alarm.

RF output power has dropped by >3 dB.

6 Temperature Alarm B.

Transmitter temperature >75 o C.

7 Temperature Alarm A.

Transmitter temperature >80 o C. The RF power is switchedOFF automatically.

8 Transmitter-Synthesizer Alarm.

The synthesizer of the transmitter is not locked. The RF poweris switched OFF automatically.

9 Clock alarm.

One or more clock signals are missing.

- No alarm, RF power OFF.

blank No alarm, RF power ON.

Table 42: Normal Operation Alarm Display

3BK 21248 AAAA TQZZA Ed.03 133 / 288

Page 134: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.3.5 Replacement

Removal and insertion of the transmitter, while power is present on thebackplane, can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the transmitter is not permitted.

10.3.6 Power Supply

Power is supplied to the transmitter via the backplane connectors:

+5 VDC

+12 VDC

-12 VDC

+26 VDC.

10.3.7 Output Power

The output powers of the transmitters are listed in the following table.

Variant Maximum Output (dBm)

TXDH 25 W 44.0 dBm

TXGM 30 W 44.8 dBm

TEGM 30 W 44.8 dBm

TXGH 50 W 47.0 dBm

Table 43: Transmitter Output Powers

Each transmitter has power control in 15 stages of 2 dB.

134 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 135: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.4 Physical DescriptionThe transmitters are enclosed in a metal box conforming to the standard19" rack dimensions.

The following sections describe the physical details of the transmitter variants:

Dimensions

Front Panel

Output Connector

Rear View.

10.4.1 Dimensions

The following table shows the physical dimensions of the transmitters.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: TXGM/TEGM: 12 T 60.9 mm

TXDH/TXGH: 17 T 86.4 mm

Depth: - 285.0 mm

Table 44: Transmitter Physical Dimensions

3BK 21248 AAAA TQZZA Ed.03 135 / 288

Page 136: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.4.2 Front Panel

The Transmitter front panel is shown in the following figure. It includes anoutput connector and status display.

Fixing Holes

ALARM CODE TABLE0 FHI Link Test1 RX Self−test2 RX

RX Synthesizer4 VSWR5 TX Power6 Temperature B7 Temperature A8 TX Synthesizer

Clock9

Alarm Code

Channel

Fixing Holes

Display

HandleEquipment Labels

TX RF Output Connector

3

Figure 28: Transmitter Front Panel

10.4.3 Output Connector

The RF signal is output via an N-Type, female, 50 Ohm connector mountedon the front panel.

136 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 137: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

10.4.4 Rear View

The rear view of the transmitter is shown in the following figure. It includesthe rear connector.

Rear Connector

Cooling Fins

1

32

c b

Fixing Holes

Fixing Holes

a

Figure 29: Transmitter Rear View

3BK 21248 AAAA TQZZA Ed.03 137 / 288

Page 138: 212480000e03.pdf DRFU BTS

10 TXDH/TXGH/TXGM/TEGM

138 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 139: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11 RXDD/RXGD

This chapter provides a detailed description of the Receivers.

3BK 21248 AAAA TQZZA Ed.03 139 / 288

Page 140: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.1 IntroductionThe Receiver is part of the BTS Carrier Unit module. Two identical sets ofanalog circuitry provide the diversity paths required.

The antenna(s) receive RF signals from all Mobile Stations transmitting onthe uplink channels. These signals are fed to the Receiver via the RFE. Thereceived signal contains channels, which contain digital data encoded usingGMSK modulation. Eight Mobile Stations can share one channel on a timedivision basis.

The Receiver converts the input from one of these channels into a digitalrepresentation of the signal. The particular channel selected for conversiondepends on instructions received from the Station Unit. The Receiver outputsthis digital representation to the Frame Unit via buffers. In the Frame Unitdemodulation and extraction of the required data is carried out for subsequenttransmission over the Public Land Mobile Network.

11.1.1 Variants

Two types of receiver are used depending on the system type:

RXDD for GSM 1800 networks

RXDG for GSM 900 networks.

11.1.2 Functions

The Receiver functions can be summarized as:

Downconversion of the RF signal

Amplification of the signal

Analog-Digital conversion

Digital preprocessing

Output to Frame Unit.

Two identical sets of analog circuitry provide diversity paths.

140 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 141: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.1.3 Functional Boards

The Receiver contains the following functional boards:

ARXE

Digital Board

SRXE

ARXE

Analog Board 1

SRXE

Frequency Synthesizer Board

ARXE

Analog Board 2 Diversity

+12 V−12 V+5 V

STATSTATCLK

ILDSLCKOBCKPP+OBCKPP−

SYNDATASYNCLKSYNAXENREFOUT+

LO1 LO2

LO1 LO2

RXALDIVALRXSYNALPREAL

Diversity Configuration

RF Input Diversity

RF Input

Transmitter

Digital Board

DRX

RXDATA

+12 V−12 V

I (H)

I (L)Q (H)Q (L)

RXAL

+12 V

3−wire Bus

REFCLK

RXSYNAL

+12 V−12 V

I (H)I (L)Q (H)Q (L)

DIVAL

Figure 30: Receiver Block Diagram

3BK 21248 AAAA TQZZA Ed.03 141 / 288

Page 142: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.2 ARXE FunctionsThe ARXE downconverts the RF signal using a fixed IF, and extracts the GMSKmodulated signal. This is then split into I and Q demodulated high and low gainanalog signals. The Receiver contains two of these boards.

The RF signal from the RFE is fed to a low noise amplifier. This is followedby a bandpass filter to suppress interference from outside the GSM 900 andGSM 1800 frequency ranges.

The RF signal is mixed with the local oscillator signal LO1. The requiredchannel is thereby converted into a 199 MHz IF signal. Further filtering iscarried out to suppress interference from adjacent channels.

11.2.1 Signal Paths

In order to cope with widely varying signal strengths, the signal is split into twopaths, which go through different, fixed-amplification stages.

The two signal paths are split again into I and Q components, the Q path beinga 90 degree phase shift of the I path. The 199 MHz carrier is removed bymixing with the local oscillator LO2 signal, leaving just the GMSK encodedsignals which are forwarded to the Digital Board.

11.2.2 Alarm

If there is a fault with the input signal, an alarm RXAL (for the first/non-diversityinput), or DIVAL (for the second input), is raised. The alarms are forwardedto the Station Unit.

11.3 Digital Board FunctionsThe Digital Board carries out A-D conversion on the two signal paths. It selectseither the high or low gain path depending on the signal strength. The digitaldata is processed and output to buffers located in the transmitter submodule,which forward the data to the Frame Unit.

11.3.1 DSP

A DSP controls all data transfer and data manipulation on the Digital Board.The software is stored on an EEPROM. A Watchdog circuit is responsible formonitoring the state of the system (including the power supplies), and resettingthe DSP if an error occurs.

11.3.2 A-D Converters

Fast 12-bit A-D converters produce a digital representation of the two sets of Iand Q signals from the ARXE. For each time slot, the eight most significantbits of these samples are forwarded to the Frame Unit for demodulation andfurther processing. This conversion process, combined with the high/lowgain signal path selection, allows the received signal strengths to be within avery high dynamic range.

For the non-diversity configuration, a jumper has to be plugged in the DigitalBoard. In this configuration, the incoming RF signal is duplicated on bothdiversity outputs.

142 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 143: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.4 SRXE Board FunctionsThe SRXE provides the IF and RF signals for the ARXE, as determined bythe Station Unit.

11.4.1 Frequencies

Programmable Phase-Locked Loops generate the required frequencies:

LO1A sine wave programmable to the GSM 900 or GSM 1800 uplink frequencychannels, minus 199 MHz. The precise value is controlled by the OMU anddetermines which channel is to be received.

LO2A sine wave fixed at 199 MHz, providing a reference IF signal.

11.4.2 Alarm

If an oscillator fault occurs, an alarm signal is generated which is forwarded tothe OMU.

A splitter on the LO1 and LO2 signals provides separate outputs for each ofthe diversity pair of ARXEs.

11.5 O&MThis section describes the O&M functions of the Receiver.

The following information is provided:

Replacement

Power supply.

11.5.1 Replacement

Removal and insertion of the Receiver, while power is present on thebackplane, can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the Receiver is not permitted.

11.5.2 Power Supply

Power is supplied to the Receiver via the backplane connector:

+5 VDC, 0.2 A

+12 VDC, 1 A

+12 VDC, 1.2 A

-12 VDC, 0.3 A

3BK 21248 AAAA TQZZA Ed.03 143 / 288

Page 144: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.6 Physical DescriptionThe Receiver is enclosed in a metal box conforming to the standard 19" rackdimensions.

The following sections describe the physical details of the Receiver:

Dimensions

Front Panel

RF Connectors

Rear View.

11.6.1 Dimensions

The following table shows the physical dimensions of the Receiver.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 6 T 30.5 mm

Depth: - 285 mm

Table 45: Receiver Physical Dimensions

144 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 145: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.6.2 Front Panel

The following figure shows the Receiver front panel. It includes the RF inputconnectors.

Fixing Hole

Fixing Hole

Handle

Handle

Equipment Labels

RF Input to Analog Board Diversity

DIV IN

RF Input to Analog Board

IN

Figure 31: Receiver Front Panel

11.6.3 RF Connectors

Two RF-input connectors are provided on the front panel, SMA female 50 Ohm.

3BK 21248 AAAA TQZZA Ed.03 145 / 288

Page 146: 212480000e03.pdf DRFU BTS

11 RXDD/RXGD

11.6.4 Rear View

The following figure shows the Receiver rear view. It includes the connectorwhich plugs into the backplane of the subrack.

Rear Connector

c b a 1

Fixing Hole

Fixing Hole

Figure 32: Receiver Rear View

146 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 147: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12 FED8/FEG2/FEG8

This chapter provides a detailed description of the RFE.

3BK 21248 AAAA TQZZA Ed.03 147 / 288

Page 148: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.1 IntroductionThe RFE (Receiver Front End) provides the uplink coupling between the BTSantenna and receivers. The type of RFE depends on the network type (GSM900 or GSM 1800), and the number of receivers in the BTS. When antennadiversity is used, two identical RFEs are used.

The RFE is designed for plug-in installation into a subrack. Its main purpose isto filter and amplify the signal from the receive antenna before distributing it toeach receiver. A test input is provided for RF loopback tests.

12.1.1 RFE Variants

Depending on system type and configuration requirements, one of the followingRFE types can be used. In addition, a number of functionally identicaltype-variants are available, from two different manufacturers.

12.1.2 GSM 900 RFEs

There are GSM 900 RFEs for two-carrier and eight-carrier BTSs. The followingFEG2 variants are available:

3BK 01841 AAAA (Forem)

3BK 01841 AABA (Celwave).

There are also two FEG8 variants available:

3BK 01842 AAAA (Forem)

3BK 01842 AABA (Celwave).

12.1.3 GSM 1800 RFEs

There is one FED8 variant for GSM 1800 RFE. The 3BK 01845 ABAA (Micom)is used for BTSs of between one and eight-carriers.

RF Input

RF Bandpass Filter

Status

AMP1 AMP2

Controller LEDs

Control Signal

Alarm Signals

Station Unit+5 VDC +12 VDC

RF

1

8

Power Splitter

OutputtoReceivers

StepAttenuator

AMP Amplifier

Status

Directional Coupler

Test Interface

Figure 33: FED8 Block Diagram

148 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 149: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

RF Input

Test Interface

Directional Coupler

RF Bandpass Filter

Amplifier Module

Control Status

LNA1

LNA2

Controller LEDs

Control Signals

Alarm Signals

Station Unit+5 VDC +12 VDC

RF

1

n

Power Splitter

OutputtoReceivers

n = 2 for FEG2n = 8 for FEG8

LNA Low Noise Amplifier

Figure 34: FEG2 and FEG8 Block Diagram

12.2 RFE FunctionsThe RFE includes the following functional blocks:

RF Bandpass Filter

Directional Coupler and Test Interface

Amplifier Module

Power Splitter

Controller.

12.2.1 RF Bandpass Filter

In the FEG2 and the FEG8, the input signal is fed into the RF Bandpass Filterbefore being passed to the amplifier module via the directional coupler. In theFED8 the input signal also passes through a step attenuator.

The RF Bandpass Filter is a multistage type with low insertion loss in thepass-band and steep roll-off.

The filter only passes frequencies in the GSM 900 or GSM 1800 receive bands.This minimizes the effects of signals transmitted by the BTS, harmonics of thetransmitted and received signals, and any other noise.

12.2.2 Directional Coupler and Test Interface

FEG2/FED8/FEG8 The Directional Coupler mixes the RTE output and receivedRF signal without any interruption to either signal path.

The test input enables loop-testing of the transmission and reception equipment.

3BK 21248 AAAA TQZZA Ed.03 149 / 288

Page 150: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.2.3 Step Attenuator

FED8 only The step attenuator can be adjusted in 3 dB steps using a DIPswitch mounted inside the FED8. The step attenuator compensates for differentantenna cable lengths.

12.2.4 Amplifier Module

12.2.4.1 FEG2/FEG8 onlyThe Amplifier Module amplifies the signal. Two Low Noise Amplifiers are used.They are configured as a dual-redundant pair under control of the controllerblock (one LNA remains on hot standby while the other is operational).

The incoming RF signal passes through the input relay to the operational LNA.This boosts the signal which is then fed through the output relay to the powersplitter for subsequent distribution.

Each LNA is supervised by a power supply current monitor which produces astatus signal that is fed to the controller.

12.2.4.2 FED8 onlyThere are two amplifiers with a step attenuator between them. Each amplifier iscomposed of two LNAs in a balanced configuration for better performance andreliability. The overall gain is adjusted with the attenuator. The incoming signalsare amplified and fed to the power splitter for further distribution.

Each LNA is supervised by a power supply current monitor which produces astatus signal that is fed to the controller.

12.2.5 Power Splitter

The Power Splitter divides the amplified RF signal to produce separate signalsthat are fed to the individual receiver inputs.

In the FEG2, the received RF signal is split into two separate receiver signalsand in the FEG8/FED8 the signal is split eight ways.

12.2.6 Controller

The Controller operates under the supervision of the Station Unit, via a duplexcontrol link. It processes Station Unit control commands. For the FEG2 andFEG8, it also generates control signals to switch the LNA relays.

12.2.6.1 Operational Modes (FEG2/FEG8 only)The RFE can operate in two different modes (the selection of which is underStation Unit control):

Automatic ModeThe controller monitors the power consumption of each LNA. If theoperational LNA fails, switchover to the standby LNA is performedautomatically.

Controlled ModeOne LNA is selected by the Station Unit, depending on the status of theLNA control lines.

When the Station Unit requests a change from controlled mode to automaticmode, the LNA currently in operation remains selected.

150 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 151: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.2.6.2 Alarm SignalsThe alarm signals are fed to the Station Unit via optocouplers in the controller.The following table defines the alarm signals generated by the controller.

Alarm Signal Definition

AMP-DEFECT Generated when either LNA is faulty.

In the FEG2/FEG8, this is raised if a relay is faulty. (That is, the relay positions donot allow the proper operation of one LNA, or if the LNA selected by the relays is notthat requested by the incoming LNA control signals.)

REL-DEFECT

In the FED8, this is a dummy signal that is switched on when the ALARM-CONTROLsignal is received. It simulates an alarm function that is checked by the software.

SYST-DEFECT Indicates total failure. It is generated when neither of the two amplifier branchesare functional.

Table 46: RFE Alarm Signals

12.2.6.3 Control SignalsThe following table defines the control signals received by the controller.

Control Signal Definition

ALARM-CONTROL Inverts the outgoing alarm signals and LEDs, allowing the external alarmcircuitry to be checked (by the controller). The results of the test are sent tothe Station Unit.

LNACTL1 and LNACTL2 In the FEG2/FEG8, this selects the operational mode of the controller.

Table 47: RFE Control Signals

12.3 Antenna Diversity ConfigurationAntenna diversity configurations require two identical RFEs to be used together.The second is positioned beneath the first; the first always being the master,the second the slave.

Alarm lines in the diversity configuration are combined by subrack backplaneconnections. The SYST-DEFECT output signal indicates that SYST-1-DEFECT(master) and SYST-2-DEFECT (slave) alarms are active. The two other alarmoutputs produced indicate a fault on either RFE; their individual status can bedetermined only by examination of the LED indicators.

12.3.1 FEG2/FEG8 only

The three incoming command lines (LNACTL1, LNACTL, ALARM-CONTROL)are used for both submodules.

12.3.2 FED8 only

The incoming command line ALARM-CONTROL is used for both submodules.

3BK 21248 AAAA TQZZA Ed.03 151 / 288

Page 152: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.4 O&MThis section describes the O&M functions of the RFEs.

The following information is provided:

LEDs

Power Supply

Performance Characteristics.

12.4.1 LEDs

The following table lists the status LEDs located on the front panel.

LED Description

DC1 +12 VDC power supply present

DC2 +5 VDC power supply present

AMP Faulty LNA

REL Faulty Relay

SYST Fatal system fault

Table 48: RFE Status LEDs

12.4.2 Power Supply

The RFE has the following power requirements:

-12 VDC +/- 3 % (0.5 A max)

+5 VDC +/- 3 % (0.1 A max).

12.4.3 Performance Characteristics

The following table lists the electrical performance characteristics of the RFE.The characteristics for all variants are identical except where stated.

Parameter GSM 900 GSM 1800

Operating frequency range (MHz): 880 - 915 1710 - 1785

(+50 o C): 4.5 dB max -Noise figure

(+70 o C): 5.0 dB max -

0 dB - 3.3 dB max (+50 o C)

3.6 dB max (+70 o C)

Noise figurefor attenuatorsetting(FED8): 1, 2, 3 dB - 3.8 dB max

152 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 153: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

Parameter GSM 900 GSM 1800

(-10 o C/+70 o C): 12.5 dB +/- 2 dB 12.7 dB +/- 2 dBFE x 2 gainbetweenoutput andinput

(+10 o C/+50 o C): 12.5 dB +/- 1 dB 12.7 dB +/- 1 dB

(-10 o C/+70 o C): 12.8 dB +/- 2 dB -FE x 8 gainbetweenoutput andinput:

(+10 o C/+50 o C): 12.8 dB +/- 1 dB -

0 dB - 15.5 - 18.0 dB (-10 o C/+70 o C)

16.0 - 17.5 dB (+10 o C/+70 o C)

1 dB - 1 dB +/- 0.1 dB less than the 0dB setting value

2 dB - 2 dB +/- 0.1 dB less than the 0dB setting value

Gain betweeninput andoutput forattenuatorsetting(FED8):

3 dB - 3 dB +/- 0.1 dB less than the 0dB setting value

1 dB input gain compression point: - [ge ] -13 dBm (1710 - 1785 MHz)

Interference level at which signaldesensitization is < 1 dB:

> 8 dBm (0.1 - 870 MHz)

> -13 dBm (870 - 925 MHz)

> 30 dBm (925 - 960 MHz)

> 8 dBm (960 - 12750 MHz)

> 0 dBm (0.1 - 1690 MHz)

> -23 dBm (1690 - 1805 MHz)

> 0 dBm (1.805 - 12.75 GHz)

Intermodulation attenuation: > 70 dB / -43 dBm interferencelevel

> 70 dB / -47 dBm interferencelevel

> 50 dB (0.1 - 816 MHz) > 80 dB (0.1 - 1400 MHz)

> 20 dB (816 - 870 MHz) > 50 dB (1.400 - 1.686 GHz)(FED8)

> 46 dB (925 - 3000 MHz) > 60 dB (1.805 - 3.0 GHz)

Attenuation relative to passband:

> 30 dB (3 - 12.75 GHz) > 30 dB (3.0 - 12.75 GHz)

Isolation between two outputs: > 25 dB > 25 dB

Input/output VSWR: < 1.5 / 50 Ohm < 1.5 / 50 Ohm

Isolation between output and input: > 30 dB > 30 dB

Test loop coupler coupling betweenTEST connector and output port:

29.0 dB +/- 2 dB (FEG8)

29.2 dB +/- 2 dB (FEG2)

28.4 dB +/- 2 dB (FED8)

Test loop coupler isolation betweenTEST connector and input port:

> 47 dB min > 42 dB min (FED8)

3BK 21248 AAAA TQZZA Ed.03 153 / 288

Page 154: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

Parameter GSM 900 GSM 1800

Controller input via 180 Ohm resistor: Imax 20 mA Imax 20 mA

Controller output: Imax 10 mA

VCE = 0.4 V

VCEO = 30 V

Imax 10 mA

VCE = 0.4 V

VCEO = 30 V

Table 49: RFE Performance Characteristics

12.5 Physical DescriptionThe RFE is a box assembly incorporating electromagnetic shielding wherenecessary. The front panel is drilled for rack mounting. The assembly isalso supported at each side by guides located in the subrack. This sectiondescribes the physical details of the RFE.

It contains the following information:

Dimensions

Front Panels

Front Panel Connectors

Rear View.

12.5.1 Dimensions

The physical dimensions of the RFE are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 3 U 129.0 mm

Width: 10 T 49.8 mm

Depth: - 280.0 mm

Table 50: RFE Physical Dimensions

154 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 155: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.5.2 Front Panels

12.5.2.1 FEG2 Front PanelThe following figure shows front panels of the FEG2 variants. These includethe RF connectors, LED indicators and a handle to allow simple insertion andremoval. An equipment label identifies each variant.

1

2

ANT

DC1 DC2

AMP

SYST REL

TEST

Fixing Hole

Equipment Labels

RF Output Connector 1

LED Indicators

Test Connector

Handle

Fixing Hole

1

2

ANT

DC2

SYSTREL

TEST

AMP

RF Output Connector 2

RF Input Connector (ANT)

3BK 01841 AAAA (Forem GSM) 3BK 01841 AABA (Celwave GSM)

DC1

Figure 35: FEG2 Front Panels

3BK 21248 AAAA TQZZA Ed.03 155 / 288

Page 156: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.5.2.2 FEG8 Front PanelThe FEG8 front panels (both variants) are shown in the following figure. Theseincludes the LED indications, the RF connections and a handle to allow simpleinsertion and removal. An equipment label identifies each variant.

1

2

ANT

AMP

SYST REL

TEST

Fixing Hole

Equipment Labels

RF Output Connector 1

LED Indicators

Test Connector

Handle

Fixing Hole

1

2

ANTDC1 DC2

SYSTREL

TEST

AMP

RF Output Connector 2

RF Input Connector (ANT)

3

4

3

4

5

6

7

8

5

6

7

8

3BK 01842 AAAA (Forem GSM) 3BK 01842 AABA (Celwave GSM)

Figure 36: FEG8 Front Panel

156 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 157: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.5.2.3 FED8 Front PanelThe figure below shows the FED8 front panel. It includes the RF connectors,the LED indicators, an equipment label and a handle for easy removal andinsertion.

1

2

ANT

DC1

DC2

AMP

SYST

REL

TEST

3

4

5

6

7

8

3BK 01845 ABAA (Micom DCS)

Test Connector

Fixing HoleEquipment Labels

RF Output Connector 1/5

LED Indicators

Handle

Fixing Hole

RF OutputConnector 2/6

RF Input Connector (ANT)

RF OutputConnector 3/7

RF OutputConnector 4/8

Figure 37: FED8 Front Panel

12.5.3 Front Panel Connectors

Each front panel contains the following RF connectors:

One antenna input connector, N-type female

Two (FEG2) or eight (FEG8/FED8) receiver output connectors, SMA-type

female

One RTE test connector, also SMA-type female.

3BK 21248 AAAA TQZZA Ed.03 157 / 288

Page 158: 212480000e03.pdf DRFU BTS

12 FED8/FEG2/FEG8

12.5.4 Rear View

The following figure shows the rear view (common to all variants). It includes aconnector for the power supply, control and alarm lines.

Rear Connector

Fixing Hole

Fixing Hole

Pin 1, Row A

Figure 38: RFE Rear View

158 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 159: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13 TMAD/RMCD/TMAG/RMCG

This chapter provides a detailed description of the Antenna Pre-Amplifier.

3BK 21248 AAAA TQZZA Ed.03 159 / 288

Page 160: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.1 IntroductionThe antenna pre-amplifier units operate within the GSM 900 or GSM 1800uplink bands. Two sets are required for antenna diversity. Each set consistsof two main units as shown in the following table.

Variant Contents

TMAGGSM 900

RMCG

TMADGSM 1800

RMCD

Table 51: Antenna Pre-amplifier Sets

The TMAD/TMAG provides the initial gain and is housed in a small casinglocated at the base of the antenna. The RF input connects directly to theantenna and its output connects to the Receiver Multicoupler via the LongRF cable.

The RMCD/RMCG is located in the BTS cabinet, replacing the usual ReceiverFront-End. It further amplifies the RF signal to a fixed overall gain and monitorsfor faults. An output splitter feeds the amplified RF to the receiver(s).

Note: References to the GSM 900 submodules also include the GSM 1800submodules, unless otherwise stated.

Logical Position The figure below shows the logical positionning of theantenna pre-amplifier.

TMAG/ TMAD

RMCG/ RMCD

Antenna

Receivers

Long RF Cable

Tower

BTS

Figure 39: Antenna Pre-amplifier Logical Positioning

160 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 161: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.2 TMAD/TMAG FunctionsThe Tower Mounted Amplifier is connected directly to the antenna and providesthe following features:

Fault tolerant, low noise amplification of the received RF signal

Pilot tone injection for fault monitoring

DC loop antenna monitoring

Alarm generation for fault conditions.

13.2.1 Functional Blocks

The Tower Mounted Amplifier contains the following functional blocks:

Band Pass Filter

Coupler

Pilot Tone Generator

Pilot Tone Detector

Low Noise Amplifier

Remote DC Feed T-junction

DC/DC Converter

Overvoltage Protector

Control Board.

BandPassFilter

Coupler

PilotTone

Detector

Low Noise

Amplifier

Remote DC Feed T−Junction

Overvoltage Protector

DC/DC Converter

Control Board

Tone Detect

Pilot Tone Control

DC Loop

Signalling to RMCD (Alarms)

Power Supply+8 V +4 V

RMCG/ RMCDReceive

Antenna

PilotTone

Generator

Figure 40: Tower Mounted Amplifier Block Diagram

3BK 21248 AAAA TQZZA Ed.03 161 / 288

Page 162: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.2.2 Band Pass Filter

The Band Pass Filter rejects all frequencies outside the GSM 900 or GSM 1800receive bands. In order to monitor the antenna cable, this block also connectsa DC loop current from the Control Board to the antenna and passes thereturned DC signal back. Depending on antenna type, the loss of the returnsignal can suggest a fault.

13.2.3 Coupler

The coupler provides a passive mechanism for adding and monitoring the pilottone on the RF signal path.

13.2.4 Pilot Tone Generator

A pilot tone is injected into the RF signal at the first coupler. This test signalis used for fault monitoring of the Tower Mounted Amplifier and cable by theReceiver Multicoupler, and signal level measurement during installation.

13.2.5 Pilot Tone Detector

The Tower Mounted Amplifier directly monitors the pilot tone and raises analarm in its absence. This allows a pilot tone generator fault to be distinguishedfrom other Tower Mounted Amplifier, cable or Receiver Multicoupler failures.

13.2.6 Low Noise Amplifier

The LNA provides pre-cable RF amplification. Fault tolerance is realized in thegain section using two balanced amplifiers each operating with opposing phaseshifts. Their outputs are summed. Therefore, the failure of a single amplifierdoes not result in total failure, just a gain degradation of about 6 dB and anincrease in noise of 3 dB. The TMAG includes a switchable attenuator toremove the effect of the gain reduction.

13.2.7 Remote DC Feed T-Junction

The Tower Mounted Amplifier is powered by a DC feed on the RF cablefrom the Receiver Multicoupler. Power is extracted using a T-junction withan RF-decoupled DC port.

13.2.8 DC/DC Converter

Using power extracted by the Remote DC Feed T-Junction, the DC/DCConverter provides power at the voltages required by the Tower MountedAmplifier circuits.

13.2.9 Overvoltage Protector

Protection circuitry secures the Tower Mounted Amplifier against lightningdamage.

162 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 163: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.2.10 Control Board

The control board monitors the unit’s status and can raise warnings in the eventof pilot tone failure, or DC loop failure.

The Tower Mounted Amplifier signals alarms to the Receiver Multicouplerby adjusting the DC current it draws from the RF cable. Four distinct levelsare used to indicate:

Alarms

Normal operation - no alarms

Pilot tone failure

No DC loop

Both pilot tone and DC loop failure.

The current drawn by the Tower Mounted Amplifier for amplification, etc., isnegligible compared to the difference in current drawn between each alarmstate.

3BK 21248 AAAA TQZZA Ed.03 163 / 288

Page 164: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.3 RMCD/RMCG FunctionsThe Receiver Multicoupler provides the following functions for the antennapre-amplifier:

Variable gain amplification of RF signal

Pilot tone monitoring and fault reporting

Signal splitting

Power supply to Tower Mounted Amplifier.

The Receiver Multicoupler contains the following functional blocks:

Overvoltage/Lightning Protector

Remote DC Feed

Continuously Variable Attenuator

Pilot Tone Detector 1

Test loop

Amplification stages

Pilot Tone Detector 2

One-to-Eight Power Splitter

Couplers

Band Pass Filters

Control Board.

164 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 165: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

Overvoltage/LightningProtection

RemoteDC

Feed

ContinuouslyVariable

Attenuator Coupler

Control Board

1 −> 8 Power Splitter

Band Pass Filter

Pilot Tone Detector 1

Coupler

Band Pass Filter

Balanced LNA

2nd Stage

AmplifierCoupler

Band Pass Filter

Pilot Tone Detector 2

TMAD/TMAG

+12 V

+5 V

Pilot Tone Detect

DC Feed/Alarms

Radio Test Equipment

Receivers

Station Unit

Alarm Test In

Alarms

Pilot Tone Detect

Figure 41: Receiver Multicoupler Block Diagram

13.3.1 Overvoltage/Lightning Protector

An Overvoltage/Lightning Protector provides protection against high voltages,such as those caused by lightning strikes. This protects the ReceiverMulticoupler against damage from high voltage impulses in the RF cable.

13.3.2 Remote DC Feed

The Receiver Multicoupler uses an inductor to feed DC power to the TowerMounted Amplifier via the RF cable.

13.3.3 Continuously Variable Attenuator

A variable attenuator can be adjusted from the front panel to modify the overallgain. During installation the pilot tone is used as a reference signal and theoutput amplitude is adjusted to give a specified overall gain independentof cable attenuation.

13.3.4 Pilot Tone Detector 1

The Receiver Multicoupler measures the amplitude of the incoming pilot tone.If no pilot tone is detected, an alarm is raised to indicate total failure of theTower Mounted Amplifier or cable. If the pilot tone has an amplitude half of thatexpected, an alarm is raised to indicate a partial failure of the Tower MountedAmplifier (i.e., one of the two balanced pairs).

3BK 21248 AAAA TQZZA Ed.03 165 / 288

Page 166: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.3.5 Test Loop

Radio Test Equipment can be connected to the Receiver Multicoupler via a TestLoop Input on the front panel. The signal applied is coupled to the RF channelvia a filter. This suppresses the pilot tone on the test port.

13.3.6 Amplification Stages

Similar to the Tower Mounted Amplifier, the Receiver Multicoupler provides faulttolerance in the gain section using two balanced amplifiers. A final gain stageprovides the outgoing RF signal which is distributed to the receivers.

13.3.7 Pilot Tone Detector 2

The Receiver Multicoupler again measures the amplitude of the pilot tone.Depending on the condition of other alarms, this can indicate partial or totalfailure of the amplification stages.

13.3.8 One-to-Eight Power Splitter

The amplified received RF signal is now split into eight outputs, each of whichcan be connected to the RF input of a receiver.

13.3.9 Couplers

The Couplers provide a passive mechanism for adding and monitoring signalson the RF signal path.

13.3.10 Band Pass Filters

The Band Pass Filters are used to select only particular frequencies from(or for) the RF signal path.

13.3.11 Control Board

The Control Board performs Receiver Multicoupler/Tower Mounted Amplifieralarm filtering and pilot tone monitoring.

Circuitry on the Control Board ensures secondary false alarms are notgenerated as a consequence of a single failure.

The following table lists the three collective alarms generated by the ControlBoard.

Alarm Description

T.DEF Tower Mounted Amplifier faulty but still operative

R.DEF Receiver Multicoupler faulty but still operative

S.DEF Total system failure

Table 52: Antenna Pre-amplifier Alarms

Note: A DIP switch on the side of the Receiver Multicoupler can be set. Thissuppresses false alarms when an antenna is used that has no DC return path.

166 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 167: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.4 O&MThis section describes the O&M functions of the Antenna Pre-Amplifier.

The following information is provided:

LEDs

Power Supply

Performance Characteristics

Special Environmental Conditions.

13.4.1 LEDs

The following table lists the status LEDs located on the RMCD/RMCG frontpanel.

LED Description

DC Power at Receiver Multicoupler.

R.DEF Receiver Multicoupler LNA total failure.

R.DEG Receiver Multicoupler LNA one stage failure.

T.DEF Tower Mounted Amplifier LNA total failure.

T.DEG Tower Mounted Amplifier LNA one stage failure.

PIL Pilot Tone Generator failure.

CTB Power on Control Board.

LOOP No DC loop at antenna (status indication only).

Table 53: RMCD/RMCG Alarm and Status LEDs

LOOP LEDIf an antenna without a DC return path is used, the LOOP LED is permanentlyilluminated.If the antenna has a DC return path, the LED is normally extinguished. In thiscase, the illumination of the LOOP LED indicates a fault at the antenna orthe cable.

3BK 21248 AAAA TQZZA Ed.03 167 / 288

Page 168: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.4.2 Power Supply

The Tower Mounted Amplifier derives its DC power supply from the ReceiverMulticoupler’s +12 VDC supply, via the feed from the RF cable. The unit hashigh immunity against interference in the power supply.

The Receiver Multicoupler is powered via its rear connector:

+12 VDC +/- 3 % (0.6 Amax)

+5 VDC +/- 3 % (0.1 Amax).

13.4.3 Performance Characteristics

The Receiver Multicoupler/Tower Mounted Amplifier performancecharacteristics are shown in the following table.

Parameter GSM 900 GSM 1800

Operating frequency range (MHz): 880 - 915 1710 - 1785

(+50 o C): 5.0 dB max 5.5 dB maxNoise figure

(+70 o C): 5.5 dB max 6.0 dB max

TMAD/TMAG gain (-33 o C/+70 o

C):12.5 dB +/- 2 dB 12.5 dB +/- 2 dB

RMCG/RMCD gain (-10 o C/+70 o

C):12.5 dB +/- 2 dB 12.5 dB +/- 2 dB

> 50 dB (0.1-816 MHz) > 80 dB (0.1-1400 MHz)

> 20 dB (816-870 MHz) > 50 dB (1.400-1.686 GHz)

> 46 dB (925-3000 MHz) > 60 dB (1.805-3.0 GHz)

Attenuation relative to passband:

> 30 dB (3-12.75 GHz) > 30 dB (3.0-12.75 GHz)

Isolation between output and input: > 30 dB > 30 dB

Test loop coupler coupling betweenTEST connector and output port:

29.0 dB +/- 2 dB (FEG8) 29 dB +/- 2 dB

Test loop coupler isolation betweenTEST connector and input port:

> 42 dB > 70 dB

Pilot signal frequency: 700 - 800 MHz +/- 10 MHz 1850 - 1870 MHz

input: -57 dBm max 0.1 MHz -12.75 GHz

-57 dBm max 0.1 MHz - 12.75GHz

output: -15 dBm max -15 dBm max

Pilot signal/ spuriousat

probe input: -30 dBm max -30 dBm max

168 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 169: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

Parameter GSM 900 GSM 1800

Continuously variable attenuator: 6 dB min (continuous) 6 dB min (continuous)

Gain failure attenuator: 6 dB min +/- 0.5 dB in onestep

N/A

Table 54: Receiver Multicoupler/Tower Mounted Amplifier Performance Characteristics

13.4.4 Special Environmental Conditions

The Tower Mounted Amplifier is designed with a high level of protection from allthe adverse environmental conditions it may experience.

It has an extended operating temperature range:

Minimum temperature: -33 o C

Maximum temperature: +70 o C.

EMC protection is afforded by the metal casing and the use of shielded cables.

3BK 21248 AAAA TQZZA Ed.03 169 / 288

Page 170: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.5 TMAD/TMAG Physical DescriptionThe Tower Mounted Amplifier electronics are mounted in a weatherproofdie-cast aluminium housing. This is constructed as an open container with alid. The two parts are clamped together and sealed by a gasket. Air holes inthe box prevent condensation from accumulating. This section describes thephysical details of the Tower Mounted Amplifier.

It provides the following information:

Dimensions and Weight

Front and Side Views

RF Connectors.

13.5.1 Dimensions and Weight

13.5.1.1 DimensionsThe physical dimensions of the Tower Mounted Amplifier are shown in thefollowing table.

Dimension Size

Height: 259 mm

Width: 153 mm

Depth: 129 mm

Table 55: Tower Mounted Amplifier Physical Dimensions

13.5.1.2 WeightThe Tower Mounted Amplifier weighs approximately 5 kg.

170 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 171: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.5.2 Front and Side Views

The following figure shows the front and side views of the Tower MountedAmplifier.

Air Holes

Input (Antenna) Output (Long RF−Cable)

Circuitry

Equipment Labels

RF Connectors

Side View Front View (lid removed)

Ground Connector

Figure 42: Tower Mounted Amplifier Front and Side Views

13.5.3 RF Connectors

The RF connectors for attaching the antenna and output cables protrude fromthe bottom of the casing by 16 mm.

Both input and output RF connectors on the Tower Mounted Amplifier are 7/16female and sealed to the casing with conductive O-rings:

N female for RF input

SMA female for 1 to 8 splitter outputs

SMA female for test loop input.

3BK 21248 AAAA TQZZA Ed.03 171 / 288

Page 172: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.6 RMCD/RMCG Physical DescriptionThe Receiver Multicoupler is a plug-in unit for a 19" subrack. This sectiondescribes the physical details of the Receiver Multicoupler.

It provides the following information:

Dimensions

Front Panel

Rear View.

13.6.1 Dimensions

The following table shows the dimensions of the Receiver Multicoupler.

Dimension Size (Units) Size (mm)

Height: 3 U 133.35 mm

Width: 10 T 50.8 mm

Depth: - 280 mm

Table 56: Receiver Multicoupler Physical Dimensions

172 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 173: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.6.2 Front Panel

The front panel for the Receiver Multicoupler is shown below. It includesthe RF connectors, the alarm and status LEDs, equipment labels and theTest Loop connector.

Equipment Labels

RF Input (from Tower Mounted Amplifier)

Alarm and Status LEDs

Test Loop Input Connector

Fixing Hole

RF Output

Gain

Thumb Tap

TEST

ANT

84

73

62

1 5

DC LOOP

R.DEG

T.DEG

PIL

R.DEF

T.DEF

GAIN

CTB

Adjustment

RF Output

RF Output

RF Output

Fixing Hole

Connectors 1/5

Connectors 2/6

Connectors 3/7

Connectors 4/8

Figure 43: Receiver Multicoupler Front Panel

3BK 21248 AAAA TQZZA Ed.03 173 / 288

Page 174: 212480000e03.pdf DRFU BTS

13 TMAD/RMCD/TMAG/RMCG

13.6.3 Rear View

The following figure shows the rear view of the Receiver Multicoupler. Itincludes its backplane connector.

C B A 1

32

Fixing Hole

Fixing Hole

Figure 44: Receiver Multicoupler Rear View

174 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 175: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

This chapter provides a detailed description of the RTC.

3BK 21248 AAAA TQZZA Ed.03 175 / 288

Page 176: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.1 IntroductionThe RTC (Remotely Tunable Combiner) combines RF signals from up toeight transmitters to a common output for transmission via a single antenna.In addition it provides isolation of incoming RF signals, monitors forward andreflected RF output power (for antenna/cable fault checking), and producesstatus information.

Combination is achieved using single-pole cavity filters, the outputs of whichare coupled together. Each cavity filter is attached to one transmitter and tunedto its particular channel frequency.

RTCs are available from two different manufacturers:

Forem

Celwave.

14.1.1 GSM 900

The following RTC components are available:

The Celwave RTC variants are:

CRBG

CREG.

The Forem RTC variants are:

FRBG

FREG.

The FRBG or CRBG alone allow the combination of up to four channels.Expansion to eight is achieved with the subsequent addition of a FREG orCREG respectively. It is not possible to mix Forem and Celwave components.

14.1.2 GSM 1800

The following RC4D and RC8D components are available:

Celwave

Forem.

The RC4D allows the combination of up to four channels. RC8D replaces theRC4D to combine up to eight carriers.

14.1.3 Logical Position

The following Figure shows the logical positionning of theRTC.

176 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 177: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

Transmitter 1

Transmitter 2

Transmitter n

Remotely Tunable Combiner

Radio Test Equipment

Transmit Antenna

RF

RF

RF

RFRF

n max = 8

Figure 45: RTC Logical Positioning

14.2 RTC Functional BlocksAll the RTC variants have the following functional blocks in common:

BCCH-Carrier Switch

Isolators

Cavity block and cable harness/coupling.

The Forem variants also have the following functional blocks:

Transmit Module

Antenna VSWR Alarm Unit

Microcontrollers

DC/DC Converter.

The Celwave variants also have the following functional blocks:

Transmit Filter

VSWR measurement

Motherboard/Control Board.

The RTC variants have slight differences in design. These are illustrated inthe following figures.

3BK 21248 AAAA TQZZA Ed.03 177 / 288

Page 178: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.2.1 Forem GSM 1800 RTC

The following figure shows a block diagram of the Forem GSM 1800 RTC.

Variable Band Pass Filter

RF Input 1

RF Input 2

BCCH−Carrier Switch

Isolator

Isolator

Variable Band Pass Filter

Transmit Module

Antenna VSWR Alarm Unit

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 3

RF Input n

Isolator

Isolator

DC/DC Converter

Slave Microcontroller(s)* and Tuning Detectors**

Cavity Block & Cable Harness

Radio Test Equipment

Transmit Antenna

Master Microcontroller

Control

Power

Station Unit

DC in

RS−232

DCL2

n = 4 (RC4D) n = 8 (RC8D)

Station Unit

Station Unit

* The RC8D has two slave microcontrollers; one for cavities 1 − 4 and a second for cavities 5 − 8

**One Tuning Detector per two cavities

Figure 46: Forem RC4D/RC8D Block Diagram

178 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 179: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.2.2 Forem GSM RTC

The following figure shows a block diagram of the Forem GSM 900 RTC.

Variable Band Pass Filter

Cavity Block & Cable Harness

RF Input 1

RF Input 2

BCCH−Carrier Switch

Isolator

Isolator

Variable Band Pass Filter

Transmit Module

Antenna VSWR Alarm Unit

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 3

RF Input 4

Isolator

Isolator

Variable Band Pass Filter

RF Input 5

RF Input 6

Isolator

Isolator

Variable Band Pass Filter

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 7

RF Input 8

Isolator

Isolator

DC/DC Converter

Slave Microcontroller and Tuning Detector

Control

Cavity Block & Coupling

Radio Test Equipment

Transmit Antenna

Master Microcontroller

Slave Microcontroller and Tuning Detector

Control

Power

Station Unit

Power

RS−232

DCL2

FRBG

FREG

DC/DC Converter

Figure 47: FRBG/FREG Block Diagram

3BK 21248 AAAA TQZZA Ed.03 179 / 288

Page 180: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.2.3 Celwave GSM RTC

The following figure shows a block diagram of the Celwave GSM 900 RTC.

Variable Band Pass Filter

Cavity Blocks & Coupling

RF Input 1

RF Input 2

BCCH−Carrier Switch

Isolator

Isolator

Variable Band Pass Filter

Transmit Filter

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 3

RF Input 4

Isolator

Isolator

Variable Band Pass Filter

RF Input 5

RF Input 6

Isolator

Isolator

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 7

RF Input 8

Isolator

Isolator

Cavity Blocks & Coupling

Radio Test Equipment

Transmit Antenna

Motherboard

Tuning Detector

Control

Station Unit

Power

RS−232

DCL2

CRBG

CREG

Tuning Detector

Coupling RF Outputs

VSWR Measurement

VSWR Microcontroller, Communication and Tuning Microcontroller, DC/DC Converter Circuitry

Control Board

Variable Band Pass Filter

Figure 48: CRBG/CREG Block Diagram

180 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 181: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.2.4 Celwave GSM 1800 RTC

The following figure shows a block diagram of the Celwave GSM 1800 RTC.

Variable Band Pass Filter

RF Input 1

RF Input 2

BCCH−Carrier Switch

Isolator

Isolator

Variable Band Pass Filter

Transmit Filter

Variable Band Pass Filter

Variable Band Pass Filter

RF Input 3

RF Input n

Isolator

Isolator

Cavity Blocks & Coupling

Radio Test Equipment

Transmit Antenna

Motherboard

Control

Station Unit

DC in

RS−232

DCL2

Tuning Detector(s)*

VSWR Measurement

VSWR Alarm Microcontroller, Communication and Tuning Microcontroller, DC/DC Converter Circuitry

Control Board

*The RC8D has two Tuning Detec tors; one for cavities 1 − 4 and a second for cavities 5 − 8

n = 4 (RC4D) n = 8 (RC8D)

Figure 49: Celwave RC4D/RC8D Block Diagram

3BK 21248 AAAA TQZZA Ed.03 181 / 288

Page 182: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.2.5 BCCH-Carrier Switch

A BCCH-Carrier must be maintained in each cell. The RTC provides carrierbackup using a built-in BCCH-Carrier Switch. This allows a second transmitterto take over the functionality, transmit frequency and RTC cavity of theBCCH-Carrier transmitter if it fails.

Software Compatibility To retain software compatibility with earlier equipment(depending on the software/hardware variants in use), the BCCH-CarrierSwitch is used, rather than changing the frequency of the redundant cavity.

14.2.6 Isolators

Isolators reduce signal intermodulation products between transmitters.

Each Isolator is connected to a power load. This absorbs reflected power forup to one minute if an excessive VSWR condition occurs at the output of theRTC. Even if a short-circuit occurs at the output, damage to the components isavoided - a VSWR alarm shuts-down the transmitters within one minute.

14.2.7 Cavity Block and Cable Harness/Coupling

Each cavity consists of one Band Pass Filter with a stepper motor to adjustthe center frequency.

The dielectric resonator (Forem) or waveguide (Celwave) type single-polecavities enable the connection of many transmitters to one common line. Tuningdetectors allow fine tuning of the cavities to the required channel frequencies.These are used both initially to set the cavity, and subsequently for periodicretuning to compensate for drift.

The Cable Harness/Coupling is a network of coaxial lines. These areelectrically dimensioned to allow the connection of the RF outputs of thecavities to one common point. The harness is kept short to keep losses low.

182 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 183: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.3 Forem RTCThe Forem RTC module consists of the following functional blocks:

Transmit Module

Antenna VSWR Alarm Unit

Microcontrollers and Tuning Detectors

DC/DC Converter.

14.3.1 Transmit Module

The Transmit Module consists of the following parts:

Transmit Filter

Antenna Directional Coupler.

14.3.1.1 Transmit FilterThe Transmit Filter suppresses spurious noise outside the transmit band andreduces transmitted intermodulation in the receive band.

14.3.1.2 Antenna Directional CouplerThe Antenna Directional Coupler samples forward and reflected power at theoutput connector. It does this to measure the return loss of the antenna. Itis also couples some RF power to the RTE to enable BTS baseband andradio path tests.

14.3.2 Antenna VSWR Alarm Unit

The Antenna VSWR Alarm Unit continuously monitors and compares theforward and reflected power at the antenna connection. It uses a detector atthe antenna directional-coupler for this function.

Power is supplied directly by the Station Unit. Therefore, the Antenna VSWRAlarm Unit is independent of the DC/DC Converter.

The following alarms can be generated if the VSWR exceeds pre-set limits:

VSWR0

VSWR1

14.3.2.1 VSWR0VSWR0 is generated in the event of a deterioration in the performance of theantenna or cable. The reflected power threshold can be configured via aselector on the front panel. This allows various types of antenna and cableto be installed.

3BK 21248 AAAA TQZZA Ed.03 183 / 288

Page 184: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.3.2.2 VSWR1VSWR1 is generated when the VSWR is very high.

This indicates a serious deterioration in cable or antenna performance,meaning:

Antenna or cable is broken

RTC may sustain damage due to high output mismatch

Damage to the RTC is possible due to high reflected power.

In the event of this alarm, the RF-transmit power must be removed withinone minute to avoid RTC damage.

14.3.3 Microcontrollers

Two embedded microcontrollers provide the following facilities:

Master Microcontroller

Slave Microcontroller(s) and Tuning Detector(s).

14.3.3.1 Master MicrocontrollerThe Master Microcontroller handles the two communication channels providedfor control and status information reporting:

DCL2 for remote communication with the Station Unit

RS-232 for local communication with the operator.

It is not possible to use both these interfaces at the same time. A switch on thefront panel is used to select between them.

The Master Microcontroller also supervises the Slave Microcontroller.

14.3.3.2 Slave Microcontroller and Tuning DetectorsThe Slave Microcontroller and Tuning Detectors control the cavity tuningstepper motors. Control is based on the requirements provided by the operatorand status information from the tuning detector(s).

An EEPROM is used to hold all status information and ensure that no data islost in the event of a power supply failure.

14.3.4 DC/DC Converter

The DC/DC Converter is used to supply power to all components inside theRTC (except the VSWR Alarm Unit).

Failure of the DC/DC Converter does not result in the failure of the RTC; onlycommunication and retuning are lost.

184 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 185: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.4 Celwave RTCThe Celwave RTC module consists of the following functional blocks:

Transmit Filter

VSWR Measurement

Motherboard/Control Board.

14.4.1 Transmit Filter

The Celwave Transmit Filter performs the same task as the Transmit Filter ofthe Forem Transmit Module.

14.4.2 VSWR Measurement

The Celwave VSWR Measurement block performs the same task as theAntenna Directional Coupler of the Forem Transmit Module.

14.4.3 Motherboard/Control Board

The Motherboard is used to interconnect the Control Board and the variousRTC components.

The Celwave Control Board contains all the electronics required to providethe same control functions already described for the Forem RTCs. Thisincludes DC/DC Converter circuitry, alarm circuitry, tuning motor drivers andcommunication interfaces.

The Control Board contains two microcontrollers:

Communication and Tuning Microcontroller

VSWR Microcontroller.

14.4.3.1 Communication and Tuning MicrocontrollerThe Communication and Tuning Microcontroller handles communication andcavity tuning as performed by the Forem RTC microcontrollers.

14.4.3.2 VSWR MicrocontrollerThe VSWR Microcontroller is used to monitor the VSWR at the RTC output.

3BK 21248 AAAA TQZZA Ed.03 185 / 288

Page 186: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.5 GSM RTC Extension/ModularityThe GSM extension RTCs (FREG and CREG) extend the basic RTCs (FRBGand CRBG) from four to eight cavities. (The Forem and Celwave componentscannot be mixed).

Connection between the basic and extension RTC is achieved using cablessupplied with the extension RTC.

No new software or electronics is required. The new cavities, however,must be initially parked; already installed cavities (in the basic RTC) canremain in position.

14.6 Adjustments and ConfigurationThe following configuration and operational adjustments can be made:

Initial cavity tuning

Operational periodic tuning.

14.6.1 Initial Cavity Tuning

Initial cavity tuning is performed in two stages:

Coarse tuningAfter initial power up, cavities are coarse tuned to center frequencies definedduring initialization at the factory. During coarse tuning, RF power must notbe applied from the transmitters.

Fine tuning.After coarse tuning, RF power can be applied and fine tuning automaticallybegins. The microcontroller uses feedback information from the TuningDetector.

14.6.2 Operational Periodic Tuning

Operational periodic tuning is performed once the RTC is initialized andoperating. This ensures continued accuracy.

186 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 187: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.7 O&MThis section describes the O&M functions of the RTCs.

The following information is provided:

LEDs

Power Supply

Grounding

Performance Characteristics.

14.7.1 LEDs

The following table describes the LEDs on the RTC front panels.

LED Description

Power ON Lit when power is present.

VSWR0 Lit if VSWR exceeds threshold setting on the front panel.

VSWR1 Lit if VSWR is very high.

Table 57: RTC LED Descriptions

14.7.2 Power Supply

The RTC requires an input voltage of -48/-60 VDC (nominal), 1.5 A maximum.

14.7.3 Grounding

Thorough grounding is ensured through the use of a connection between thesubmodule(s) and the cabinet. In addition, all surfaces connected together arecoated with a conductive lacquer.

3BK 21248 AAAA TQZZA Ed.03 187 / 288

Page 188: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.7.4 Performance Characteristics

The performance characteristics of the RTCs are shown in the following table.

Parameter GSM 900 GSM 1800

4 - basic RTC only 4 - RC4DNumber of cavities:

8 - basic and extension RTC 8 - RC8D

Number of channels: 174 374

Channel numbers: 0 - 124 and 975 - 1023 512 - 885

Tunable frequency range: 925 - 960 MHz 1805 - 1880 MHz

Cavity bandwidth for each channel (0.5 dB): >160 kHz >170 kHz

Parking position: > 962 MHz > 1882 MHz

Minimum cavity spacing: 600 kHz 600 kHz

Maximum power at each transmitter input: 60 W 40 W max

4 Cavities: 3.6 dB max 2.5 dB to 5.0 dBInsertion loss

8 Cavities: 4.4 dB max 2.5 dB to 5.5 dB

Group delay: < 150 ns < 150 ns

Input return loss: > 20 dB > 18 dB

Output return loss: > 8 dB > 8 dB

Input Isolation between transmitter inputs: > 43 dB > 38 dB

Intermodulation products in band 100 kHz -12.75 GHz (receive band excluded) exitedin RTC, transmitters at max. power:

< 75 dBc > 75 dBc

Intermodulation products in receive band: < 100 dBm < 100 dBm

RF input impedance: 50 Ohm 50 Ohm

RF output impedance: 50 Ohm 50 Ohm

Output return loss of RTE test loop: > 14 dB > 14 dB

Coupling factor between Transmit Moduleinput and RTE output:

37.5 +/- 1 dB 37.5 +/- 1 dB

Table 58: RTC Performance Characteristics

188 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 189: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8 Physical DescriptionThe RTC submodules are open-box assemblies designed for rack mounting.Individual components are interconnected by screened cables inside the box.This section describes the physical details of the RTC.

It provides the following information:

Dimensions

Front Panels

Rear Views

Front Panel Connectors.

14.8.1 Dimensions

The physical dimensions of the RTC submodules are shown in the followingtable.

Dimension Size (Units) Size (mm)

Height: 4 U 177.8 mm

Width: 19" 482.6 mm

Celwave GSM 900: - 340 mm

Forem GSM 900: - 345 mm

Depth:

GSM 1800: - 345 mm

Table 59: RTC Physical Dimensions

3BK 21248 AAAA TQZZA Ed.03 189 / 288

Page 190: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.1 FRBG Front PanelThe following figure shows the front panel of the FRBG. It includes RF and localcontrol connectors, control switches and indication LEDs.

TX2 TX4

TX1 TX3

Transmitter RF Inputs

RTE

ANT OUT

RS−232 Connector

Alarm LEDs and VSWR Level Selector

Local

OFF

01

Power Switch

High Voltage Warning Label

Test Loop Output

VSWR

Antenna RF Output

Q1

Equipment Labels

Fixing Holes

Fixing Holes

RS−232/ DCL2 Selector

1.5

1.7 1.9

RF Extension Connection (behind front blanking plate)

DC/DC Converter with Heat sink and Power ON LED

Blanking Plate

Figure 50: FRBG Front Panel

14.8.1.2 FRBG Rear ViewThe following figure shows the rear view of the FRBG including internalextension, Station Unit, DCL2 and power connectors.

Interface to Station Unit

Interconnection FRBG to FREG

Ground Tag

TO EXTENSION

Q1 IN LINE1

LINE2

Power Supply Connectors LINE1, LINE2

TO SCFE

Q1 OUT

DCL2 Connections Q1 IN Q1 OUT

Fixing Holes

Fixing Holes

Figure 51: FRBG Rear View

190 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 191: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.3 FREG Front PanelThe figure below shows the FREG front panel. It includes the DC/DC converter,the RF extension connection, and the transmitter RF inputs.

TX7 TX8

TX5 TX6

Equipment Labels

Fixing Holes

Transmitter RF Inputs

Fixing Holes

RF Extension Connection (behind front blanking plate)

Blanking Plates

DC/DC Converter with Heat sink and Power ON LED

Figure 52: FREG Front Panel

14.8.1.4 FREG Rear ViewThe rear view of the FREG is shown below, including FRBG to FREGinterconnection.

EXTENSION

Interconnection FRBG to FREG

Ground Tag

Fixing Holes

Fixing Holes

Figure 53: FREG Rear View

3BK 21248 AAAA TQZZA Ed.03 191 / 288

Page 192: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.5 Forem RC4D Front PanelThe front of the Forem RC4D is shown in the following figure. It includes RFand local control connectors, control switches and indication LEDs.

Local

01

VSWRQ1

1.5 1.7 1.9

RTE

ANT OUT

OFFON

TX4 TX2

TX3 TX1

Transmitter RF Inputs

Alarm LEDs and VSWR Level Selector

Power Switch

High Voltage Warning Label

Test Loop Output

Antenna RF Output

Equipment Labels

Fixing Holes

Fixing Holes

RS−232 Connector and RS−232/DCL2 Selector

DC/DC Converter with Heat sink and Power ON LED

Figure 54: Forem RC4D Front Panel

14.8.1.6 Forem RC8D Front PanelThe Forem RC8D front panel is shown in the following figure. It is similarto the RC4D panel.

Local

0

1

VSWRQ1

1.5 1.7 1.9

RTE

ANT OUT

OFFON

TX4 TX2

TX3 TX1

Transmitter RF Inputs

Alarm LEDs and VSWR Level Selector

Power Switch

High Voltage Warning Label

Test Loop Output

Antenna RF Output

Equipment Labels

Fixing Holes

Fixing Holes

RS−232 Connector and RS−232/DCL2 Selector

DC/DC Converter with Heat sink and Power ON LED

TX8 TX6

TX7 TX5

Figure 55: Forem RC8D Front Panel

192 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 193: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.7 Forem RC4D/RC8D Rear ViewThe rear view of the Forem RC4D/RC8D is shown in the following figure,including connectors and the interface to the Station Unit.

TO SCFE

Interface to Station Unit

Ground Tag

Q1 INLINE1

LINE2

Power Supply Connectors LINE1, LINE2

Q1 OUT

DCL2 Connections Q1 IN Q1 OUT

Fixing Holes

Fixing Holes

Figure 56: Forem RC4D/RC8D Rear View

14.8.1.8 CRBG Front PanelThe CRBG front panel is shown in the figure below. It shows the RF connectors,alarm and indicator LEDs, control switches and the warning and equipmentlabels.

TX2

TX4 TX1

TX3

Transmitter RF Inputs

RTE

ANT OUT

RS−232 Connector

Alarm LEDs and VSWR Level Selector

Power Switch and LED Indicator

High Voltage Warning Label

Test Loop Output

Antenna RF Output

Equipment Labels

Fixing Holes

Fixing Holes

RS−232/ DCL2 Selector

Coupling RF Output Connection (behind front blanking plate)

LOCAL

VSWR 0

VSWR 1

1.91.71.5

LOCAL

Q1POWER ON

OFF

ON

Transmitter RF Inputs

Control Board

Figure 57: CRBG Front Panel

3BK 21248 AAAA TQZZA Ed.03 193 / 288

Page 194: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.9 CRBG Rear ViewThe following figure shows the rear view of the CRBG including internalextension, Station Unit, DCL2 and power connectors.

Q1 OUTQ1 IN

Interface to Station Unit

Interconnection CRBG to CREG (tuning control and power)

Ground Tag

LINE1LINE2

Power Supply Connectors LINE1, LINE2

SCFE

DCL2 Connections Q1 IN, Q1 OUT

DET 5 − 8

Interconnection CRBG to CREG (tuning detector connections)

EXT MOT + OPTO

Fixing Holes

Fixing Holes

Figure 58: CRBG Rear View

14.8.1.10 CREG Front PanelThe figure below shows the CREG front panel, including RF connectors andequipment labels.

TX8

TX7

Transmitter RF Inputs

Equipment Labels

Fixing Holes

Fixing Holes

Coupling RF Output Connection (behind front blanking plate)

TX5

TX6

Transmitter RF Inputs

Figure 59: CREG Front Panel

194 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 195: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.11 CREG Rear ViewThe following figure shows the rear view of the CREG, which has pre-equippedpower and data extension cables.

Ground Tag

Pre−equipped extension cabling

Fixing Holes

Fixing Holes

Figure 60: CREG Rear View

14.8.1.12 Celwave RC4D Front PanelThe Celwave RC4D front panel is shown in the figure below. It includes thepower switch, LED indicator, control switches and connectors, as well asequipment labels.

VSWR1

1.9

TX2 TX3TX4 TX1

Transmitter RF Inputs

TEST ANT

RS−232 Connector

Alarm LEDs and VSWR Level Selector

Power Switch and LED Indicator

High Voltage Warning Label

Test Loop Output

Antenna RF Output

Equipment Labels

Fixing Holes

Fixing Holes

RS−232/ DCL2 Selector

LOCAL

VSWR01.5LOCALQ1

POWER

OFFON

ON

1.7

Figure 61: Celwave RC4D Front Panel

3BK 21248 AAAA TQZZA Ed.03 195 / 288

Page 196: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.1.13 Celwave RC8D Front PanelThe following figure shows the Celwave RC8D front panel. It is similar to theRC4D front panel, except that it has eight RF input connectors instead of four.

TX2 TX3TX4 TX1

TEST ANT

TX7 TX5TX8 TX6

Transmitter RF Inputs

RS−232 Connector

Alarm LEDs and VSWR Level Selector

Power Switch and LED Indicator

High Voltage Warning Label

Test Loop Output

Antenna RF Output

Equipment Labels

Fixing Holes

Fixing Holes

RS−232/ DCL2 Selector

VSWR1

1.9

LOCAL

VSWR01.5LOCALQ1

POWER

OFFON

ON

1.7

Figure 62: Celwave RC8D Front Panel

14.8.1.14 Celwave RC4D/RC8D Rear ViewThe following figure shows the rear view of the RC4D/RC8D RITS, includingthe connectors and interface to the Station Unit.

Q1 OUT Q1 IN SCFE

Interface to Station Unit

Ground Tag

PS2 PS1

Power Supply Connectors PS1, PS2

DCL2 Connections Q1 IN, Q1 OUT

Fixing Holes

Fixing Holes

Figure 63: Celwave RC4D/RC8D Rear View

196 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 197: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

14.8.2 Front Panel Connectors

The FRBG, CRBG, RC4D and RC8D have front panel connectors fortransmitter inputs, RTE probe output and antenna output. The FREG andCREG only have front panel connectors for the transmitter inputs.

The FRBG, CRBG, RC4D and RC8D also have a front panel RS-232 connector.The following table shows the pin assignments.

Pin Signal Pin Signal

1 NC 6 Shorted to 4

2 Receive 7 Shorted to 8

3 Transmit 8 Shorted to 7

4 Shorted to 6 9 NC

5 GND - -

Table 60: FRBG/CRBG/RC4D/RC8D RS-232 Front Panel Connector

NC = Not Connected

3BK 21248 AAAA TQZZA Ed.03 197 / 288

Page 198: 212480000e03.pdf DRFU BTS

14 CRBG/CREG/FRBG/FREG/RC4D/RC8D

198 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 199: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

This chapter provides a detailed description of the WBC.

3BK 21248 AAAA TQZZA Ed.03 199 / 288

Page 200: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.1 IntroductionThe WBC (Wide Band Combiner) combines RF signals from up to twotransmitters to a common output for transmission via a single antenna. Inaddition, it isolates incoming RF signals and produces status information.

The WBC also monitors forward and reflected RF output power forantenna/cable fault checking. This type of combiner is more compact than anRTC and is suitable for use in low capacity BTSs.

15.1.1 WBC Types

There are three WBC types, the use of which depends on system type and thecapacity of the BTS:

WBC Types Variant

WB2D 3BK 01628 AAAA (Forem)

3BK 01628 AABA (Celwave)

WB1G 3BK 01625 AAAA (Forem)

3BK 01625 AABA (Celwave)

WB2G 3BK 01626 AAAA (Forem)

3BK 01626 AABA (Celwave)

For each WBC type there are two variants, from different manufacturers: onecarrier and two carrier. There is no functional difference between the WBCvariants from the two manufacturers, although internal construction detailcan differ.

A two-channel WBC can be used with only one carrier; however, thisconfiguration results in reduced transmission power at the antenna.

15.1.2 DUPG/DUPD

The DUPD (3BK 01633 AAAA (Forem)) and DUPG (3BK 01634 AAAA (Forem))provide all the functions of the two-channel WBCs, but also duplex transmit andreceive RF signals. This allows one antenna to be used for both transmissionand non-diversity reception.

200 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 201: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.1.3 DUD2

The DUD2 (3BK 07507 AAAA) (Forem) has two separate single-channeltransmitter paths. The RF transmission carriers, from the two antennas, arecombined in the air. This saves the 3.5 dB loss, normally incurred whenconventional wideband combiners are used.

The first transmitter path has a transmitter filter, the second has a duplexer.The duplexer provides a coupling function of the transmit and receive signals,allowing one antenna to be used for both directions. The transmitter filter onlyprovides a transmit path. Thus, the DUD2 can provide the option of high-poweroperation, by using a second antenna.

Note: References to the WBC include all variants of WBC and DUPD/DUPG unlessotherwise stated.

As shown in the following diagrams, the WBC and DUPD/DUPG differ slightlyin design.

3BK 21248 AAAA TQZZA Ed.03 201 / 288

Page 202: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.1.4 WBC

Transmitter Filter

Antenna Directional

Coupler

Antenna VSWR Alarm Unit

Simulator

Transmitter Module

Transmitter 1

Transmit Antenna

Radio Test Equipment Unit DCS

Station Unit

Transmitter 2

Summing Network

Isolatorwith Power

Load

Station Unit

Isolator with Power

Load

Figure 64: WBC Block Diagram

202 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 203: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.1.5 DUPD/DUPG

The DUPD/DUPG are similar to the WBC. However, its duplexer combines bothtransmit and receive paths onto one antenna connection.

Isolator

Antenna Directional

Coupler

Antenna VSWR Alarm

Unit

Transmit−Receive Module

Antenna

RTE

RFE

Duplexer

Transmitter 1

Transmitter 2

Summing Network

Isolator with Power

Load

Simulator Station Unit

Isolator with Power

Load

Figure 65: DUPD/DUPG Block Diagram

3BK 21248 AAAA TQZZA Ed.03 203 / 288

Page 204: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.1.6 DUD2

The DUD2 differs from the other WBCs, in that it has two antenna connectionsfor separate transmitter paths.

Antenna 1

Transmitter 2

Transmitter 1

Isolator with Power

Load

Station Unit

Isolator with Power

Load

TX Module

BCCH Switch Simulator

DC/DC Converter Alarm Simulator

Antenna Directional

Coupler

Transmit−Receive Module

Duplexer

Directional Coupler

Transmitter Filter Antenna 2

Control Board

Antenna VSWR Detector

Antenna VSWR Alarm Unit

Isolator

Antenna VSWR Detector

Receiver Front−end

Figure 66: DUD2 Block Diagram

204 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 205: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.2 WBC Functional BlocksThe WBC functional blocks consist of the following internal components:

Isolator with power load

Summing network

Transmitter Module (WBC and DUD2)

Transmit-Receive Module (DUPD/DUPG/DUD2)

Simulator.

The WBC components are described in the following sections.

15.2.1 Isolator with Power Load

Isolators are used to improve isolation between transmitters, thereby reducingsignal intermodulation products. They also help to avoid interference from theantenna by preventing intermodulation of the corresponding transmitter signal.

The RF input signals from the transmitter(s) enter the Isolator(s) via frontpanel connectors.

The Isolator is connected to a power load, mounted on a heat sink. If anexcessive VSWR condition occurs at the output of the WBC it absorbs part ofthe reflected power. Thus, even if a short circuit occurs at the WBC output,there is no component damage. (See "Transmitter Module" which describes theAntenna VSWR Alarm Unit.)

The load can withstand the maximum reflected power for at least one minute(short at output). During this time the antenna VSWR1 alarm causes the BTSto switch off the RF power.

15.2.2 Summing Network

The broadband Summing Network combines the incoming signals from thetwo isolator output lines. The network operates over the whole downlinkband without needing to tune the used channels. The output is fed to theTransmitter Module.

3BK 21248 AAAA TQZZA Ed.03 205 / 288

Page 206: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.2.3 Transmitter Module (WBC and DUD2)

The WBC Transmitter Module consists of the following parts:

Transmitter Filter

Antenna Directional Coupler

Antenna VSWR Alarm Unit.

15.2.3.1 Transmitter FilterThe Transmitter Filter suppresses noise in the transmitter spectrum. It alsoreduces intermodulation caused by the transmitter in the uplink band (accordingto GSM rec. 11.20). Additional rejection of harmonics from the transmittersis achieved with this filter.

15.2.3.2 Antenna Directional CouplerThe Antenna Directional Coupler samples forward and reflected power at theantenna connector. It does this to measure the return loss of the antenna. Thecoupler is linked to the RTE connector for performing BTS baseband and radiopath tests. The RTE can be used to test a real traffic channel under frequencyhopping conditions, or a single BTS Transceiver.

15.2.3.3 Antenna VSWR Alarm UnitThe Antenna VSWR Alarm Unit continuously monitors forward and reflectedpower by means of two detectors connected to the antenna directional coupler.Forward and reflected power values are processed and compared.

Alarms are generated if the VSWR exceeds preset limits:

VSWR0 is raised when the VSWR exceeds a limit preselected via the

VSWR switch on the front panel. This condition causes the VSWR0 redLED indicator to light. An RF output signal is still present, with some signal

deterioration, and the antenna and cables must be inspected for damage

VSWR1 is raised when the VSWR exceeds a higher, pre-defined limit.Serious deterioration of transmission quality of the RF output signal causes

the VSWR1 red LED indicator to light. This indicates that the antenna or thecable is broken, and the WBC can be damaged by too much reflected power

being dissipated in the power load.

15.2.4 Transmit-Receive Module (DUPD/DUPG/DUD2)

The DUPD/DUPG/DUD2 Transceiver (TRX) Module contains all the functionsof the TX Module. However, the DUPD/DUPG/DUD2 have a duplexer whichallows the additional function of coupling received signals from the antenna tothe receiver input.

15.2.4.1 DuplexerThe DUD2 TRX Module contains a Duplexer unit, which allows the downlinkand uplink radio signals to be transmitted/received via the same antenna.

206 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 207: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.2.4.2 DUD2 Antenna ConnectionsThere are two antenna connections (ANT1 and ANT2) on the DUD2 and,therefore, there are two LED alarm indicators for each connector.

Note: The ANT1 antenna connection provides a bidirectional signal path; ANT2provides a transmit-only signal path.

15.2.5 Simulator

The simulator emulates RTC functions. RTCs contain a BCCH switch and aDC/DC converter alarm. For BTS equipment compatibility, the BCCH-CarrierSwitch and DC/DC Converter functions are simulated in WBC types.

15.2.5.1 BCCH-Switch SimulatorThe BCCH-Switch Simulator simulates the behavior of the RF switch in anRTC. It does this by means of electronic switching, sending the appropriateresponse message back to the Station Unit.

15.2.5.2 DC/DC Converter Alarm SimulatorThe DC/DC Converter Alarm Simulator ensures that DC/DC converter alarmsare not raised at the Station Unit. The DC/DC Converter is not present inthe WBC.

15.2.6 Control Board (DUD2)

The Control Board contains the DUD2 alarm and control functions. Thisincludes the Antenna VSWR Alarm Unit, BCCH-Switch Simulator and theDC/DC Converter Alarm Simulator.

Alarms The VSWR Alarm Unit monitors the reflected power on the TCH. Thealarm operates above the threshold selected on the DUD2 front panel. If themaximum permitted power level is exceeded, an alarm is raised. There is noalarm if the reflected power falls below the minimum level. A three-seconddelay is implemented, before the alarm is flagged to the Station Unit.

3BK 21248 AAAA TQZZA Ed.03 207 / 288

Page 208: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.3 O&MThis section describes the O&M functions of the WBCs.

The following information is provided:

LEDs

Power Supply

Performance Characteristics.

15.3.1 LEDs

All the modules have the same LED indicators. The following table describesthe LEDs on the units’ front panels.

LED Description

VSWR0 This LED is lit if the VSWR exceeds the specified threshold(set with the rotary switch on the front panel).

VSWR1 This LED is lit (in addition to VSWR0) if the VSWR exceedsa threshold of 2.5 (+/- 0.5).

Table 61: WBC LED Descriptions

208 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 209: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.3.2 Power Supply

The WBCs require no specific power supply; all supplies for signalling purposesare taken direct from the Station Unit.

15.3.3 Performance Characteristics

The performance characteristics of the WBC are shown in the following table.Forem and Celwave variants are identical.

Parameter GSM 900 GSM 1800

Transmit band: 925 - 960 MHz 1805 - 1880 MHz

Power for each transmitter channel input: 40 W maximum 40 W maximum

Number of channels: 174 374

Channel numbers: 0 - 124 and 975 - 1023 512 - 885

Bandwidth for each channel: 200 kHz 200 kHz

Insertion loss for each channel (A 0 ): [le ] 5.2 dB [le ] 5.2 dB

Group delay: [le ] 100 ns [le ] 100 ns

Input return loss: > 21 dB > 21 dB

Output return loss: > 15 dB > 15 dB

Isolation between WBC inputs: > 48 dB > 45 dB

Intermodulation products in band 100 kHz - 12.5GHz (receive band excluded) excited in WBC atmax. transmit power:

> 75 dBc > 75 dBc

Intermodulation products in receive band excitedin WBC measured with 2 x maximum power:

[le ] -105 dBm [le ] -105 dBm

Coupling attenuation of test loop: 37.5 +/- 1 dB 37.5 +/- 1 dB

RF input impedance: 50 Ohm 50 Ohm

RF output impedance: 50 Ohm 50 Ohm

Return loss at the test loop output: [le ] 14 dB [le ] 14 dB

Table 62: WBC Performance Characteristics

3BK 21248 AAAA TQZZA Ed.03 209 / 288

Page 210: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.4 Physical DescriptionThe WBCs are open box assemblies, designed for plug-in installation; they aresecured by screws. Individual components are interconnected by screenedcables inside the box. This section describes the physical details of the WBC.

It provides the following information:

Dimensions

Front Panels

Connectors

Rear Views.

15.4.1 Dimensions

The physical dimensions of the WBC submodules are shown in the followingtable.

Dimension Size (Units) Size (mm)

WBC/DUPD/DUD2: 1 U 43.6 mmHeight:

DUPG: 2 U 87.2 mm

Width: - 19" 482.6 mm

Depth: - - 347.5 mm

Table 63: WBC Physical Dimensions

15.4.2 Front Panels

15.4.2.1 Forem WBC Front PanelThe following figure shows the front panel of the Forem WBC, including RFconnectors, control switches and indication LEDs.

1,5 1,71,9

VSWR0

VSWR1RTE ANT TX1TX2

ANT VSWR

LEDs

Equipment Labels

VSWR Switch

TestConnector

Antenna Output

Connector

High Voltage Warning Label

Fixing Holes

Transmitter Input Connector(s)

Fixing Holes

Figure 67: Forem WBC Front Panel

210 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 211: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.4.2.2 Celwave WBC Front PanelThe figure below shows the Celwave WBC front panel. It is similar to theForem WBC front panel.

1,51,71,9

RTE ANT OUT TX1TX2

LEDs

Equipment Labels

VSWR Switch

Test Connector

High Voltage Warning Label

Fixing Holes

Transmitter Input Connector(s)

VSWR1

VSWR0

Antenna Output Connector

Fixing Holes

(TX2 Not Present on WBIG variant)

Figure 68: Celwave WBC Front Panel

15.4.2.3 DUPD Front PanelThe following figure shows the DUPD front panel. It is similar to the Foremand Celwave WBC front panels with RF connectors, control switches andindication LEDs.

ANT VSWR

RTE ANT OUT TX1TX2

LEDs

Equipment Labels

VSWR Switch

TestConnector

Antenna Output

Connector

High Voltage Warning Label

Fixing Holes

Transmitter Input Connector(s)

Fixing Holes

RX

Receiver Output

Connector

1,51,7

1,9

VSWR0

VSWR1

Figure 69: DUPD Front Panel

15.4.2.4 DUD2 Front PanelThe DUD2 front panel is shown in the figure below. It is similar to theForem/Celwave WBC and DUPD front panels.

VSWR1

ANT2

VSWR0

ANT1TX1 TX2VSWR

LEDs

Equipment Labels

VSWR Switch

Antenna 1Output

Connector

High Voltage Warning Label

Fixing Holes

Fixing Holes

RX1

ReceiverOutput

Connector

1,5 1,7 1,9VSWR1

ANTANT2

ANT1

VSWR0

Transmitter 1Input

Connector

Transmitter 2Input

Connector

Antenna 2 Output

Connector

LEDs

Figure 70: DUD2 Front Panel

3BK 21248 AAAA TQZZA Ed.03 211 / 288

Page 212: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.4.2.5 DUPG Front PanelThe DUPG front panel is shown in the following figure. Like the other WBCfront panels, it includes indication LEDs, control switches, and connectors.

RTE ANT OUT TX1TX2

LEDs

Equipment Labels

VSWR Switch

TestConnector

Antenna Output

Connector

High Voltage Warning Label

Fixing Holes

Transmitter Input Connector(s)

FixingHoles

RX

Receiver Output

Connector

1,51,7

1,9

VSWR0

VSWR1

ANT VSWR

Figure 71: DUPG Front Panel

15.4.3 Front Panel Connectors

The WBCs have front panel RF connectors for transmitter inputs, an RTE(except DUD2) probe output and the antenna.

212 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 213: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

15.4.4 Rear Views

15.4.4.1 WBC/DUPD Rear ViewThe three figures below show the rear views of the WBC/DUPD, DUD2, andDUPG. They all contain a heat sink, ground(s) and a Station Unit connector.

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Ground (Celwave)

Ground (Forem)

Heat sink

Station Unit Connector

Figure 72: WBC/DUPD Rear View

15.4.4.2 DUD2 Rear View

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Ground

Heat sink

Station Unit Connector

Figure 73: DUD2 Rear View

15.4.4.3 DUPG Rear View

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Ground (Celwave)

Ground (Forem)

Heat sink

Station Unit Connector

Figure 74: DUPG Rear View

3BK 21248 AAAA TQZZA Ed.03 213 / 288

Page 214: 212480000e03.pdf DRFU BTS

15 WB3D/WB1G/WB2G/DUPD/DUD2/DUPG

214 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 215: 212480000e03.pdf DRFU BTS

16 ADPS

16 ADPS

This chapter provides a detailed description of the ADPS.

3BK 21248 AAAA TQZZA Ed.03 215 / 288

Page 216: 212480000e03.pdf DRFU BTS

16 ADPS

16.1 IntroductionThe ADPS (AC/DC Power Supply) is used in BTSs where only AlternatingCurrent is available. It is supplied with mains AC power which it converts to DCfor use by the BTS DC/DC power supply submodules.

The ADPS is capable of supplying power to other BTS units which requirea -48 VDC supply.

Under all load conditions, the ADPS can accept hot insertion of loads, and theapplication and removal of its input supply.

Variants There are two variants of ADPS:

3BK 01917 AAAA (Alcatel-Lucent Mobile Communication)

3BK 01917 ABBA (Alcatel-Lucent Converters).

Both variants are functionally equivalent; however, their internal design isdifferent.

Note: The Alcatel-Lucent Converters’ ADPS requires additional forced cooling.This is supplied by use of a CFUA.

216 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 217: 212480000e03.pdf DRFU BTS

16 ADPS

16.2 Alcatel-Lucent Mobile Communications’ ADPS FunctionsThe Alcatel-Lucent Mobile Communications’ ADPS contains the followingfunctional blocks:

Common Mode Choke

AC/DC Converter

Power factor and switch-on control

Battery inhibit control

Filter

DC/DC Converters

Capacitor-Choke-Capacitor Filter

Inhibit control

Output Voltage Monitor and alarm circuit.

CommonModeChoke

LED "AC IN"

AC/DC Converter

Filter

LED "ON"

Battery Inhibit Control

Inhibit Control

DC/DC Converter

(24 V)

Control Power Factor and

Switch ON

24 VDC

Capacitor− Choke− Capacitor

Filter

Output

Voltage Monitor and Alarm

GND

−48 VDC

ALMADPS

INHBBU

INHADPS

Front Panel Switch

230 VAC 50 Hz (fused)

DC/DC Converter

(24 V)

GND

−24 V

Supervisory Signals

ADPS Alarm

Inhibit Battery Backup Unit

Inhibit ADPS

INHBBU

INHADPS

ALMADPS

Figure 75: Alcatel-Lucent Mobile Communications’ ADPS Block Diagram

16.2.1 Common Mode Choke

The Common Mode Choke filters high frequency noise from the fused 230VAC mains supply.

The presence of the supply voltage is indicated by the input supply LED,marked "AC-IN".

3BK 21248 AAAA TQZZA Ed.03 217 / 288

Page 218: 212480000e03.pdf DRFU BTS

16 ADPS

16.2.2 AC/DC Converter

The AC/DC Converter converts the input voltage from AC to 24 VDC. It alsogenerates supervisory signals to indicate that the input voltage and powerfactor are within the permitted limits.

16.2.3 Power Factor and Switch-on Control

The Power Factor and Switch-on Control block monitors the supervisory signals.

If the supply fails, the changeover process to the standby battery is initiated.Signals are sent to the Battery Inhibit Control and DC/DC Converters.

16.2.4 Battery Inhibit Control

The Battery Inhibit Control block generates the Inhibit Battery Backup Unit(INHBBU) signal. This is used to switch to backup power.

The LED "ON" indicates the operational status of the ADPS. When the ADPS isoperational, the LED marked "ON" is lit. If the supply fails, the LED "ON" isextinguished.

16.2.5 Filter

The Filter smooths the DC output from the AC/DC Converter. The filter alsoacts as an energy store. It can supply maximum power during a changeover tobackup power, after a supply failure.

16.2.6 DC/DC Converters

The two DC/DC Converters each produce a -24 VDC output. They areconnected in series to give a -48 VDC total output.

16.2.7 Capacitor-Choke-Capacitor Filter

The Capacitor-Choke-Capacitor Filter smooths the DC-voltage output from theDC/DC Converters.

16.2.8 Inhibit Control

The Inhibit Control switches the ADPS on and off.

The ADPS can be switched off remotely by the Inhibit ADPS signal. Theswitch-off signal initiates the changeover process to the standby battery. TheDC/DC Converters are then switched off.

The ADPS can be locally switched on or off through a front panel switch.

16.2.9 Output Voltage Monitor and Alarm Circuit

The Output Voltage Monitor and Alarm Circuit monitors the DC output voltagelevel from the DC/DC Converters. If an overvoltage or undervoltage conditionoccurs, the alarm, ADPS Alarm, is raised and sent to the Station Unit.

218 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 219: 212480000e03.pdf DRFU BTS

16 ADPS

16.3 Alcatel-Lucent Converters’ ADPS FunctionsThe Alcatel-Lucent Converters’ ADPS contains the following functional blocks:

Input Filter

Inrush Current Protector

AC/DC Converter

DC/DC Converter

Output Filter

Converter control

Overvoltage protection

Output voltage/current limitation

Output Voltage Monitor

Undervoltage for AC/DC Converter

Power Fail Monitor.

Front Panel Switch

InputFilter

AC/DC Converter

Output Filter

DC/DC Converter

−48 VDC

ALMADPS

230 VAC 50 Hz (fused)

Inrush Current Protector

OvervoltageProtection

Output Voltage/ Current

RegulationConverter

Control

Undervoltagefor AC/DCConverter

Power Fail

Monitor

LED "On"

LED "AC−IN"

INHBBU

INHADPS

Output Voltage Monitor

Figure 76: Alcatel-Lucent Converters’ ADPS Block Diagram

3BK 21248 AAAA TQZZA Ed.03 219 / 288

Page 220: 212480000e03.pdf DRFU BTS

16 ADPS

16.3.1 Input Filter

The Input Filter removes noise from the fused 230 VAC mains supply.

The presence of the supply voltage is indicated by the input supply LED,marked "AC-IN".

16.3.2 Inrush Current Protector

The Inrush Current Protector limits power-on surge current. This preventssudden load changes on the input supply and protects the ADPS components.

16.3.3 AC/DC Converter

The AC/DC Converter converts the 230 AC input voltage to high level DC. Theoutput is fed to the DC/DC Converter and the supervisory functions.

16.3.4 DC/DC Converter

The DC/DC Converter produces a -48 VDC output from the high level AC/DCConverter output.

16.3.5 Output Filter

The Output Filter smooths the output from the DC/DC Converter. This poweroutput is fed to the BTS components. The Output Filter also acts as a short-termreservoir to supply power during changeover to a backup power-supply.

16.3.6 Converter Control

The Converter Control functions control the operational state of the DC/DCconverter, managing the orderly start-up of the converter at power-up.

The DC/DC converter is shut down if input power is not available or the AC/DCConverter output fails.

The ADPS can be switched off remotely by the INHADPS signal. The switch offsignal initiates the changeover process to the standby battery. The DC/DCConverters are then switched off.

The ADPS can be locally switched on or off through a front panel switch.

220 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 221: 212480000e03.pdf DRFU BTS

16 ADPS

16.3.7 Overvoltage Protection

The Overvoltage Protection block monitors the output from the ADPS. If theoutput exceeds the maximum, an alarm signal is sent to the Converter Controlfunctions.

16.3.8 Output Voltage/Current Limitation

The Output Voltage and Current Limitation functions are responsible formonitoring the output voltage and current levels. If the output voltage, orcurrent, exceeds the operational maximum, an alarm is sent to the ConverterControl functions.

16.3.9 Output Voltage Monitor

The Output Voltage Monitor monitors the output from the ADPS. During normaloperation, the LED "ON" is lit. If the output voltage falls outside the permittedoperational range, the ALMADPS alarm is raised and the LED is extinguished.

16.3.10 Undervoltage for AC/DC Converter

The Undervoltage for AC/DC Converter block monitors the output of the AC/DCConverter and the output signal from the Overvoltage Monitor. If the monitoredsignals fall outside their normal operational ranges, an alarm signal is sentto the Converter Control functions.

16.3.11 Power Fail Monitor

The Power Fail Monitor generates the INHBBU signal. This is used to switchbackup power if the AC/DC Converter output fails.

3BK 21248 AAAA TQZZA Ed.03 221 / 288

Page 222: 212480000e03.pdf DRFU BTS

16 ADPS

16.4 O&MThis section describes the O&M functions of the ADPS.

The following information is provided:

LEDs

Power Supply (input)

Output Characteristics.

16.4.1 LEDs

The following table describes each LED on the unit’s front panels.

LED Description

ON Lit when DC power is present on the output.

AC IN Lit when AC power is present on the input.

Table 64: ADPS LED Descriptions

16.4.2 Power Supply

The ADPS works with an AC input voltage of 230 VAC +/- 15 %. The frequencyof the input supply is 48 Hz - 62 Hz. This supply is fed into the ADPS modulevia a fuse and a common mode choke.

No damage is incurred if an input supply voltage from 0 V to 195 VAC and offrequency from 45 Hz to 65 Hz is applied to the ADPS.

In the event of non-periodic transients occurring, the ADPS functions normallyand without interruptions.

If the input voltage falls at any time below 40 % of the nominal value (92 VAC),the ADPS switches OFF. When the input voltage increases again (above ahigher level) the ADPS is automatically reactivated.

The ADPS is designed to limit harmonic distortion of the input current.

222 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 223: 212480000e03.pdf DRFU BTS

16 ADPS

16.4.3 Output Characteristics

The following table lists the basic output characteristics of the ADPS.

Characteristic Value

Voltage -48 VDC nominal (in range: -40.5 VDC to -57 VDC).

Current 12 A maximum.

Table 65: ADPS Basic Output Characteristics

The following table shows the dynamic response of the ADPS to steps inload current.

Voltage Range

Load Step From To Transition Period

+/- 2.4 A -45.6 VDC -50.4 VDC < 3 ms

+/- 2.4 A -47.76 VDC -48.24 VDC > 3 ms

+/- 4.8 A -40.5 VDC -57.0 VDC < 100 ms

+/- 4.8 A -47.76 VDC -48.24 VDC > 100 ms

Table 66: ADPS Dynamic Response

The ADPS is designed to withstand no-load or short-circuit conditions.

16.5 Physical DescriptionThe ADPS assembly comprises a multilayer board, fixed to the front panel. Amulti-way connector is mounted at the rear.

Indication LEDs, the input supply connector and the on-off switch are fitted tothe front panel. The switch is fitted in a recess to prevent accidental operation.

The fuse for the input supply is mounted in the ADPS assembly and is notaccessible while the ADPS is fitted in the subrack. This section describesthe physical details of the ADPS.

It provides the following information:

Dimensions

Front Panel

Rear View.

3BK 21248 AAAA TQZZA Ed.03 223 / 288

Page 224: 212480000e03.pdf DRFU BTS

16 ADPS

16.5.1 Dimensions

The physical dimensions of the ADPS are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 10 T 50.8 mm

Depth: - 280 mm

Table 67: ADPS Physical Dimensions

16.5.2 Front Panel

The following figure shows the ADPS front panel, including the On/Off switchand input supply connector.

ON

OFF

Output LED (GREEN)

Equipment Labels

Fixing Holes

Handle

Input LED (GREEN)

Power Switch

Fixing Holes

Input Supply Connector

Warning Label

ON

AC IN

Figure 77: ADPS Front Panel

224 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 225: 212480000e03.pdf DRFU BTS

16 ADPS

16.5.3 Rear View

The figure below shows a rear view of the ADPS and its rear connectors.

Rear Connector

Fixing Holes

Fixing Holes

Figure 78: ADPS Rear View

3BK 21248 AAAA TQZZA Ed.03 225 / 288

Page 226: 212480000e03.pdf DRFU BTS

16 ADPS

226 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 227: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17 MBPS/FCPS

This chapter provides a detailed description of the DC/DC power supplies.

3BK 21248 AAAA TQZZA Ed.03 227 / 288

Page 228: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.1 IntroductionThe MBPS and FCPS are similar units. They produce the different voltages,and current, required by all the submodules in a Mini-BTS Subrack. They arederived from a DC input supply of -48/-60 VDC (nominal). The FCPS producesthe different voltages and current required by one Frame Unit and one CarrierUnit. There are three autonomous parts in the MBPS, and two in the FCPS.

Each are completely independent parts, supplying power to one of the modules:

Station Unit (MBPS only)

Carrier Unit

Frame Unit.

The MBPS also supplies power to other boards fitted within the MBSR.

17.2 DC/DC Power Supplies FunctionsThe MBPS and FCPS contain the following functional blocks:

Input Filter and Monitor

Auxiliary and monitor circuits

DC/DC converters

Output supervision

Carrier Unit Alarm Controller (FCPS and MBPS only).

228 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 229: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.2.1 MBPS

A block diagram of the MBPS is shown below.

−48/−60 VDC

DC/DC Converter

Output Supervision

Auxiliary and Monitor Circuit

DC/DC Converter

Output Supervision

Output Supervision

Output Supervision

Output Supervision

+5 VFUALMFU

+26 VCU

+12 VCU

−12 VCU

+5 VCU

LED "FU"

LED "ON"

Fuse "FU" T4AInput

Filter and Monitor

Carrier Unit Alarm Controller

LED "CU"

Front Panel Switch "FU"

Front Panel Switch "CU"

Carrier Unit

Frame Unit

Auxiliary and Monitor Circuit

Fuse "CU" T10A

Station Unit

ALMCU

Station Unit

DC/DC Converter

Output Supervision

Output Supervision

Auxiliary and Monitor Circuit

Fuse "SU" T10A

LED "SU"

+5 VSU TC16+5 VSU

+12 VSUALMSU

Station Unit

Remote On/OffINHMSPS

Remote On/OffINHMSPS

Remote On/OffINHMSPS

Front Panel Switch "SU"

Figure 79: MBPS Block Diagram

3BK 21248 AAAA TQZZA Ed.03 229 / 288

Page 230: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.2.2 FCPS

A block diagram of the FCPS is shown below.

+26 VCU

+12 VCU

−12 VCU

+5 VCU

+5 VFU

ALMFU

LED "FU"

LED "ON"

LED "CU"

Front Panel Switch "FU"

Front Panel Switch "CU"

Carrier Unit

Frame Unit

−48/−60 VDC

Station Unit

ALMCU

Station Unit

OutputSupervision

Fuse "FU" T4AInput

Filterand

Monitor

Carrier Unit

Alarm Controller

Fuse "CU" T10A

DC/DCConverter

Auxiliary andMonitorCircuit

DC/DC Converter

Output Supervision

Output Supervision

Output Supervision

Output Supervision

Auxiliary and MonitorCircuit

Remote On/OffINHMSPS

Remote On/OffINHMSPS

Figure 80: FCPS Block Diagram

230 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 231: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.2.3 Input Filter and Monitor

The Input Filter and Monitor functional block is the first stage of the powersupply circuitry. It is fed from a -48/-60 VDC (nominal) supply.

17.2.3.1 FusesThe inputs are protected by fuses, which are conveniently located on the powersupply units’ front panels.

The fuse values for the various units are as follows:

T4 A for the Frame Unit

T10 A for the Carrier Unit

T10 A for the Station Unit (MBPS only).

The presence of the supply voltage is indicated by the input supply LED,marked "ON".

17.2.3.2 FilterThe supply is filtered before being fed to each autonomous part of the powersupply units. Input polarity-reversal protection is provided.

17.2.4 Auxiliary and Monitor Circuits

The Auxiliary and Monitor Circuits continuously monitor the input voltage. If itfalls below the minimum level of -34.4 VDC, the DC/DC Converters are shutdown. If the voltage is subsequently restored above the level of -38.4 VDC, theDC/DC Converters are reactivated.

Front panel switches allow the supplies to be manually switched on and off.The outputs can also be controlled remotely, provided that the associatedpanel switch is in the "ON" position.

17.2.5 DC/DC Converters

The autonomous DC/DC Converters produce the DC voltages and currentrequired for the following units:

Frame Unit

Carrier Unit

Station Unit.

The power source is derived from a -48/-60 VDC supply.

3BK 21248 AAAA TQZZA Ed.03 231 / 288

Page 232: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.2.6 Output Supervision

Each output is monitored. The presence of the output is indicated by theLEDs marked "CU", "SU" and "FU".

17.2.6.1 Shutdown SequenceAll outputs are protected against overload condition, overvoltage conditionand accidental short circuit.

If one of these fault conditions occurs, the following sequence takes place:

The output is shut down

The associated LED is extinguished to indicate the fault

An alarm is raised.

The power supplies can remain in this state indefinitely without incurringany damage.

If the cause of the fault is removed, the supply can be reactivated, eithermanually or remotely, by switching the relevant supply off, then back on.

17.2.6.2 Temperature ProtectionThe Carrier Unit +26 VDC and Station Unit +5 VDC supplies are temperatureprotected. If the temperature of these parts rises above 90 o C, automaticshutdown takes place. After the temperature has fallen below 90 o C, thesubmodule can be reactivated by switching its input power supply off and thenon. At ambient temperatures of 25 o C, or less, the power supply satisfactorilysupplies a nominal load, without forced cooling, for at least 15 minutes.

17.2.6.3 AlarmsIf any power supply output fails, an alarm is raised. Each alarm condition istransmitted to the Station Unit via an optically isolated switch. For systemsecurity, the alarm switches are normally on. There are alarm switches to servethe Frame Unit, Carrier Unit and Station Unit supplies.

17.2.6.4 Output DecouplingThe outputs have a built-in decoupling circuit, which prevents damage to thepower supply under no-load or short-circuit conditions. If the voltage exceedsminimum or maximum values, sensors monitoring the backplane +5.1 V and+12 V pins raise an alarm and shut down the power supply.

232 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 233: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.3 O&MThis section describes the O&M functions of the DC/DC Power Supplies.

The following information is provided:

LEDs

Power Supply (input)

Replacement

FCPS Output Characteristics

MBPS Output Characteristics

Safety Standards

Grounding

Isolation.

17.3.1 LEDs

The following table describes the LEDs on the power supply units’ front panels.

Module LED Description

MBPS ON Lit when power is present.

FU Extinguished if Frame Unit is faulty.

SU Extinguished if Station Unit is faulty.

CU Extinguished if Carrier Unit is faulty.

FCPS ON Lit when power is present.

FU Extinguished if Frame Unit is faulty.

CU Extinguished if Carrier Unit is faulty.

Table 68: Power Supply LED Descriptions

17.3.2 Power Supply

The input voltage to the DC/DC power supply units is -48/-60 VDC. To ensurenormal operation, this must not fall below -38.4 VDC.

17.3.3 Replacement

All the DC/DC power supplies are capable of hot insertion, without causingdamage to the units.

3BK 21248 AAAA TQZZA Ed.03 233 / 288

Page 234: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.3.4 FCPS Output Characteristics

The following table shows the output voltages, tolerances and current bandssupplied by the FCPS.

NameNominal Voltage andTolerance

DynamicRegulation

Ripple Voltage (20MHz Bandwidth)

Current(max)

Current(min)

+26 VCU +26 VDC +/- 2 % +/- 0.65 V < 200 mVpp 7.0 A 0.6 A

+12 VCU -12 VDC +/- 2 % +/- 5 % < 40 mVpp 2.7 A 0.2 A

-12 VCU -12 VDC +/- 2 % +/- 5 % < 40 mVpp 0.8 A 0.04 A

+5 VCU +5.1 VDC +/- 2 % +/- 5 % < 50 mVpp 2.0 A 0.16 A

+5 VFU +5.1 VDC +/- 2 % +/- 5 % < 50 mVpp 13 A 1.1 A

Table 69: FCPS Output Characteristics

17.3.5 MBPS Output Characteristics

The following table shows the outputs supplied by the MBPS, in addition tothose provided by the FCPS listed in the table below.

NameNominal Voltage andTolerance

DynamicRegulation

Ripple Voltage (20MHz Bandwidth)

Current(max)

Current(min)

+12 VSU +12 VDC +/- 2 % +/- 5 % < 120 mVpp 5 A 0 A

+5 VSU +5.1 VDC +/- 2 % +/- 5 % < 50 mVpp 22 A 0 A

+5 TC16 +5.1 VDC +/- 3 % +/- 5 % < 50 mVpp 6 A 0 A

Table 70: Additional MBPS Output Characteristics

234 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 235: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.3.6 Safety Standards

The power supply units comply with the following applicable standards:

EN 60950

EN 60215

Power supply primary and secondary circuits conform to the following:

Primary circuitsThe inputs of the power supply units are Telecom Network Voltage (TNV)circuits according to EN 60950.

Secondary circuits.The outputs of the power supply units satisfy the requirements for SafetyExtra Low Voltage circuits according to EN 60950.

17.3.7 Grounding

All conductive parts are connected to ground (0 V). The 0 V line is permanentlyearthed with a Permanent Earth conductor.

17.3.8 Isolation

The isolation resistance, between the inputs and ground/outputs, is > 100MOhm.

3BK 21248 AAAA TQZZA Ed.03 235 / 288

Page 236: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.4 Physical DescriptionThe power supply assemblies comprise a multilayer board fixed to a frontpanel. A large aluminium heat sink is mounted at the center of the boardto conduct heat away from high-power circuit components. Two DIN typeconnectors are mounted at the rear.

The LEDs, fuses and switches are located on the front panel. The fuses arefitted in a recess. The fuse type and current rating is indicated on the frontpanel of each unit. This section describes the physical details of the MBPSand FCPS units.

It provides the following information:

Dimensions

MBPS Front Panel

MBPS Rear View

FCPS Front Panel

FCPS Rear View.

17.4.1 Dimensions

The physical dimensions of the MBPS and FCPS are shown in the followingtable.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: MBPS: 15 T 76.20 mm

FCPS: 9 T 45.72 mm

Depth: - 280 mm

Table 71: MBPS/FCPS Physical Dimensions

236 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 237: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.4.2 MBPS Front Panel

The following figure shows the MBPS front panel, including the LEDs, fuses,rocker switches, equipment label and handle for easy removal and insertion.

ON

FU

SU

CU

FU T4A

SU T10A

CU T10A

ON

OFFFU

ON

OFFSU

ON

OFFCU

LEDs

Fuses

Rocker Switches

Equipment Labels

Handle

Fixing Holes

Fixing Holes

Figure 81: MBPS Front Panel

3BK 21248 AAAA TQZZA Ed.03 237 / 288

Page 238: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.4.3 MBPS Rear View

A rear view of the MBPS is shown in the figure below, including the heat sinkand upper and lower connectors.

Upper Connector

Lower Connector

Heat Sink

Fixing Holes

Fixing Holes

Figure 82: MBPS Rear View

238 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 239: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.4.4 FCPS Front Panel

The following figure shows the FCPS front panel, including the On/Off switches,LEDs and fuses, as well as the handle for easy removal and insertion.

ON

FU

CU

FU T4A

CU T10A

ON

OFFFU

ON

OFFCU

LEDs

Fuses

Rocker Switches

Equipment Labels

Fixing Holes

Fixing Holes

Handle

Figure 83: FCPS Front Panel

3BK 21248 AAAA TQZZA Ed.03 239 / 288

Page 240: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.4.5 FCPS Rear View

The figure below shows a rear view of the FCPS, including the heat sinkand upper and lower connectors.

Upper Connector

Lower Connector

Heat Sink

Fixing Holes

Fixing Holes

Figure 84: FCPS Rear View

240 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 241: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.5 EnvironmentThe power supplies meet the requirements for environmental conditions, fortheir safe and efficient operation, given in ETS 300 019-1-3 Class 3.2.

Environmental information is provided on:

Climatic Conditions

Mechanical Conditions.

17.5.1 Climatic Conditions

The following table lists the climatic parameters for the safe and efficientoperation of the power supplies.

Parameter Value

Ambient temperature: -10 o C to +70 o C

Relative humidity: 5 % to 95 %

Absolute humidity: 1 g/m 3 to 29 g/m 3

Temperature rate of change: [le ]2 o C

Air stream (forced cooling): > 3 L/s

Low air pressure: 70 kPa

High air pressure: 106 kPa

Table 72: DC/DC Power Supplies Climatic Conditions

17.5.2 Mechanical Conditions

The following table lists the mechanical parameters for the safe and efficientoperation of the power supplies.

Parameter - Value

Displacement amplitude:

Frequency range:

1.5 mm

2 to 9 Hz

Stationary vibration(sinusoidal)

Acceleration amplitude:

Frequency range:

5 m/ s 2

9 to 200 Hz

Shock Type L, peak acceleration: 40 m/ s 2

Table 73: DC/DC Power Supplies Mechanical Conditions

3BK 21248 AAAA TQZZA Ed.03 241 / 288

Page 242: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.6 EMCThe following sections provide information on EMC for the DC/DC PowerSupplies.

The following information is provided:

Low frequency emissions

High frequency emissions

Immunity from radiated emissions.

17.6.1 Low Frequency

For conducted emission in the low frequency range, the inputs of the powersupply units meet the requirements given in prETS 300 132-2, Chapter 4.8.

17.6.2 High Frequency

For conducted emission in the high frequency range, the inputs of the powersupply meet the requirements given in EN 55022 Class B and ETS 300 386-1,Chapter 7.2.3.

The following table lists the requirements for EN 55022 Class B.

Frequency Range Average Quasi-peak

0.02 - 0.15 MHz - 79 dB[mu ]V

> 0.15 - 0.5 MHz 66 - 56 dB[mu ]V 56 - 46 dB[mu ]V

> 0.5 - 5 MHz 56 dB[mu ]V 46 dB[mu ]V

> 5 - 30 MHz 60 dB[mu ]V 50 dB[mu ]V

Table 74: DC/DC Power Supplies EN 55022 Class B Requirements

17.6.3 Immunity

For radiated emission, in the frequency range 30 MHz to 1000 MHz, the powersupplies meet the requirements given in EN 55022 Class B, Table 4.

For immunity to radiated emission, the power supplies meet the requirementsgiven in prETS 300 342-2, Chapter 9.2.

For immunity to electromagnetic fields, in the frequency range 80 MHz to1000 MHz, the power supplies meet the requirements given in ENV 50140Level 2 (3 V/m).

For immunity against Electrical Fast Transient-Bursts the power supplies meetthe requirements given in prETS 300 342-2, Chapter 9.4.

242 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 243: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

17.7 ESDThe DC/DC Power Supplies meet ESD requirements, detailed in the followingstandards:

prETS 300 342-2, Chapter 9.3

IEC 801-2 (IEC 1000-4-2) Level 3.

3BK 21248 AAAA TQZZA Ed.03 243 / 288

Page 244: 212480000e03.pdf DRFU BTS

17 MBPS/FCPS

244 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 245: 212480000e03.pdf DRFU BTS

18 DCDB

18 DCDB

This chapter provides a detailed description of the DCDB.

3BK 21248 AAAA TQZZA Ed.03 245 / 288

Page 246: 212480000e03.pdf DRFU BTS

18 DCDB

18.1 IntroductionThe DCDB (Direct Current Distribution Board) is used in DC-powered indoorBTSs. It provides breakers for the input supply and distributes the supplyto the BTS internal power supplies.

18.1.1 Functions

The DCDB provides two functions:

Manual power supply isolation for equipment maintenance purposes

Detection of current overload conditions with automatic power supplyisolation.

18.1.2 Components

The DCDB consists of three main components:

Input connections

Breakers

Output connections.

18.1.3 Diagram

The following figure shows a diagram of the DCDB and typical input supply.

GND0 V−48/−60 V

Power Cables from Filters

Breaker 4

Breaker 3

Breaker 2

Breaker 1

Figure 85: DCDB in a Mini-BTS with Two Subracks

246 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 247: 212480000e03.pdf DRFU BTS

18 DCDB

18.2 DCDB ComponentsThe DCDB contains the following components:

Input Connections

Circuit Breakers

Output Connections.

18.2.1 Input Connections

The DC input supply of -48/-60 VDC (nominal) is fed to the DCDB via inputfilters. The -48/-60 VDC supply lines are connected to the switched inputs ofthe breakers. Ground and 0 V input connections are made to connectorgroups associated with each breaker.

18.2.2 Circuit Breakers

If the load current exceeds 16 A, the circuit breaker automatically switchesoff the supply to the equipment it serves. (A short peak of over current doesnot cause it to switch off).

Front panel switches also allow the power supply to be switched off manually.

In all cases, the DCDB has to be switched on manually.

18.2.3 Output Connections

The -48/-60 VDC output connections are made to the switched outputs of thebreakers. Ground and 0 V output connections are made to the connectorgroups associated with each breaker.

3BK 21248 AAAA TQZZA Ed.03 247 / 288

Page 248: 212480000e03.pdf DRFU BTS

18 DCDB

18.3 ConfigurationsThere are various ways that the DCDB can be configured depending on thesize and type of the equipment it serves.

18.3.1 Mini-BTS with Two Subracks

The figure below shows the DCDB in a Mini-BTS with two subracksconfiguration.

BREAKER

16A

F21 2

16A

F11 2

−48/−60V

FILTER 1

4

2

1

5

4

3

2

1

5

4

3

2

1

5

4

2

1

5

X2

4

3

2

1

X1

4

3

2

1

X6

X5

−48/−60V 0V

GND

−48/−60V 0V

−48/−60V

CFU1

MBSR2

CFU1

MBSR2

0V/FILTER 2

MBSR2

SCREENING

CFU1

CFU1

MBSR1

CFU1

MBSR1

0V/FILTER 2

MBSR1

SCREENING

CFU1

II

I

X9

X Connector namesF Breakers

3

3

Figure 86: DCDB in a Mini-BTS with Two Subracks

248 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 249: 212480000e03.pdf DRFU BTS

18 DCDB

18.3.2 BTS with up to Eight Carriers

The following figure shows a DCDB in a BTS with upt to eight carriersconfiguration.

BREAKER

16A

F41 2

16A

F31 2

16A

F21 2

16A

F11 2

−48/−60V

−48/−60V

−48/−60V

FILTER 1

FILTER 2

X43

2

1

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

0V GND

X8 IV

X3 X7 III

4

3

2

1

X2

4

3

2

1

X1

4

3

2

1

X6

X5

−48/−60V 0V

−48/−60V 0V

−48/−60V 0V

FCSR3/FCPS1

FCSR3/FCPS2

0V/FILTER 4 SCREENING

FCSR2/FCPS1

0V/FILTER 3 SCREENING

MBSR2 MBSR2 MBSR2

0V/FILTER 4 SCREENING

COMBINER

CFU1

FCSR1/FCPS2

COMBINER

CFU1

COMBINER

CFU1

FCSR1/FCPS2

MBSR1 MBSR1 MBSR1

0V/FILTER 3 SCREENING

COMBINER

CFU1

FCSR1/FCPS1

COMBINER

CFU1

FCSR1/FCPS1

COMBINER

CFU1

FCSR1/FCPS1

FCSR3/FCPS2

FCSR3/FCPS1

FCSR3/FCPS2

FCSR2/FCPS2

FCSR2/FCPS1

FCSR2/FCPS2

FCSR2/FCPS1

FCSR2/FCPS2

FCSR1/FCPS2 II

I

X9

FCSR3/FCPS1

4

Figure 87: DCDB in a BTS with up to Eight Carriers

Note: If less than eight Carriers are equipped, excess cables are not connected.

3BK 21248 AAAA TQZZA Ed.03 249 / 288

Page 250: 212480000e03.pdf DRFU BTS

18 DCDB

18.3.3 Indoor Sectorized BTS with 3 x 2 Carriers

This figure shows a DCDC in an Indoor sectorized BTS with 3 x 2 carriers.

BREAKER

16A

F41 2

16A

F31 2

16A

F21 2

16A

F11 2

−48/−60V

−48/−60V

−48/−60V

FILTER 1

FILTER 2

X4

4

3

2

1

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

0V GND

X8 IV

X3 X7 III

4

3

2

1

X2

4

3

2

1

X1

4

3

2

1

X6

X5

−48/−60V 0V

−48/−60V 0V

−48/−60V 0V

MBSR1 III

0V/FILTER 4 SCREENING

0V/FILTER 3 SCREENING

MBSR2 I MBSR2 I MBSR2 I

0V/FILTER 4 SCREENING

CFU1 2

CFU1 1

CFU1 2

CFU1 1

CFU1 2

CFU1 1

MBSR1 I MBSR1 I MBSR1 I

0V/FILTER 3 SCREENING

CFU1 2

CFU1 1

CFU1 2

CFU1 1

CFU1 2

CFU1 1

MBSR2 III

MBSR1 III

MBSR2 III

MBSR1 III

MBSR2 III

MBSR1 II

MBSR2 II MBSR2 II

MBSR1 II

MBSR2 II

MBSR1 II

II

I

X9

I, II, III at MBSR designates number of BTS sectors

Figure 88: DCDB in a Sectorized Indoor BTS with 3 x 2 Carriers

250 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 251: 212480000e03.pdf DRFU BTS

18 DCDB

18.3.4 Outdoor Sectorized BTS with 3 x 2 Carriers

A DCDB in an outdoor sectorized BTS with 3 x 2 carriers is shown in thefigure below.

BREAKER

16A

F41 2

16A

F31 2

16A

F21 2

16A

F11 2

−48/−60V

−48/−60V

−48/−60V

FILTER 1

FILTER 2

X4

4

3

2

1

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

0V GND

X8 IV

X3 X7 III

4

2

1

X2

4

3

2

1

X1

4

3

2

1

X6

X5

−48/−60V 0V

−48/−60V 0V

−48/−60V 0V

NTPM/MW*

0V SCREENING

0V SCREENING

MBSR2 MBSR2

0V SCREENING

MBSR1 I MBSR1

0V SCREENING

NTPM/MW*

NTPM/MW*

NTPM/MW*

HEX1 HEX1

II

I

X9

I, II, III at MBSR designates number of BTS sectors

Smoke Det* Smoke Det*

MBSR2

MBSR1

NTPM/MW*

NTPM/MW*

HEX1

Smoke Det*

* Master BTS OnlyMW Microwave Equipment

NTPM Network Termination Primary Multiplexer

3

Figure 89: DCDB in a Sectorized Outdoor BTS with 3 x 2 Carriers

3BK 21248 AAAA TQZZA Ed.03 251 / 288

Page 252: 212480000e03.pdf DRFU BTS

18 DCDB

18.4 Physical DescriptionThe DCDB comprises a front panel on which four Breakers are mounted. Thenormal switch-on position is up. The front panel is attached to a printed circuitboard which accommodates a matrix of spade terminals arranged in groups.

The DCDB assembly slides into a subrack guided by top and bottom rails. Thefront panel is fixed to the subrack frame by top and bottom screws of the frontpanel. This section describes the physical details of the DCDB.

It provides the following information:

Dimensions

Appearance.

18.4.1 Dimensions

The following table shows the DCDB physical dimensions.

Dimension Size (Units) Size (mm)

Height: 6 U 266.7 mm

Width: 10 T 50.8 mm

Depth: - 250.0 mm

Table 75: DCDB Physical Dimensions

252 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 253: 212480000e03.pdf DRFU BTS

18 DCDB

18.4.2 Appearance

The following figure shows the DCDB equipment assembly. It includes theSpade terminal matrix, the breakers and their input terminal, the breaker tailconnections and the breaker switches on the front panel.

4

3

2

1

Fixing HolesBreakers

Breaker Switches shown in Position "ON"

Cable Fixings

Equipment Labels

−48/−60 VDC Breaker Tail

Spade Terminal Matrix

− VDC 0 V GND

Input Terminals of BreakersFront Panel

Fixing Holes

Connection

Figure 90: DCDB Equipment Assembly

3BK 21248 AAAA TQZZA Ed.03 253 / 288

Page 254: 212480000e03.pdf DRFU BTS

18 DCDB

254 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 255: 212480000e03.pdf DRFU BTS

19 SMBI

19 SMBI

This chapter provides a detailed description of the SMBI.

3BK 21248 AAAA TQZZA Ed.03 255 / 288

Page 256: 212480000e03.pdf DRFU BTS

19 SMBI

19.1 IntroductionThe BIE is used to connect distant BTSs to BSCs via a standard 2 Mbit/s(primary rate) G.703/G.704 type transmission network. This connection isknown as the Abis Interface.

The SMBI (Submultiplexer Base Station Interface) provides the BIE at the BTS.Its function is to multiplex traffic and signalling information between the AbisInterface and BTS BSIs and vice-versa. The following figure shows the locationof the SMBI in the simplest BSS configuration.

Base Station Interface

Equipment

SMBI

Long 2 Mbit/s LinkBTS

Abis Interface

Other BTS Equipment Other BSC

Equipment

BSI BSI

Base Station Interface Equipment

BSC

Figure 91: SMBI Logical Positioning

Abis Interface The SMBI provides two Abis Interfaces, allowing connection ofmultiple BTSs to the BSC in ring or chain-type architectures. A simple stararchitecture can also be used, requiring just one interface.

A single SMBI can handle six BSIs. These are shared between Frame Unitsand OMUs depending on the configuration. The SMBI also provides severalservice functions including BER measurement and loopback tests.

In larger configurations a second SMBI is employed, providing a total of 12BSIs. In this case, one SMBI is configured as "master" and is connected to theAbis Interface. The second, "slave" SMBI, is connected to the master, androutes its data to/from the Abis Interface through the master.

The mapping of the individual traffic and signalling channels between the AbisInterface and BSIs is programmable. This is done either locally, via the MMI, orremotely via the Transmission Q1 Link.

The main path through the unit is from the Abis Interface. It passes throughthe multiplexers, framers, PCM time slot switch, and out to the BSIs via thebit switch (and second SMBI if used). The SMBI operates in both directions,also multiplexing from the BSIs to the Abis Interface. The Microcontroller andremaining interfaces provide the O&M functions.

256 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 257: 212480000e03.pdf DRFU BTS

19 SMBI

19.2 SMBI Functions

19.2.1 Functional Blocks

The SMBI contains the following functional blocks:

G.703 interface

Multiplexer

Central clock unit

Framer/G.704 interface

PCM time slot switch

Bit switch

Microcontroller.

PCM Time Slot Switch

Bit Switch

Framer/G.704 Interface

Framer/G.704 Interface

Central Clock Unit

Multiplexer

MultiplexerG.703 Interface

Abis

Interface 2 to Slave SMBI

G.703 Interface

Abis

Interface 1 from BSC or Master SMBI

Microcontroller

LEDs TSST MMI

Reset

BSIs

TC Interface

ST Interface

DCL2

Station Unit Interface

Figure 92: SMBI Block Diagram

3BK 21248 AAAA TQZZA Ed.03 257 / 288

Page 258: 212480000e03.pdf DRFU BTS

19 SMBI

19.2.2 G.703 Interface

The G.703 interface carries traffic and signalling information between the BSCand BTSs. It provides the connection to standard G.703 2 Mbit/s NetworkTerminators provided by the network link operator.

19.2.3 Multiplexer

The Multiplexer is simply a switch allowing an alternative to the Abis Interface tobe selected. Although the basic hardware has been included on the SMBI,this feature is not fully implemented.

19.2.4 Central Clock Unit

The Central Clock Unit provides a reference clock. It is extracted from the AbisInterface, or locally generated, and distributed throughout the SMBI and to theBTS via the Station Unit interface.

19.2.5 Framer/G.704 Interface

The Framer provides all the functions required for conversion of the Abis datastream into PCM frames including:

High Density Bipolar 3 coding

Alarm Indicator Signal detection

Channel 0 handling: e.g., Frame alignment, Cyclic Redundancy Check, Bit

Error Rate and Alarm Bit monitoring.

19.2.6 PCM Time Slot Switch

The PCM time slot switch multiplexes the incoming/outgoing Abis Interfacedata on a 8-bit time slot basis to a number of input/output streams. The outputis passed to the bit switch.

In order to accommodate the wide range of possible connection architectures,time slot allocations are configurable, according to a restricted set of mappings.

258 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 259: 212480000e03.pdf DRFU BTS

19 SMBI

19.2.7 Bit Switch

The Bit Switch multiplexes traffic data nibbles from the PCM Time Slot Switchoutputs to the BSIs. Frame Unit Signalling and O&M information is carried inchannels occupying whole 8-bit time slots.

Mapping

NOT USED / ALL ONES

TCH0

TCH1

TCH2

TCH3

TCH4

TCH5

TCH6

TCH7

NOT USED ALL ONES

FRAME UNIT SIGNALLING

NOT USED / ALL ONES

NOT USED / ALL ONES

NOT USED / ALL ONES

NOT USED / ALL ONES

NOT USED / ALL ONES

NOT USED / ALL ONES

NOT USED / ALL ONES

ALL ONES

Bit

TS0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

28

29

30

31

19

20

21

22

23

24

25

26

27

ALL ONES

BSI Frame (for Frame Unit 3)

1 2 3 4 5 6 7 8

NOT USED / ALL ONES

ALL ONES

NOT USED / ALL ONES

ALL ONES

NOT USED / ALL ONES

Bit

Frame Unit No. 1

Frame Unit No. 5

Frame Unit No. 2

Frame Unit No. 6

Frame Unit No. 3

Frame Unit No. 7

Frame Unit No. 4

Frame Unit

TCH 7

TCH 3

TCH 7

TCH 3

TCH 7

TCH 3

TCH 7

TCH 0 TCH 1 TCH 2 TCH 3

TCH 4 TCH 5 TCH 6

TCH 0 TCH 1 TCH 2 TCH 3

TCH 4 TCH 5 TCH 6

TCH 0 TCH 1 TCH 2 TCH 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0TS

Q1

BTS O&M CHANNEL 2

18

19

20

21

NOT USED

NOT USED

NOT USED

BTS O&M CHANNEL 1

FRAME UNIT 9 SIGNALLING

FRAME UNIT 8 SIGNALLING

FRAME UNIT 7 SIGNALLING

FRAME UNIT 6 SIGNALLING

FRAME UNIT 5 SIGNALLING

FRAME UNIT 4 SIGNALLING

FRAME UNIT 2 SIGNALLING

FRAME UNIT 1 SIGNALLING

28

29

30

31

22

23

24

25

26

27

Abis Interface Frame

FRAME UNIT 3 SIGNALLING

TCH 4 TCH 5 TCH 6 TCH 716

17 NOT USED

No. 8

TCH 7

TCH 7

TS 0 INFO1 2 3 4 5 6 7 8

TCH 3

TCH 7

TCH 3

TCH 2

TCH 6

TCH 2

TCH 6

TCH 2

TCH 6

TCH 2

TCH 6

TCH 2

TCH 6

TCH 1

TCH 5

TCH 1

TCH 5

TCH 1

TCH 5

TCH 1

TCH 5

TCH 1

TCH 5TCH 4

TCH 0

TCH 4

TCH 0

TCH 4

TCH 0

TCH 4

TCH 0

TCH 4

(TCH 0)

Figure 93: Typical Abis Interface to BSI Mapping at a BTS

3BK 21248 AAAA TQZZA Ed.03 259 / 288

Page 260: 212480000e03.pdf DRFU BTS

19 SMBI

19.2.8 Microcontroller

The microcontroller provides the following functions:

Configuration

Monitoring of the SMBI and Abis Interface

O&M processing.

These functions are based around a highly integrated 16-bit microcontroller. AnEEPROM holds configuration settings including equipment addresses, AbisInterface to BSI mappings and the connection architecture.

Access to the controller can be gained locally via the MMI or remotely throughthe Abis Interface.

A watchdog circuit protects the microcontroller from hang-up behavior.

19.3 O&MThis section describes the O&M functions of the SMBI.

The following information is provided:

LEDs

Replacement

Power Supply

DIP Switch

Abis Interface Characteristics.

260 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 261: 212480000e03.pdf DRFU BTS

19 SMBI

19.3.1 LEDs

Status LEDs on the front panel indicate the status of the Abis Interface.

The function of the LEDs in a ring configuration is shown in the following table.

LED Meaning

A1 and A2 off: No power.

A1/A2 on: No Failure on Abis 1/Abis 2 Hardware.

A1/A2 blinking slowly: Failure of Abis 1/Abis 2 Hardware.

A1/A2 blinking fast: Severe SMBI Failure.

Table 76: LEDs A1/A2 on SMBI in Ring Configuration

In a star configuration or at the end of a chain, A2 is disabled. The function ofLED A1 in this configuration is shown in the following table.

LEDs Meaning

A1 off: No power.

A1 on: No Failure on Abis 1 Hardware.

A1 blinking slowly: Failure of Abis 1 Hardware.

A1 blinking fast: Severe SMBI Failure.

Table 77: LED A1 on SMBI in Star Configuration or End of Chain

If a second SMBI is used, only A1 is used on the slave board. The function ofLED A1 in this configuration is shown in the following table.

LEDs Meaning

A1 off: No power

A1 on: Power on

A1 blinking fast: Severe Failure (on second SMBI)

Table 78: LED A1 on Second SMBI

3BK 21248 AAAA TQZZA Ed.03 261 / 288

Page 262: 212480000e03.pdf DRFU BTS

19 SMBI

19.3.2 Replacement

Removal and insertion of the SMBI, while power is present on the backplane,can result in damage to the unit.

Risk of Damage to EquipmentHot replacement of the SMBI is not permitted.

19.3.3 Power Supply

Power is supplied to the SMBI via the backplane connectors:

+5 VDC, 1.3 A max.

+12 VDC, 30 mA max.

19.3.4 DIP Switch

The impedance of the two Abis Interfaces can be independently configuredusing a DIP switch located on the board.

The following figure shows the switch positions, which can be set.

Both Interfaces = 120 Ohms

Abis 1 Abis 2

Abis 1 = 120 Ohms

Abis 2 = 75 Ohms

Abis 1 Abis 2

1 2 3 4

4321

Both Interfaces = 75 Ohms

4321

4321

Abis 1 = 75 Ohms

Abis 2 = 120 Ohms

Abis 1 Abis 2 Abis 1 Abis 2

Figure 94: Abis Interface Impedance Switch Settings

Note: Switches 2 and 4 must not be moved from their lower positions.

262 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 263: 212480000e03.pdf DRFU BTS

19 SMBI

19.3.5 Abis Interface Characteristics

The Abis Interface provides the connection to standard G.703 2 Mbit/s NetworkTerminators provided by the network link operator. The following table liststhe Abis Interface characteristics.

Characteristic Meaning

Signal interface: G.703

Bit rate: 2048 kbit/s

Impedance: 120 Ohm (galvanic isolated) or 75 Ohm.

Input sensitivity: -40 dB (max).

RLSC, RLSS - receive data.Interface signals:

TLSC, TLSS - transmit data.

Table 79: Abis Interface Characteristics

3BK 21248 AAAA TQZZA Ed.03 263 / 288

Page 264: 212480000e03.pdf DRFU BTS

19 SMBI

19.4 Physical DescriptionThe SMBI is a multilayer board, which plugs into the 19" BTS subrack. Thissection describes the physical details of the SMBI.

It provides the following information:

Dimensions

Front Panel

Connections

Rear View.

19.4.1 Dimensions

The SMBI has the following dimensions shown in the following table.

Dimension Size (Units) Size (mm)

Height: 3 U 133.35 mm

Width: 5 T 25.4 mm

Depth: - 280 mm

Table 80: SMBI Physical Dimensions

264 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 265: 212480000e03.pdf DRFU BTS

19 SMBI

19.4.2 Front Panel

The following figure shows the front panel of the SMBI, including the AbisInterface connector and status LEDs.

A2

A1

Fixing Hole

Equipment Labels

Alarm LEDs

Abis 2 Connector

Abis 1 Connector

TSST Connector

MMI Connector

Reset Button

Handle

Fixing Hole

1

Figure 95: SMBI Front Panel

3BK 21248 AAAA TQZZA Ed.03 265 / 288

Page 266: 212480000e03.pdf DRFU BTS

19 SMBI

19.4.3 Connections

The two Abis Interfaces share the 45 pin, 3-row male socket on the front panelwith the MMI and TSST connections.

The following table lists the front panel connector pin-outs.

Pin Row a Row b Row c

15 NC NC RLSC2

14 GND GND RLSS2

13 GND TLSS2 TLSC2

3*3 Abis2

12 NC NC NC

11 NC NC RLSC1

10 GND GND RLSS1

9 GND TLSS1 TLSC1

3*3 Abis1

8 NC NC NC

7 RTSSTT(unused)

GND TTSSTT(unused)

6 RTSSTF(unused)

NC TTSSTF(unused)

5 NC GND STSST (unused)

3*3 TSST(unused)

4 NC NC NC

3 NC GND MFRMCON

2 NC GND SMMI

1 RMMI GND TMMI

3*3 MMI

Table 81: SMBI Front Panel Connector

NC = Not Connected

266 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 267: 212480000e03.pdf DRFU BTS

19 SMBI

19.4.4 Rear View

The following figure shows a rear view of the SMBI, including its connectors.

D C B A

Rear Connector

1

32

Fixing Hole

Fixing Hole

Figure 96: SMBI Rear View

3BK 21248 AAAA TQZZA Ed.03 267 / 288

Page 268: 212480000e03.pdf DRFU BTS

19 SMBI

268 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 269: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20 CFU1/CFUA/CFUT

This chapter provides a detailed description of the cooling fans.

3BK 21248 AAAA TQZZA Ed.03 269 / 288

Page 270: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.1 IntroductionCooling Fans are used in all BTS configurations to regulate the BTS internaltemperature.

20.1.1 Types

Three types of Cooling Fan are used, depending on the BTS configuration:

CFU1

CFUT

CFUA.

The following table describes the application of the three cooling fan types.

Fan Type Application

CFU1 Used in all BTSs

Where a large flow of air is required, an additional CFU1 can be used.

CFUT Used at the top of large BTS cabinets.

CFUA Used in MCI2 cabinets supplied with AC power to improve forced cooling of the ADPS(version 3BK 01917 ABBA).

Table 82: Cooling Fan Types

Note: A BTS cannot be equipped with a CFUT and a CFUA.

270 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 271: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.1.2 Temperature Sensor

A Temperature Sensor Board is mounted on top of the uppermost subrackwithin the cabinet.

20.1.3 Typical Positioning

The following figure shows typical positioning of a CFU1, CFUT, CFUA andtemperature sensor relative to the equipment subracks.

Temperature Sensor Board

CFUT

CFU1

Subrack 2

Subrack 1

Subrack 3

Control

Temperature Sensor Board

CFUA

AC−DC Power Supply Subrack 2

Subrack 1

ControlControlControl

CFU1

Figure 97: CFU1, CFUT, CFUA and Temperature Sensor Positioning

The following figure shows a combined CFU1, CFUT/CFUA and temperaturesensor block diagram.

3BK 21248 AAAA TQZZA Ed.03 271 / 288

Page 272: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

Fans Speed Sensors RemoteTemperature

Sensors

DC/DC Converter

Control Board

Station Unit

LEDs CFU1

LEDs CFUT/CFUA

Speed SensorsFans

CFUA/CFUT

CFU1

−48/−60 VDC

Figure 98: CFU1 and CFUT/CFUA Block Diagram

272 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 273: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.2 Functional ComponentsThe Cooling Fan Units contain the following functional components:

Fans and speed sensors

DC/DC Converters

Control Board.

20.2.1 Fans and Speed Sensors

The CFU1 and CFUT each contain six fans with speed sensors. The CFUAcontains two fans with speed sensors. The CFU1 controls the speed of all fans.

20.2.2 DC/DC Converters

The CFU1 DC/DC Converter provides +5 VDC and +40 VDC supplies for theFans and Control Board. This includes the supply to the CFUT/CFUA, ifthey are used.

20.2.3 Control Board

The Control Board uses signals from the speed and temperature sensors tocontrol the speed of the fans as follows:

At temperatures below 27 o C the fans run at a fixed low speed

At temperatures above 55 o C they run at maximum speed

At temperatures between 27 o C and 55 o C the speed of the fan units islinearly controlled.

Alarms The Control Board also reports up to five alarm conditions to theStation Unit. The following table describes the Control Board alarms andthe corresponding fault indication.

Alarm Fault Indication

Normal Alarm One fan of the CFU1 or CFUT/CFUAis faulty.

Red LED blinks

Urgent Alarm More than one fan is faulty. Red LED blinks

Temperature Alarm Temperature exceeds 70 o C or thesensor connections faulty.

Red LED on

NALA and UALA The DC/DC Converter is faulty. All LEDs are off

NALA, UALA and TALA The input supply cable is damaged orthe DC/DC Converter is faulty.

All LEDs are off

Table 83: Control Board Alarms

Note: NALA and UALA are duplicated to serve the CFUT/CFUA (when fitted).

3BK 21248 AAAA TQZZA Ed.03 273 / 288

Page 274: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.3 O&MThis section describes the O&M functions of the cooling fans.

The following information is provided:

LEDs

Power Supply.

20.3.1 LEDs

Front panel LEDs indicate normal operation (green LEDs) or an alarm condition(red LEDs) for both the CFU1 and CFUT/CFUA.

20.3.2 Power Supply

Power is supplied to the cooling fans via the CFU1 DC/DC converter. The inputsupply voltage to the CFU1 is -48/-60 VDC (nominal).

20.4 CFU1 Physical DescriptionThe CFU1 assembly contains the six fans and control board. On the top andunderside of the assembly a guard grid is fitted over each fan for protection.A front panel contains the status indication LEDs. On the rear section theinterface connectors and the DC/DC Converter with heat sink are mounted.

20.4.1 Dimensions

The CFU1 physical dimensions are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 1 U 44.45 mm

Width: - 480 mm

Depth: - 338 mm

Table 84: CFU1 Physical Dimensions

274 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 275: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.4.2 Appearance

The physical appearance of the CFU1 is shown in the figure below. The figureshows the front panel with the indication LEDs, a top view showing the fans anda rear view showing the connectors.

Power Supply Connectors

DIN Connector

CFUT/CFUA

Temperature Sensor

Station Unit

CFU1 Rear View

Fans

Heat Sink

Control Board

Mode Switching Strap

Guard Grid Fitted on Top and Underside of all Fans

Top View

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

CFUT

FAULT

CFU1

ON

LEDs

Fixing Holes

Equipment Labels

Front Panel View

Fixing Holes

ON FAULT

1913

Figure 99: CFU1 Mechanical Assembly

3BK 21248 AAAA TQZZA Ed.03 275 / 288

Page 276: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.5 CFUT Physical DescriptionThe CFUT casing is similar to the CFU1. However, a top panel is includedwhich is perforated to provide air outlets.

20.5.1 Dimensions

The CFUT physical dimensions are shown in the following table.

Dimension Size (Units) Size (mm)

Height: 1 U 44.45 mm

Width: - 415 mm

Depth: - 270 mm

Table 85: CFUT Physical Dimensions

276 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 277: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.5.2 Appearance

The following figure shows the rear, top and bottom views of the CFUT.

Top View

Guard Grid Fitted under all Fans

Rear View

One Meter Connecting Cable and Interface Connector DIN 3x7 Female

Bottom View

Seal Fitted all Round

Perforated Apertures

Fixing Holes

Fixing Holes

Equipment Labels

Ground Connector

Figure 100: CFUT Mechanical Assembly

3BK 21248 AAAA TQZZA Ed.03 277 / 288

Page 278: 212480000e03.pdf DRFU BTS

20 CFU1/CFUA/CFUT

20.6 CFUA Physical DescriptionThe CFUA comprises a printed circuit board on which two fans and the speedsensors are mounted. The CFUA is mounted in the bottom of the upperMini-BTS Subrack.

20.6.1 Dimensions

The CFUA dimensions are shown in the following table.

Dimension Size (mm)

Height: 22 mm

Width: 43 mm

Depth: 279 mm

Table 86: CFUA Physical Dimensions

20.6.2 Appearance

The CFUA mechanical assembly is shown in the figure below. It includes bothtop and side views.

FanRear Front

Side View

Rear

Front

Cable

Top View

Fixing Screw

Connector

Equipment Labels

Fan

Fan Fan

Fixing Bolt

Fixing Nut

Fixing Bolt

Fixing Screw

Figure 101: CFUA Mechanical Assembly

278 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 279: 212480000e03.pdf DRFU BTS

21 MCIB

21 MCIB

This chapter provides a detailed description of the MCIB.

3BK 21248 AAAA TQZZA Ed.03 279 / 288

Page 280: 212480000e03.pdf DRFU BTS

21 MCIB

21.1 IntroductionThe MCIB is mounted in the side of the Mini-BTS MCI2 cabinet to attachthe external power and signal cables. It can be used in both AC and DCpowered BTSs.

The following sections provide O&M information and a physical description ofthe MCIB.

21.2 O&MThis section describes the O&M functions of the MCIB.

The following information is provided:

External Alarm Cables

Q1 Test Cable

Jumper Connections.

21.2.1 External Alarm Cables

The pre-equipped cabling and jumper field connect the external alarm lines tothe Station Unit alarm inputs and provide access for factory tests.

There are three cables:

External Alarm Cable 4

Door Alarm Cable 1

External Alarm Cables 2 and 3.

External alarms enter the cabinet via External Alarm Cable 4 (EAC4). The"free-end" of this cable is mounted on the MCIB external connection plate, the"fixed-end" being directly connected to the inputs of the jumper field.

Door Alarm Cable 1 (DAC1) connects the optional Mini-BTS Door Switch to thejumper field. The DAC1 is connected directly to the MDSW and the jumper field.

External Alarm Cable 2 and External Alarm Cable 3 are directly connectedto the outputs of the jumper field. The ’free-ends’ connect to the front panelalarm inputs on the Station Unit boards: EAC2 connects to the SCFE, EAC3to the SACE.

21.2.2 Q1 Test Cable

The Q1 Test Cable is pre-mounted on the connection plate, the "free-end" beingconnected to the SCFE via the subrack.

21.2.3 Jumper Connections

The insertion of a plug in the jumper field disconnects the link at that point,providing a limited alarm selection mechanism.

A jumper must be inserted at one of two positions to select between theinternal and external door alarms:

Jumper X1, pos. 2 plugged = Enable internal door alarm

Jumper X2, pos. 7 plugged = Enable external door alarm.

280 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 281: 212480000e03.pdf DRFU BTS

21 MCIB

21.3 Physical DescriptionThe MCIB consists of a stainless steel open box, with punched holes for thevarious signal cable connectors. Mounting holes are spaced around the outeredge. A blanking plate covers the power supply connection.

This section describes the physical details of the MCIB. It provides the followinginformation:

Dimensions

Front and Side View

Rear View

Cables.

21.3.1 Dimensions

The dimensions of the MCIB are shown in the following table.

Dimension Size

Height: 180 mm

Width: 240 mm

Depth: 35 mm

Table 87: MCIB Physical Dimensions

3BK 21248 AAAA TQZZA Ed.03 281 / 288

Page 282: 212480000e03.pdf DRFU BTS

21 MCIB

21.3.2 Front and Side View

The following figure shows the front view of the MCIB (as seen from the outsideof the MCI2), and a side view.

Equipment Labels

Side View Front View

Input Supply Label

Mounting Holes

Power Supply Cover Plate

Sub−D Type Connector Holes

High Voltage Warning Label

Clock N Clock R Clock N Clock R

Abis Link A Abis Link B Q1−Test

Ext Alarm

NOMINAL INPUT

Current: xxxVoltage: xxx

0 V xx/xxV

Power Cable Clip

Figure 102: MCIB Front and Side Views

282 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 283: 212480000e03.pdf DRFU BTS

21 MCIB

21.3.3 Rear View

The following figure shows the rear view of the MCIB (as seen from inside theMCI2), including the position of the filter unit, internal cables and jumper field.

Cover Plate & Warning Label

DB6C for (DC) or ACPC for (AC)

Internal Power Cable

PowerSupplyFilter

Power Input Cable

X1

X2

8 67 5 4 3 2 1

Internal Cables

External alarm connection jumper field with pre−equipped external alarm cables

#5

#3 DB6CACPC#4

#8#1#2

#1

#2or

#1

#2or

#1

#2or

#1

#2or

#3

#4or

#3

#4or #

5#6

#7

#8

#9

#6#7

#9

X1, X2

Master Mini−BTS Clock CableSlave Mini−BTS Clock CableInternal Mini−BTS 2 Mbit Cable (120 Ohms)Internal Mini−BTS 2 Mbit Cable (75 Ohms) Door Alarm Cable 1EAC3EAC2

Q1 Test CableEAC4DC Power CableAC Power CableJumpers

Figure 103: Equipped MCIB Rear View Inside the MCI2

21.3.4 Cables

The clock and Abis Interface and Q1 Test connector (Sub-D type) are mountedon the MCIB from the inside. The pins are accessible from the outside of thecabinet, to which the external signal cables are connected.

Pre-equipped cabling is used for the connection of external alarms and the Q1Test interface. A jumper field allows the selection of an internal or external dooralarm, or the alteration of alarm connection mappings (although the latter isnormally performed by software).

The external power cable is fixed to the cabinet by a cable clip. The AC or DCfilter unit (which is a component of the internal cable set) is mounted on theMCIB from the rear.

3BK 21248 AAAA TQZZA Ed.03 283 / 288

Page 284: 212480000e03.pdf DRFU BTS

21 MCIB

284 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 285: 212480000e03.pdf DRFU BTS

22 CUDP/FUDP

22 CUDP/FUDP

This chapter gives a detailed description of the CUDP and FUDP for G2BTS subracks.

3BK 21248 AAAA TQZZA Ed.03 285 / 288

Page 286: 212480000e03.pdf DRFU BTS

22 CUDP/FUDP

22.1 IntroductionDummy panels are used to replace Frame Units and Carrier Units when a slotis left vacant in certain BTS subrack configurations.

There are two types of dummy panel:

CUDP

FUDP

In appearance, their front panels are different in size and there are variations onthe backplane connectors.

22.2 CUDP Physical DescriptionThis section describes the physical details of the CUDP. It provides thefollowing information:

Front Panel

Side View (showing the backplane connectors).

The CUDP consists of a single board with a front panel and backplaneconnector(s). The CUDP has one backplane connector. The signals, presentedto the connectors, are terminated with resistors.

BackplaneConnector

X100

Front Panel Side View

Fixing Holes

Handle

Fixing Holes

Handle

Equipment Labels

Figure 104: CUDP Front Panel and Backplane Connector

286 / 288 3BK 21248 AAAA TQZZA Ed.03

Page 287: 212480000e03.pdf DRFU BTS

22 CUDP/FUDP

22.3 FUDP Physical DescriptionThis section describes the physical details of the FUDP.

It provides the following information:

Front Panel

Side View (showing the backplane connectors).

The FUDP consists of a single board with a front panel and backplaneconnector(s). The FUDP has two backplane connectors. The signals,presented to the connectors, are terminated with resistors.

BackplaneConnectors

X100

Front Panel Side View

X101

Fixing Holes

Handle

Fixing Holes

Handle

Equipment Labels

Figure 105: FUDP Front Panel and Backplane Connectors

3BK 21248 AAAA TQZZA Ed.03 287 / 288

Page 288: 212480000e03.pdf DRFU BTS

22 CUDP/FUDP

22.4 ConfigurationsThe FUDP and CUDP are used in the following subrack configurations:

MBSR2s, housed in single-carrier MCI2s, with Station Unit redundancy

MBSR2s, housed in single-carrier Mini-BTS Cabinet Outdoor Two Subracks,

with Station Unit redundancy

MBSR2s, housed in single-carrier Mini-BTS Cabinet Outdoor FourSubracks, with Station Unit redundancy

MBSR2s, housed in single-carrier Cabinet Equipment 1.2 m, with StationUnit redundancy

MBSR2s, housed in 3 x 1 sectorized Cabinet Equipment 2 m, with Station

Unit redundancy

FCSRs housed in CBE2s.

Each configuration requires a particular type of Dummy Panel. The tablebelow lists the Dummy Panels, and their part numbers, used for the aboveconfigurations.

22.5 ApplicationsThere are two types of FUDP, which replace the following Frame Units:

Three-board Frame Unit (FUCO, FICE and DADE)

Single-board Frame Units (DRFU).

There are three types of CUDP, which replace the Carrier Unit.

The following table lists the five types of Dummy Panel and their individualapplications.

Unit Part No. Application

CUDP 3BK 06170 AA Replaces Carrier Unit in MBSR2.

CUDP 3BK 06170 AB Replaces Carrier Unit in FCSR AA.

CUDP 3BK 06170 AC Replaces Carrier Unit in FCSR AB.

FUDP 3BK 06174 AA Replaces three-board Frame Unit in CBE2 racks.

FUDP 3BK 06174 AB Replaces single-board Frame Units (DRFU) inCBE2s and MBSR2s.

Table 88: Types of Dummy Panel

288 / 288 3BK 21248 AAAA TQZZA Ed.03