33
Light Weight Steel Solutions in Automotive Design 22 november 2012 / Rob Ruifrok

22 november2012 / Rob Ruifrok Light Weight Steel Solutions ... · PDF fileand manufacturing operations in 26 countries ... From From ... 0.8g forward braking test) 29

Embed Size (px)

Citation preview

Light Weight Steel Solutions in Automotive Design

22 november 2012 / Rob Ruifrok

2

Inhoud

• Inleiding Tatasteel R&D

• Licht gewicht in de autoindustrie

• Super light Car project

• Future Steel Vehicle project

3

3% 3%4%

6%

15%

24%

45%

Consumentenproducten

Dienstverlening

Chemie

Energie

IT

Engineering

Materialen

� Indiaas industrieel concern opgericht door JN Tata• Een historie van meer dan 140 jaar

� Totale omzet $ 70.8 miljard (boekjaar2009)

� Actief in 7 bedrijfssectoren

� Meer dan 350 000 medewerkers in 80 landen

Tata Sons

44

Tata Steel Group – a diversified Global Steel Player

Tata Steel Group

• One of the world’s top ten steel companies in terms of crude steel production volume

• Crude steel capacity of approx. 28 Mn tonnes*

• A balanced global presence in over 50 markets and manufacturing operations in 26 countries

• 81,000 fte across 5 continents

• Investments in Minerals Assets improving Raw Material Security

• Group turnover (FY10): US$23bn

• Group EBITDA (FY10): US$2.1bn

Steel making operationsDistribution and Commercial Centres including downstream assets

Mining assets & projects

Tata Steel Europe

• Crude steel capacity:

─ 18 mtpa

─ 2nd largest steel producer in Europe

• 35,000 employees

5

Locaties Tata Steel Group R&D

VK totaal 350 FTE IJmuiden 445 FTE India R&D + SS 450 FTE (*)

JamshedpurIndia R&DIJTC

TTC

STC

AEG

TTC: Teesside Technology CentreSTC: Swinden Technology Centre (Rotherham)AEG: Automotive Engineering Group (Coventry)IJTC: IJmuiden Technology Centre

(*) FTE: Full Time Equivalent

6

� Steel Metallurgy

� Coated Products

Applications:

� Automotive

� Industrial & Construction

� Packaging

* Thermo-Mechanical Treatment Simulator IJmuidenTC

R&D-organisatie Europa:Products & Applications

Licht gewicht in de autoindustrie

8

Requirements on Automotive materials

9

Drivers in automotive development

Fuel consumption, CO2 reduction: less weight

Environment

Incremental changesCosts

Acceleration, speed, cost of ownership: less weight

Performance

Larger cars, more gadgets, more weightComfort

Add more material: more weightSafety

• Increased use of High Strength Steels and other light weight materials

10

11

12

13

Toekomstvisie VW

M.Goede, ICAFT, 13 en 14 november 2012, Chemnitz

FutureSteelVehicleLeading Edge Innovations for Steel Body Structures

15

Nippon Steel

voestalpineKobe

U. S. SteelHyundai-Steel

Ansteel NUCOR

ArcelorMittal POSCO

Baosteel Severstal

China Steel Sumitomo

Tata Steel ThyssenKrupp

JFE USIMINAS

Automotive Group of the World Steel Association

ULSABUltraLight Steel Auto Body

ULSABUltraLight Steel Auto Body

ULSASUltraLightSteel Auto Suspensions

ULSASUltraLightSteel Auto Suspensions

ULSAB-AVCAdvanced VehicleConcepts

ULSAB-AVCAdvanced VehicleConcepts

ULSACUltraLight Steel Auto Closures

ULSACUltraLight Steel Auto Closures

More than

US$60 Million

WorldAutoSteel Membership

16

Facts and goals of the study

• Facts

• FSV is the successor of the recognized lightweight studies ULSAB 1998 and ULSAB-AVC 2001

• Electrical vehicles are currently more demanding regarding weight saving so they are more challenging to prove that steel is the best choice

• Goals

• Development of a smart lightweight steel BIW for an electrical vehicle (and 3 derivates) projected in 2020 at large volume (100.000 p.a.)

• Demonstration of latest steel grades and steel part manufacturing technologies

• Development of sustainable and cost-effective solutions

Timing: 2008 – 2011

17

Source: International Council on Clean Transportation

USA

JapanEurope

Australia

China

100

60

80

120

160

140

180

200

220

260

240

280

Grams CO2 /Km (Equivalent)

2003 2006 2009 2012 2015 2018 2021 2024 2027 2030Source: International Council on Clean Transportation

USA

JapanEurope

Australia

China

100

60

80

120

160

140

180

200

220

260

240

280

Grams CO2 /Km (Equivalent)

2003 2006 2009 2012 2015 2018 2021 2024 2027 2030

Automotive CO2 Emissions Regulations

Why FutureSteelVehicle?

18

Honda Clarity FCX

Mercedes E cell Plus

Early Introductions of Dedicated PlatformAdvanced Powertrain Vehicles

Why FutureSteelVehicle?

From www.bmw-i.nl

From www.renault.nl

BMW i3

Renault Twizy

Volkswagen

19

Phase 1: Advanced Powertrain Options

20

FSV Design Drivers

• Mass reduction

• Cost

• Total vehicle carbon footprint reduction

21

Raising the Bar in Vehicle Mass Reduction

Baseline:

former, mild

steel design

ULSAB, ULSAB-AVC FutureSteelVehicle

(FSV)

-21 to 40%

-25%

-35%

21

Mass Targets

22

T1

T6

T5

T4

T3

T2Linear-StaticTopology

Optimisation

Gauge

Optimisation

Final Design

Confirmation

Phase1Technology Assessment

Packaging

Non-Linear Dynamic Topology Optimisation

(LF3G)Sub-SystemTopographyOptimisation

Detail Design

Styling & aerodynamic

DesignConfirmation

Phase 2

Report

FSV Development Process

23

BEV

FCEV

PHEV

Occupant Package

Phase 1: Advanced Powertrain Options

24

LF3G design optimization*

Topology optimization

Subsystem optimization

Submodel selection

• Front rail

• Shotgun

• Rocker

• B-pillar

• Rear rail

• Roof rail

• Tunnel reinf.

Design Optimization Process

Complete modeloptimization

*Low Fidelity Grade, gauge & geometry

25

Material portfolioULSAB-AVC

Additional Steel grades FSV

Mild 140/270 DP 350/600 TRIP 600/980

BH 210/340 TRIP 350/600 TWIP 500/980

BH 260/370 SF 570/640 HSLA 700/780

BH 280/400 HSLA 550/650 DP 700/1000

IF 260/410 TRIP 400/700 CP 800/1000

IF 300/420 SF 600/780 MS 950/1200

DP 300/500 CP 500/800 CP 1000/1200

FB 330/450 DP 500/800 DP 1150/1270

HSLA 350/450 TRIP 450/800 MS 1150/1400

HSLA 420/500 CP 600/900 CP 1050/1470

FB 450/600 CP 750/900 HF 1050/1500

HSLA 490/600 MS 1250/1500

Nomenclature:Type of materialminimum yield strength/minimum tensile strength

Expected to be availableuntil 2020

� State of the art steel grades and developments for the near future were applied for the project

FSV Steel Portfolio

26

Comparison of Subsystem Results

Weight (kg)

Cost(USD)

Aluminum

Hot stampedLWB Cold stamped

LWB

4,98 kg per part

22 USD

Cost / Weight comparison Selected solution

Lines of constant value= 9.39 USD/kg

27

US NCAP EURO NCAP FMVSS 301 Rear ECE R32

IIHS Side FMVSS 214 PoleEURO NCAP Pole

FMVSS 216a, IIHS Roof RCAR/IIHS Low Speed

27

Evaluation

FSV Crash Safety Analysis

EURO NCAP

A

Global crash requirements

28

� Durability, Ride and handling analysis

� Static and Dynamic Stiffness

• Torsion Stiffness

• Bending Stiffness

• Global Modes

28

� Noise, Vibration and Harshness

Additional Structural Analysis

Fish-hook test, double lane change maneuver (ISO 3888-1), 3g pothole test, 7g constant radius turn test, 0.8g forward braking test)

29

Forming, Cost and LCA

� Manufacturing simulation:

• One step forming simulation

• Incremental analysis for complex parts

• Hot stamping simulation

� Manufacturing planning and cost study

� Life Cycle Assessment

30

Material Classes

53%

3%

33%

33%

4%

43%

2%

10%

8%11%

0%

20%

40%

60%

80%

100%

HF

UHSS (CP, MS)

AHSS (DP, TRIP, TWIP)

HSS (HSLA, BH, IF)

Mild

FSV (2020)

Polo V2009

FSV2020

� Significant increasing share of AHSS, UHSS and hot forming steels

14%

64%

33%

46%

5%5%

11%

Audi A12010

21%

VW Polo (2009)

Audi A1 (2010)

188 kg

• Comparison with state of the art compact cars

Source: Eurocarbody 2009ATZ extra 06/2010

31

Source: Argonne National Laboratory

LCA is needed to avoid Unintended Consequences

Life Cycle Assessment (LCA) of Greenhouse Gases

32

Impact Well-to-Wheel on CO2 Emission

33

2470 mm

701 mm

839 mm 661 mm

2524 mm 595 mm

3.6

3.71

Contact area (m²)

Body Structure Mass (kg)

Powertrain mass (kg)

FSV 190 (target) 329

VW Polo 231 233

33

FSV vs. typical EU B-car (VW Polo 2010)