129
February 2013 2D SEISMIC SURVEY OFFSHORE NORTH EAST GREENLAND EMA Report

2D SEISMIC SURVEY OFFSHORE NORTH EAST GREENLAND/media/Nanoq/Files/Hearings...NIRAS Greenland A/S Aaboulevarden 80 8000 Aarhus C, Denmark Reg. No. A/S63962 Denmark FRI, FIDIC P: +45

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • February 2013

    2D SEISMIC SURVEY OFFSHORE NORTH EAST GREENLAND EMA Report

  • NIRAS Greenland A/S Aaboulevarden 80 8000 Aarhus C, Denmark

    Reg. No. A/S63962 Denmark FRI, FIDIC www.niras.gl

    P: +45 8732 3232 F: +45 8732 3200 E: [email protected]

    PROJECT 2D seismic survey offshore North East Greenland EMA report

    Prepared by PHN, EVJ, RBL, BJS, IGP, TA, GR Verified by IGP, ISA, BSJ Approved by IGP, ISA

  • CONTENTS

    2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    IKKE TEKNISK RESUMÉ

    TEKNIKKITIGUUNNGITSUMIK EQIKKAANEQ

    NON-TECHNICAL SUMMARY

    1 Introduction ................................................................................................ 1 1.1 Overview ..................................................................................................... 1 1.2 Companies involved ................................................................................... 3 1.3 Purpose of the Project ................................................................................ 4

    2 Description of activities ............................................................................ 5 2.1 Overview and Programme .......................................................................... 5 2.2 Seismic Survey ........................................................................................... 7 2.3 Seabed sampling ...................................................................................... 10 2.4 Logistics .................................................................................................... 11

    2.4.1 Vessels proposed ..................................................................... 11 2.4.2 Anticipated energy requirements .............................................. 13 2.4.3 Use of Chemicals ...................................................................... 13 2.4.4 Waste Handling......................................................................... 14 2.4.5 Air Emissions ............................................................................ 14 2.4.6 Discharges to Water ................................................................. 14 2.4.7 Alternative Project Options ....................................................... 14 2.4.8 Built in mitigation ....................................................................... 15

    3 Physical Environment ............................................................................. 16 3.1 Climate ...................................................................................................... 16 3.2 Bathymetry ................................................................................................ 16 3.3 Oceanography .......................................................................................... 17 3.4 Ice Conditions ........................................................................................... 19 3.5 Baseline Chemical and Pollution Levels ................................................... 23

    4 Protected sites ......................................................................................... 25 4.1 Protected Areas ........................................................................................ 25 4.2 Summary of Valued Ecosystem Components (VECS) ............................. 26

    5 Biological Environment ........................................................................... 31 5.1 Benthic ecology ........................................................................................ 31 5.2 Pelagic ecology ......................................................................................... 32 5.3 Fish and shellfish ...................................................................................... 35 5.4 Seabirds .................................................................................................... 40 5.5 Marine mammals ...................................................................................... 44

    5.5.1 Overview ................................................................................... 44 5.5.2 Polar Bear ................................................................................. 45 5.5.3 Pinnipeds .................................................................................. 47 5.5.4 Bowhead whale (Balaena mysticetus) ...................................... 49

  • CONTENTS

    2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    5.5.5 Minke Whale (Balaenoptera acutorostrata) .............................. 52 5.5.6 Humpback whales (Megaptera novaeangliae) ......................... 52 5.5.7 Other large cetaceans .............................................................. 52 5.5.8 Northern Atlantic Right Whale (Eubalaena glacialis) ................ 54 5.5.9 Narwhal (Monodon monoceros) ............................................... 54 5.5.10 Beluga or white whale (Delphina pterusleucas) ....................... 55 5.5.11 Other odontocete species ......................................................... 55

    6 Human activities ...................................................................................... 57 6.1 Fishing ...................................................................................................... 57 6.2 Hunting ...................................................................................................... 60 6.3 Tourism ..................................................................................................... 61

    7 Impact assessment .................................................................................. 63 7.1 Assessment methodology ......................................................................... 63 7.2 Noise generated by the survey ................................................................. 64 7.3 Biological environment .............................................................................. 69

    7.3.1 Benthic ecology......................................................................... 69 7.3.2 Pelagic ecology ......................................................................... 71 7.3.3 Fish and shellfish ...................................................................... 74 7.3.4 Seabirds .................................................................................... 78 7.3.5 Marine mammals ...................................................................... 80

    7.4 Human Activities ....................................................................................... 92 7.4.1 Fishing ...................................................................................... 92 7.4.2 Hunting ...................................................................................... 93 7.4.3 Tourism ..................................................................................... 93

    8 Monitoring & MITIGATION ...................................................................... 94 8.1 Built-in Mitigation ...................................................................................... 94 8.2 Additional Mitigation .................................................................................. 96 8.3 Proposed Monitoring ................................................................................. 97

    9 References................................................................................................ 98

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    NON-TECHNICAL SUMMARY

    Proposed Project TGS-NOPEC Geophysical Company ASA (TGS) proposes to undertake a two dimensional (2D) seismic survey and seabed sampling in the western Greenland Sea off North East Greenland between 15 August and 15 October 2013. The Survey Area (Figure A) is entirely within the Arctic Circle. The wider Licence Area includes deep waters beyond the continental shelf but survey activities are largely planned over the continental shelf in relatively shallow waters around 80 to 300m deep. The survey will take place at least 12nm offshore at all times.

    2D seismic surveys such as this contrast with more intensive 3D surveys where survey lines are much more closely spaced and very detailed information is col-lected, but over smaller areas. This is an important point in relation to the as-sessment since it means that any environmental effects from 2D surveys at a given location will be very short term. In contrast, the survey will take place over a relatively large area and thus has potential to affect a wider area, albeit less intensively.

    The purpose of the survey is to acquire data that will be used by various clients (exploration companies) to prospect for hydrocarbon resources. The data ac-quired by the survey will contribute to a more accurate and advanced under-standing of the geology and hydrocarbon potential of the area. Conducting the project as a multi-client project will eliminate (or significantly reduce) the need for the various different exploration companies to acquire the same data inde-pendently and thereby limit the overall impact to the environment.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figure A: location of TGS Licence Area (thick red line). Seismic Protection Zones for marine mammals are also indicated, within which the survey will not enter. Survey is also largely planned over continental shelf waters.

    Seismic surveys acquire data on seabed geology using subsurface acoustic (sound) reflections to identify boundaries between different geological layers. The acoustic source is provided by an array of airguns towed approximately 250m behind a ‘source’ vessel which also tows an array of hydrophones to ‘lis-ten’ to the reflected sound. The hydrophone arrays are known as streamers and will be towed around 8km behind the source vessel. The survey lines will be widely spaced (12-27km apart). Up to 5,000km of lines will be surveyed. The source vessel will be assisted by two further vessels, an icebreaker and a sup-port vessel. A helicopter will be available to assist, for example by providing in-formation on ice conditions ahead of the survey vessels.

    The airgun array will have a volume of 3,680 cubic inches and as with all such technology generates considerable levels of underwater noise which this as-sessment seeks to understand and wherever possible mitigate (i.e. reduce the environmental impacts).

    The vessel will conduct the survey whilst travelling at 5 knots with a firing interval of 10 seconds (approximately every 25m). The survey vessel is intended to be operational 24 hours a day except in periods where weather does not allow for data acquisition.

    The seabed survey will collect up to 100 gravity core and 20 dredge samples to provide supplementary geological data regarding previously identified areas of interest on the seabed as well as to ground-truth sediment data, including for areas where seismic data are insufficient or difficult to obtain. A separate survey vessel will undertake this work between 15 August and 15 October 2013, operat-ing independently from the seismic survey. The precise seabed sampling loca-tions will be developed and finalised through the summer.

    Sea ice and icebergs may be present all year round, brought on the East Green-land Current from Arctic waters further north. Fast ice usually begins to form in the northern part of the Licence Area in September, and further south through October. At least part of the survey is likely to require use of an ice breaker to move ice away from the source vessel in order to prevent ice damaging the air-gun array, hydrophone streamers or the vessel itself.

    Following submission of a Scoping Document which outlined the proposed sur-vey specifications, Bureau Minerals and Petroleum (BMP), National Centre for Energy and Environment (DCE) and Grønlands Naturinstitut (GINR) have ad-vised TGS that an Environmental Mitigation Assessment (EMA) should be pre-

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    pared. Comments have been received from BMP and its technical advisers which have been taken into account in the EMA.

    The EMA has been prepared by Centre for Marine and Coastal Studies Ltd (CMACS) and NIRAS Greenland. CMACS is a specialist marine and coastal environmental survey and consultancy company. NIRAS Greenland, part of the NIRAS Group, is an engineering consultancy company with over 50 years of involvement in Greenland.

    Ecology of the Area and Human Activities

    The biological environment of this area of the Greenland Sea is strongly influ-enced by short lived phytoplankton blooms which occur after the break-up of sea ice in the spring. This fuels a period of intense biological production.

    The EMA summarises the natural environment features and various human ac-tivities that could potentially be affected by the survey. The natural environment includes seabed communities which in shallow areas, especially below 100m, are important areas of production supporting wider marine species such as wal-rus that feed on bivalves (molluscs) living on the seabed. There is relatively little information on fish and shellfish but it is believed that diversity and abundance is lower than in the sea off South East Greenland or the commercially important South West. There is relatively little subsistence or commercial fishing or hunt-ing. Most activities, including hunting of marine mammals, is focused in coastal areas and inshore of the survey area. Coastal areas are also of considerable importance to seabirds over summer months, some of which will pass through or may forage in the survey area.

    A wide range of marine mammal species occur off North East Greenland and may be present in or around the Survey Area. Bowhead whale and narwhal are identified as being of particular importance and potential sensitivity in relation to the proposed seismic survey. There are protection zones for these species (and walrus) in the Licence Area and although the seismic survey will not enter these protection areas it may approach the offshore (eastern) edge of the Northeast Water Polynya which is an all year round protection zone for walrus (1 July to 30 September for bowhead whale and narwhal). Seals, and potentially polar bear, could also occur on ice within the Survey Area.

    Potential Impacts

    A number of potential impacts of the seismic and seabed surveys were identified. Effects potentially giving rise to impacts are summarised in Table A, below.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Table A: potential Impacts Effect Receptors Consid-

    ered Potential Impact(s)

    Underwater noise of airgun array

    Fish, Marine Mam-mals, Fishing Activity

    Physical injury Disturbance/displacement

    Accidental oil/fuel spills

    Fish, Birds, Marine Mammals, Benthic Habitats

    Direct/indirect impacts through contamination of the marine environment as dis-cussed

    Physical disturbance from seabed samplers

    Benthic habitats Damage to sensitive habitats

    Attraction to vessels Birds Collisions/interference with normal behaviour, potentially fatal to individuals.

    Ice breaking Marine Mammals Marine Mammals, Birds

    Creating open water which re-freezes Disturbing animals on the ice

    Conflicts with survey vessels and helicopter

    Fishing activity, hunt-ing, tourism, marine mammals, birds

    The underwater noise expected to be generated by the survey has been mod-elled to support the EMA. In summary:

    • sound propagation from the seismic survey is expected to be much greater for lower frequency components of the sound spectrum;

    • there will be rapid attenuation (noise reduction) over short distances (the first few hundred metres), especially of higher frequency sound;

    • levels of noise that could injure marine mammals are not expected to be present more than 500m from the airgun array (potentially dangerous levels of noise may be present close to the airguns)

    • levels of noise that may disturb marine mammals are expected for some tens of kilometres around the survey.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Mitigation

    Mitigation includes elements built in to survey planning, such as the presence of trained and experience marine mammal and seabird observers (MMSOs) with Passive Acoustic Monitoring (PAM) equipment. The MMSOs, PAM operators and survey technicians will together implement current Greenlandic marine mammal mitigation protocols that set out appropriate responses if marine mam-mals approach the airguns before or during airgun firing. Furthermore, additional elements following EMA (such as enhanced protective measures for bowhead whales) will be implemented.

    The following detailed mitigation is explained in the EMA, including key mitigation and best practice proposals:

    • smaller volume seismic array to be used wherever possible;

    • a mitigation gun will be available if needed, this is a single gun of low output;

    • airguns will not be used unnecessarily at far distances from the transect line;

    • two qualified marine mammal and seabird observers (MMSO) will be present on the source vessel with a minimum of one observer continu-ously monitoring visually during pre-firing watches;

    • Passive Acoustic Monitoring (PAM) will be deployed during hours of darkness and during times of poor weather (above sea state 3) by one of two PAM operators;

    • Implementation of current Greenlandic marine mammal mitigation proto-cols that set out appropriate responses if marine mammals approach the airguns before or during airgun firing through the use of MMSOs and PAM equipment.

    • MMSOs will be especially aware of the potential for bowhead whales to occur and will act in a precautionary manner if the animals are known to be in the area. If possible the survey will move away from any area where bowheads have been reported to be active to a distance of at least 50km with survey commencing away from the area in question.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    TEKNIKKITIGUUNNGITSUMIK EQIKKAANEQ

    Suliniut siunnersuutigineqartoq TGS-NOPEC Geophysical Company ASA (TGS) siunnersuuteqarpoq marloqiusamik sammivilimmik (2D) sajupillatsitsisarluni misissuiniarluni immallu naqqaniit misissugassanik katersiniarluni Grønlandshavip kiterpasissuani Kalaallit Nunaata Avannaata Kangiani piffissami auggustip 15-iata oktobarillu 15-iata akornnani 2013-imi. Misissuivissaq (Takussutissiaq A) tamakkerluni qaassuitsup avannaaniippoq. Akuersissuteqarfik siammasinnerusoq imaanut itisoorujussuarmut ilaavoq nunap toqqaviata avataaniilluni, kisiat misisuinissamut pilersaarutitut siunnersuutit tamarmik nunap toqqaviata qaavanut inissinneqassapput imaani itiviallaanngitsumi 80 meterimiit 300 meterisut ititigisumi. Misissuinissaq pffissaq tamaat ingerlanneqassaaq minnerpaamik nunami 12 sømilit avammut.

    2D-mik sajuppillatsitsilluni misissuinerit pineqartut sukumiinerusumik misissuinernut 3D-nut illuatungiupput, titarnerit qaninnerullutik paasissutissallu sukumiinerujussuit katersorneqarlutik nalinginnaasumik sumiiffimmit annertunngitsumiit. Taanna sammisaavoq pingaarutilik nalilersuinissamut, imak isumaqarluni, tassa avatangiisinut sunniutaasinnaasut sumiifiimmi aalajangersimasumi sivikittuinnarmik pissallutik. Taassuma akerlianik una misissuineq sumiiffimmi annertungaatsiartumi pissaaq taamaalillunilu annertungaatiartumik sunniuteqarnissaminut pisinnaalluni, taamaattoq sunniutaa annikinnerulluni.

    Pilersaarutip siunertaraa geofysikkimik geologiimillu paasissutissanik pigisaqalernissaq, sullitanit assigiinngitsunit atorneqarsinnaasunik (suliffeqarfiit misissueqqissaarnermik suliallit) kulbrinteqarsinnaaneranik misissuinerminni. Paasissutissat, misissuinermit pissarsiarineqarsimasut eqqornerusumik pitsaanerusumillu paasissutissiissapput sumiiffimmi geologiimik kulbrinteqarneranillu ilimanaateqarneranik. Pilersaarutip arlariinnik sullitassalerlugu ingerlaneqarnerata peersissavaa (millisilluguluunniit) suliffeqarfiit misissuinermik suliallit paasissutissat assigiit immineerlutik pissarsiarinissaanut taamaalilluni avatangiisinut sunniutissat tamakkiisumik annikillisillugit.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Takussutissiaq A: TGS-ip Akuersissuteqarfia (titarneq aappalaartoq). Saj-uppillatsitsisarnermut imaani miluumasut illersorfissaattut killeqarfiit aamma ersersinneqarsimapput, misissuinermi iserfigineqartussaanngitsut. Misissuinissaq annerusumik pilersaarutaavoq nunap toqqaviata imartaan-iissasoq.

    Sajuppillatsitsisarluni misissuinermit immap naqqata qanoq issusaannik paasissutissanik pissarsiviussapput nunap iluanut (nipinik) aporartitsinikkut akisuatitsilluni geologiip qaleriiaarnerisa killeqarfii assigiinngitsut sumiissusersiornerani. Nipimik aallakaatitsissut silittumik inissitsiterneqarsimasunik silaannarmik qamutilittaatinik umiarsuup aquanit 250 meterinik ungasitsigisumit kalinneqartunit immap iluanit immiussissutitalimmik akisuanernik tigooqqaassutilimmik (hydrofoner). Akisuanermik tigooqqaassut aamma ilisimaneqarpoq streamer-itut aallaavianiit taanna umiarsuup aquanit 8 km-erisut ungasitsigisumiit kalinneqassaaq. Misissuinermi titarnerit avissaangatsinneqassapput (12-27km-isut ungasitsigalutik). Titarneq 5,000 km-it tikillugit misissorneqassapput. Aallaaviusumik angallat marlunnik allanik umiarsuarnik ikiorteqassaaq, sikusiut angallallu ikorfartuut. Qulimiguulik aamma ikiuutissalluni piareersimassaaq, soorlu misissuinermut umiarsuit siuanni siku qanoq innersut paasiniaffigisarlugit.

    Silaannarmik qamutilittaat 3,680 kubikcentimeter-i angullugu annertussuseqassaaq, teknikkikkut atortoq taamaattoq immap iluani nipiliorsinnaavoq sakkortungaatsiartumik tamanna misissuinerup massuma paasiniarpaa qanorlu innarliinaveersaartinnissaa anguneqarsinnaanersoq (tassa imaappoq, avatangiisinut sunniutai annikillisarniarlugit).

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Umiarsuup misissuinini ingerlatissavaa 5 knob-imik sukkassuseqarluni 10 sekuntikkaarluni nipimik issuttarluni (25 meterikkaarluni). Umiarsuaq misissuut ulloq unnuarlu ingerlaarnissaminut sanaajuvoq, silamik peqquteqarluni paasissutissanik katersisinnaannginnera peqqutaalluni uninngatinneqarsinnaanera eqqaassanngikkaanni.

    Immap naqqanik misissuinermi 100 angullugit nunap nusoorineranik kiisalu immap naqqanik kiliortuilluni katersinernik pissaaq taamaalilluni geologiimik saniatigut paasissutissanik siusinnerusukkut suussusersineqarsimasunik soqutiginaatilinnik ilaqarluni immap naqqanit kiisalu kinnerit ujaranngornerit pillugit paasissutissanik, ilaatigut sumiiffiit, sajupillatsitsilluni paasissutissat naammattumik katersiviusinnaanngittuni immaqaluunnit angujuminaattuni. Umiarsuaq misissuut alla aggustip 15-ianit oktobarip15-iata 2013-ip tungaanut namminerisamik sulineq aallartissavaa, sajuppillatsitsilluni misissuinermut attuumassuteqanngitsumik. Immap naqqaniit misiligutit eqqortut inerisarneqassapput naammassineqarlutillu aasap ingerlanerani,

    Sikorsuit ilulissallu ukioq naallugu tamaaniissinnaapput, Kalaallit Nunaata kangiata sarfaanik issittup imartaanit takkuttut. Sikusarnera septembarimiit nalinginnaavoq akuersissuteqarfiup avannaata tungaani pisarnera, kujammullu siaruaakkiartortarluni oktobarimi. Misissuinerit ilaat ataaseq minnerpaamik sikusiummik atuiffiunissaa ilimanarpoq sikumik illuartitsinissaq siunertaralugu aallaavittut umiarsuarmiit silaannarmik qamutilittaatit, hydrofon streamers-it immaqaluunnit angallat immineq aserutsaaliniarlugit.

    Scoping-ip, avatangiisinut sunniutaasinnaasut suussusersineqarsimanerata nalunaarsonerata nassiunneqarnerata kingorna, Aatsitassanut Ikummatissanullu Pisortaqarfik (AIP), National Center for Energi og Miljø (DCE) kiisalu Kalaallit Nunaanni Pinngortitaleriffik (GINR) TGS innersuussutigisimavaat avatangiisinut ajoqutaasinnaasunik nalilersuinermik ingerlatsissasoq. Oqaaseqaatit Aatsitassanut Ikummatissanullu Pisortaqarfimmit teknikkitigullu siunnersortaanit tiguneqarsimapput, AIN-mut atatillugu isumaliutersuutaasimallutik.

    AIN-i suliarineqarsimavoq Center for Marine and Coastal Ltd (CMACS) aamma NIRAS Greenlandimit. CMACS immap sinerissallu avatangiisaanik misissuinernik immikkut ilisimasaliuvoq aamma siunnersuisoqarfittut suliffeqarfiulluni. NIRAS Greenland, NIRAS Group-imut ilaasoq, suliffeqarfiuvoq inginiøritut siunnersuinermik suliffeqarfik ukiut 50-it sinnerlugit Kallaallit Nunaanni suliaqarsimalluni. Nalunaarusiap kalaallisoortaa Greenland Consulting Services-mit nutserneqarsimavoq.

    Sumiiffimmi pinngortitami pissuseqatigiinneq aamma Inuit suliaat

    Pinngortitami uumasoqatigiit avatangiisaat sumiiffimmi Grønlands Hav-ip nalaanni tappiorannartunik pinngorartunik sivikitsumik inuunilinnik sunnerteqqasorujussuuvoq, upernaakkut sikup aattulernerani avissaalerneranilu

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    pinngorartartunik. Taassuma malitsigisarpaa piffissap pineqartup nalaa uummassusilinnik annertuumik pinngorartoqarnera.

    AIN-imi inuit sammisaat assigiinngitsut pinngortitallu immineq pissusai misis-suinermit attuallaneqarsinnaasut eqikkarlugit nalunaarsorneqarput. Pinngortitaq pineqartoq tassaavoq immap naqqani uumasoqatigiit pissuseqatigiinnerat, ikkattuni, ingammik 100 meterimit ikkannerniittuni, sumiiffiupput pingaarutillit erniortunut ikorfartuutit imarmiunut soorlu aaffat uillunik nerisallit, immap naqqani uumasuusut. Paasissutissat annikipput aalisakkat qaleruallillu pillugit, taamaattoq ilimagineqarpoq assigiinngisitaarneq amerlassusillu Kalaallit Nunaata kujataata kangianit aningaasarsiorfigalugu pingaaruteqartup kujataata kitaaniit annikinnerusoq. Inuussutigisinnaasat naammaqqartut annikipput immaqaluunniit inuussutissarsiutigalugu aalisarneq piniarnerlu. Sammisat amerlanerit piniarneq imaani miluumasut ilangullugit kitaani sineriaallu qanittuani pipput misissuiviup nalaani. Sineriaat aamma aasaanerata nalaani annertuumik pingaaruteqarput timmissanut imarmiunut, ilaatigut timmissat ilaat saneqqutiinnanngikkunik misissuiviup nalaani neriniarsinnaallutik.

    Imaani miluumasut suussutsit assigiinngitsut Kalaallit Nunaata tunuata avannaani piupput, misissuiviullu nalaaniissinnaallutik eqqaaniluunniit. Arfivik Qilalugarlu immikkut pingaarutilittut suussusersineqarput malussarissuseqarsinnaallutillu sajupillatsitsilluni misissuinermi. Suussutsinut taakkununnga illersuiffiusunik peqarpoq (aaffat aamma) akuersissuteqarfiup nalaani, sajupillatsitsisarlunilu misissuinerit tamakkunani illersukkani pisussaanngikkaluartut kangimut imartaasa killeqarfii avannamut kangiatungaaniittut imartat qanillineqarsinnaapput, sumiiffiit ukioq naallugu aavernut illersuinermut atuuffiusut (juulip aallaqqaataaniit (1) septembarip 20-anut Arfivik qilalukkallu eqqarsaatigalugit). Misissuiviup nalaani aamma puisit nannullu nalaanneqarsinnaapput.

    Sunniutaasinnaasut

    Sajupillatsitsisarluni immallu naqqinik misissuinernit sunnerneqarsinnaasut suussusersineqarput. Sunniutit sunniisinnaasut Nalunaarsuiffik A-mi ataani allattorsimapput.

    Nalunaarsuiffik A: Sunniutaasinnaasut

    Sunniutip suussusaa Sunnerneqarsinnaasut Sunniutaasinnaasut Immap iluatigut nipiliortitsineq silaannaq atorlugu qamutilittaatinit

    Aalisakkat, imaani miluumasut aalisarnerillu

    Timikkut innarliinerit, Ajoqusiinerit/illikartitsinerit

    Naatsorsuutanngitsu-mik uuliakoorneq/ ikummatissamik aniasoorneq

    Aalisakkat, timmissat, imaani miluumasut, immap naqqani uumasoqarfiit

    Toqqaannartumi(ngittumik) sunniinerit imaq avatangiisaasoq aqqutigalugu soorlu oqallisigineqareersoq

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Timikkut ajoqusersuinerit immap naqqanit katersisunit

    Immap naqqani uumasoqarfiit

    Uumasoqarfiit ajortiasut ajoquserneqarneri

    Angallatinut soqutiginninerit

    Timmissat

    Apornerit/ajoqusersuinerit nalinginnaasumik pissusaannut, ataasiakkaanut toqqutaasinnaasumik

    Sikup aserorternera Imaani miluumasut, timmissat

    Imartanitsitertiterineq matoqqittunik, sikumi uumasunut ajoqutaasumik

    Misissuinermi umiarsuit qulimiiguullillu isumaqatigiinnginerat

    Aalisarnerit, piniarnerit, takornariqarnerit, imaani miluumasut timmissallu

    Immap iluani ilimagineqartutut nipiliornerit misissuinermit pilersinneqartut naatsorsugaasimapput AIN-i ilassuserniarlugu. Eqikkarneri:

    • nipip siaruarnera sajuppillatsitsisarluni misissuinermit naatsorsuutaavoq frekvensini appasinnerusuni annertunerujussuussasoq nipit assigiinngisitaarneranni maligaasakinnerni;

    • sukkasuumik nipikillisaateqassaaq (nipiliorneq millisillugu) isorartussutsit naatsuni (100 meterit siulliit marluk), ingammik maligaasani naannerni;

    • nipiliortut qaffasissusaanni, imaani miluumasunik ajoqusiisinnaasut natsorsuutaanngilaq 500 m-imiit silaannarmik qamutilittaatimit qaninnerunnginnissaat naatsorsuutaavoq (illuatungaaniilli nassuerutaavoq, nipit ulorianarsinnaasut silaanarmik qamutilittaatit eqqaani issinnaasut);

    • nipiliortut qaffasissusaanni, imaani miluumasunut ajoqusersuisinnaasut misissuiffimmiit 10 km-it kaajallallugu ilimagineqarput.

    Innarliinaveersaarneq

    Innarliinaveersaarnermut ilaapput paasissutissat misissuinissamut pilersaarusiornermut ilaareersit, soorlu ilinniarsimasunik misilittagaqareersunillu imaani miluumasunik timmissanillu nakkutilliisut (MMSO) aamma Passiv Akustisk Monitering (PAM) atortorissaarutai. MMSO-ut, PAM-inik ingerlatsisut aamma misissuinermi teknikerit ataatsimoorlutik Kalaallit Nunaanni imaani miluumasunut innaliinaveersaarnermi malittarissasat iliuusissanik eqqortunik imallik atortuulersissavaat imaani miluumasut silaannarmik qamutilittaatit aallartilernerinni imaluunniit aallartinnerini qanillissagaluarpata. Ilutigalugu, ilassutit AIN-I malillugu (soorlu annertunerusumik arfivinnut illersuinissamut iliuusissat) atortuulersinneqassapput.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Innarliinaveersaarneq sukumiisoq AIN-imi sukumiisumik nassuiarneqarpoq, pingaarutilimmik innarliinaveersaarneq pitsaanerpaamillu periuseqarnissamut innersuussutit makkuupput:

    • sajuppillatsitsisarluni aaqqissuussinerit annikinnerit atorneqassapput, periarfissaatillugu;

    • innarliinaveersaarnnissamut qamutilittaat piareersimasuutigineqassaaq, silaannarmik annikittumik ataatsimik qamutilittaatitalik pisariaqartinneqalissagaluarpat;

    • silaannarmik qamutilittaatit pisariaqanngitsumik atorneqassanngillat timmisartumik ingerlaarfinniit;

    • imaani miluumasunik timmissanillu nakkutilliisut (MMSO) najuutissapput angallammi aallaaviusumi, annikinnerpaamik malittarinnittoq ataaseq ataavartumik sissuertuussalluni aallaariartoqalertinnnagu;

    • Passiv Akustisk Monitering (PAM) atuutinneqassaaq taarsineraniit qaammarnissaata tungaanut kiisalu silarlutoqartillugu (havtilstand 3 qaangersimappagu);

    • imaani miluumasoq 200 m-erisut qanillatortillugu silaannarmik qamutilittaatinut, qamutilittaatit aallaariartarnerat sakkukillisinneqassaaq, innarliinaveersaarinnissutsimut ataatsimut periarfissaatillugu;

    • Kalaallit Nunaani imaani miluumasunut innarliinarveersaarluni malittarisassanik eqqortumik iliuuseqarnissanik imallik imaani miluumasut silaannarmik qamutilittaatit aallaalernerini imaluunniit aallaareernerini maanna attuuttunik MMSO-t aamma PAM-ip atortorissaarutai atorlugit atortuulersitsineq

    • MMSO’t immikkut sissuissapput arfivinnik eqqaaniittoqarnera ilimanartillugu pinngitsoortitsiniartumillu pissusilersussapput uumasunik eqqaaniittoqarnera ilisimaneqarpat. Periarfissaappat misissuinerit arfiviit eqqaaniit illuartinneqassapput 50 km-erisut ungasitsigisumut annikinnerpaamik, misissuinerit sumiiffimmit pineqartumit ungasilliartuaartillugit.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    IKKE TEKNISK RESUMÉ

    Foreslået projekt

    TGS-NOPEC Geophysical Company ASA (TGS) foreslår, at der foretages en todimensionel (2D) seismisk undersøgelse og en prøvetagning af havbunden i det vestgrønlandske hav ud for Nordøstgrønland mellem 15. august og 15. oktober 2013. Hele undersøgelsesområdet (Figur A) befinder sig inden for den nordlige polarkreds. Licensområdet omfatter farvandet uden for kontinentalsoklen, men undersøgelsesaktiviteterne planlægges stort set over kontinentalsoklen på relativt lavt vand på ca. 80-300 meters dybde. Undersøgelsen vil finde sted mindst 12 nm ud for kysten på alle tidspunkter.

    2D seismiske undersøgelser som denne kontrasterer mere intensive 3D-undersøgelser, hvor undersøgelseslinjerne befinder sig meget tættere sammen, og der indsamles detaljerede informationer, men over mindre områder. Dette er en meget vigtig pointe i relation til vurderingen, da det betyder, at eventuelle miljøpåvirkninger fra 2D-undersøgelser på et givet sted vil være meget kortvarige. I modsætning hertil vil undersøgelsen finde sted over et relativt stort område og har derfor potentiale til at påvirke et større område, dog mindre intensivt.

    Formålet med undersøgelsen er at skaffe data, der skal bruges af forskellige klienter (undersøgelsesselskaber), der vil søge efter kulbrinteressourcer. De data, der opnås via undersøgelsen, vil bidrage til en mere nøjagtig og avanceret forståelse af områdets geologi og kulbrintepotentiale. Gennemførelse af projektet som et projekt med flere klienter vil eliminere (eller betydeligt reducere) behovet for, at de forskellige undersøgelsesselskaber skaffer de samme data uafhængigt, og dermed begrænse den overordnede påvirkning på miljøet.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figur A. Placering af TGS-licensområdet (tyk rød streg). Der angives også seismiske beskyttelseszoner for havpattedyr, som undersøgelsen ikke kommer inden for. Undersøgelsen planlægges også overvejende over kontinentalsoklens farvande.

    Seismiske undersøgelser skaffer data om havbundsgeologi ved hjælp af akustiske (lyd) refleksioner i undergrunden med henblik på at identificere grænser mellem forskellige geologiske lag. Den akustiske kilde leveres af en opstilling af luftkanoner, der slæbes ca. 250 m bag et undersøgelsesfartøj, som også slæber en opstilling af hydrofoner, der opfanger den reflekterede lyd. Opstillingen af hydrofoner kendes som streamers og slæbes 8 km bag undersøgelsesfartøjet. Der vil være stor afstand mellem undersøgelseslinjerne (12-27 km). Op til 5.000 km linjer vil blive undersøgt. Undersøgelsesfartøjet assisteres af to andre fartøjer, en isbryder og et støttefartøj. En helikopter vil være til rådighed til assistance, for eksempel ved at levere oplysninger om isforhold foran undersøgelsesfartøjerne.

    Luftkanonerne vil have en volumen på 3.680 kubik-inches og genererer ligesom al sådan teknologi betydelige mængder undervandsstøj, hvilket denne vurdering søger at belyse og, hvor det er muligt, nedsætte (dvs. reducere miljøpåvirkningerne).

    Fartøjet vil foretage undersøgelsen med en hastighed på 5 knob og med et affyringsinterval på 10 sekunder (ca. for hver 25 m). Det er hensigten, at undersøgelsesfartøjet skal være i drift 24 timer i døgnet undtagen i perioder, hvor vejret ikke muliggør fremskaffelse af data.

    Undersøgelsen af havbunden vil opsamle op til 100 havbundskerner og 20 sedimentsprøver for at give supplerende geologiske data om tidligere

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    identificerede områder af interesse på havbunden samt reelle sedimentdata, herunder for områder, hvor seismiske data er utilstrækkelige eller vanskelige at opnå. Et selvstændigt undersøgelsesfartøj vil foretage dette arbejde mellem 15. august og 15. oktober 2013 og vil operere uafhængigt af den seismiske undersøgelse. De nøjagtige placeringer for havbundsprøveudtagning vil blive udviklet og afsluttet gennem sommeren.

    Der kan forefindes havis og isbjerge hele året rundt, bragt med af den østgrønlandske strøm fra arktiske farvande længere mod nord. Fastis begynder som regel at blive dannet i den nordlige del af licensområdet i september og bevæger sig længere mod syd i løbet af oktober. Det bliver for i hvert fald en del af undersøgelsen sandsynligvis nødvendigt at benytte en isbryder til at flytte is væk fra undersøgelsesfartøjet for at forhindre, at is beskadiger luftkanonopstillingen, hydrofonstreamers eller selve fartøjet.

    Efter indsendelse af en scopingdokument, der skitserede de foreslåede undersøgelsesspecifikationer, har Råstofdirektoratet (BMP), National Center for Energi og Miljø (DCE) og Grønlands Naturinstitut (GINR) anbefalet TGS, at der udarbejdes en miljøafværgevurdering (EMA). Der er modtaget kommentarer fra Råstofdirektoratet og dets tekniske rådgivere, som er blevet taget i betragtning i EMA’en.

    EMA’en er udarbejdet af Centre for Marine and Coastal Studies Ltd (CMACS) og NIRAS Greenland. CMACS er et konsulentfirma, der er specialiseret i hav- og kystmiljøundersøgelser. NIRAS Greenland, som er en del af NIRAS Gruppen, er et rådgivende ingeniørfirma med over 50 års engagement i Grønland. Den grønlandske version af rapporten er oversat af Greenland Consulting Services.

    Områdets økologi og menneskelige aktiviteter

    Det biologiske miljø i dette område af Grønlandshavet er stærkt påvirket af kortlivede opblomstringer af fytoplankton, som indtræder efter opbrud af havisen i foråret. Dette medfører en periode med intens biologisk produktion.

    EMA'en opsummerer de naturlige miljøegenskaber og forskellige menneskelige aktiviteter, der potentielt kunne blive berørt af undersøgelsen. Det naturlige miljø omfatter havbundssamfund, der i lavvandede områder, især under 100 m, er vigtige områder for produktion af betydning for andre havdyrartersåsom hvalros, der lever af muslinger (bløddyr), som lever på havbunden. Der er relativt lidt information om fisk og skaldyr, men det menes, at mangfoldigheden og overfloden er lavere end i havet ud for det sydøstlige Grønland eller det kommercielt vigtige sydvest. Der er relativt lidt fiskeri eller jagt til underhold eller erhverv. De fleste aktiviteter, herunder jagt på havpattedyr, er fokuseret i kystområder og kystnært i undersøgelsesområdet. Kystområderne er også af væsentlig betydning for havfugle i løbet sommermånederne, hvoraf nogle vil passere gennem eller fouragere i undersøgelsesområdet.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    En bred vifte af havpattedyrarter forekommer ud for det nordøstlige Grønland og kan være til stede i eller omkring undersøgelsesområdet. Grønlandshval og narhval er identificeret som værende særligt betydningsfulde og potentielt følsomme i forhold til den foreslåede seismiske undersøgelse. Der er beskyttelseszoner for disse arter (og hvalros) i licensområdet, og selvom den seismiske undersøgelse ikke vil gå ind i disse beskyttelsesområder, kan den nærme sig havets (østlige) kant i det nordøstlige vandområde (polynia), der er en helårsbeskyttelseszone for hvalros (1. juli til 30. september for grønlandshval og narhval). Sæler, og eventuelt isbjørne, kan forekomme på is i undersøgelsesområdet. Mulige påvirkninger Der er identificeret en række potentielle påvirkninger fra de seismiske undersøgelser og havbundsundersøgelserne. Effekter, der potentielt kan give anledning til påvirkninger, er sammenfattet i Tabel A nedenfor.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Tabel A. Potentielle påvirkninger Effekt Omfattede receptorer Potentiel(le) påvirkning(er) Undervandsstøj fra luftkanonopstilling

    Fisk, Havpattedyr, Fiskeriaktiviteter

    Fysiske skader Forstyrrelse/forflytning

    Utilsigtet olie-/brændselsudslip

    Fisk, Fugle, Havpattedyr, Bundhabitater

    Direkte/indirekte påvirkninger igennem forurening af havmiljøet som diskuteret

    Fysisk forstyrrelse fra havbundsprøvetagning

    Bundhabitater Skade på sårbare habitater

    Tiltrækning til fartøjer Fugle Kollisioner/interferens med normal adfærd, potentielt fatalt for individer

    Isbrydning Havpattedyr Havpattedyr, Fugle

    Skabe åbent vand, der lukkes til igen, Forstyrre dyr på isen

    Konflikter med undersøgelsesfartøjer og helikopter

    Fiskeriaktiviteter, Jagt, Turisme, Havpattedyr, Fugle

    Den undervandsstøj, der forventes genereret af undersøgelsen, er modelleret til at understøtte EMA’en og opsummeres:

    • Lydforplantningen fra den seismiske undersøgelse forventes at være meget større for lavfrekvente komponenter i lydspektret

    • Der vil være hurtig dæmpning (støjreduktion) over korte afstande (de første par hundrede meter), især af støj med højere frekvens

    • Støjniveauer, der kunne skade havpattedyr, forventes ikke at være til stede mere end 500 m fra luftkanonopstillingen (potentielt farlige støjniveauer kan være til stede tæt på luftkanonerne)

    • Støjniveauer, der kan forstyrre havpattedyr, forventes nogle snese kilometer omkring undersøgelsen

    Afværgeforanstaltning

    Afværgeforanstaltning omfatter elementer, der er indbygget i planlægningen af undersøgelsen, såsom tilstedeværelsen af uddannede og erfarne observatører af havpattedyr og havfugle (MMSO) med passiv-akustisk moniteringsudstyr (PAM). MMSO’erne, PAM-operatørerne og undersøgelsens teknikere vil sammen implementere gældende grønlandske protokoller til afværgeforanstaltninger i forbindelse med havpattedyr. Disse protokoller udstikker relevant respons, hvis havpattedyr nærmer sig luftkanonerne før eller under affyring. Desuden vil der blive implementeret yderligere elementer, der følger EMA (såsom øgede beskyttelsesforanstaltninger for grønlandshval.

  • 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Følgende detaljerede afværgeforanstaltninger forklares i EMA’en, herunder de væsentligste forslag til afværge og best practice:

    • Mindre seismiske opstillinger, der vil blive anvendt, hvor det er muligt

    • En afværgekanon vil være til rådighed, hvis der er behov for det. Denne er en enkelt kanon med lavt output

    • Luftkanoner vil ikke blive anvendt unødvendigt på lang afstand af transektlinjerne

    • To kvalificerede observatører af havpattedyr og havfugle (MMSO) vil være til stede på undersøgelsesfartøjet med mindst én observatør til løbende at monitere visuelt under præ-affyringsvagter

    • En af de to PAM-operatører vil foretage passiv-akustisk monitering (PAM), når der er mørkt, og når der er dårligt vejr (over havtilstand 3)

    • Implementering af gældende grønlandske protokoller til afværgeforanstantninger i forbindelse med havpattedyr, som udstikker relevant respons, hvis havpattedyr nærmer sig luftkanonerne før eller under affyring, ved hjælp af MMSO og PAM-udstyr

    • MMSO vil være særligt opmærksomme på muligheden for, at der forekommer grønlandshvaler, og vil handle på en præventiv måde, hvis man ved, at dyrene er i området. Hvis det er muligt, vil undersøgelsen blive flyttet væk fra et område, hvor der er konstateret aktive grønlandshvaler, til en afstand på mindst 50 km, og undersøgelsen vil begynde væk fra det pågældende område.

  • 1

    2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    1 INTRODUCTION

    1.1 Overview TGS-NOPEC Geophysical Company ASA (TGS) propose to undertake seismic survey with supplementary sea bottom sampling off North East Greenland be-tween 15 August and 15 October, 2013. The survey is named ‘NEG13’. Exten-sion into October is subject to favourable ice conditions. Up to 5,000 line kilome-tres of 2D survey will be shot and up to approximately 120 seabed samples col-lected. The full 5,000 line kilometres would take the entire survey period to shoot; however, it is more likely that a proportion of the programme will be com-pleted in a period of around one month within the stated period The survey is part of a wider programme (Figure 1-1) that includes surveys off South East Greenland (SEG13) and South West Greenland (SWG13) by the same survey vessel that will acquire data for NEG13. These other surveys are subject to separate assessment.

    Figure 1-1: TGS planned seismic survey areas off Greenland in 2013 (bath-ymetric data from IOC, IHO and BODC, 2003).

  • 2

    2D seismic survey offshore North East Greenland EMA report www.niras.gl

    Figure 1-2: licence Area 2009/14 issued to TGS in June 2009 within which NEG13 survey will take place (bathymetric data from IOC, IHO and BODC, 2003).

  • 3 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    The program covers the same area that was applied for in 2011 and 2012 (NEG11 and NEG12). The 2012 survey application was for up to 5,000 line kilo-metres plus seabed sampling. The 2013 application is therefore for an equivalent programme, although the total survey distance will depend on conditions. A summary of work completed in previous years is provided in Section 2.1. Having reviewed the Scope of the proposed survey that was submitted on 11 January 2013, Bureau Minerals and Petroleum (BMP), National Centre for Ener-gy and Environment (DCE) and Grønlands Naturinstitut (GINR) advised TGS on 15 February 2013 that the survey was considered ‘not to have potential for signif-icant impacts on the environment’ and that an Environmental Mitigation Assess-ment (EMA) should be prepared. This report has been prepared to meet BMP’s requirements as set out in EMA Guidelines prepared by DCE (Kyhn et al, 2011). The EMA focuses on mitigation measures proposed (both in-built, Section 2 and informed by a description of anticipated effects, Section 7). Background information has been collated in sections 3 to 6 to inform this work as well as to support future activities by MMSOs (Marine Mammal and Seabird Observers) offshore. Noise modelling has been undertaken to support this assessment. The results are summarised in Section 7.2 and detailed report provided as Appendix 1. Survey data tables required by EMA Guidelines (Sections 6.4.1 to 6.4.4 of Kyhn et al. 2011) are provided in Appendix 2.

    1.2 Companies involved TGS provides global geoscientific data products and services to the oil and gas industry to assist with licensing rounds and the preparation of regional data pro-grams. TGS invests in multi-client data projects in frontier, emerging and mature markets worldwide that make up a data library of seismic imaging, well data and interpretive products and services. The company’s financial base is in Norway with offices in Norway, England, North America, Brazil and Australia.

    TGS have undertaken 2D and 3D seismic surveys in North and South America, Europe, Africa, Asia and the Arctic, including previous surveys off Greenland.

    Several other companies are providing professional services along with TGS in order to conduct the NEG13 survey off northeast Greenland. These are as fol-lows:

    • Sevmorneftegeofizika (SMNG) is the largest marine geophysical compa-ny in Russia. It renders a wide range of marine geophysical services

    http://www.tgsnopec.com/data.aspx

  • 4 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    worldwide including: 2D/3D marine seismic acquisition, navigation posi-tioning, data processing and integrated interpretation of seismic data. SMNG are expected to be used as the survey vessel supplier; TGS will operate the seismic vessel under a charter agreement with the owners (e.g. SMNG). TGS will be responsible for maritime and seismic opera-tions together with the owners.

    • Arctia Shipping Ltd is owned by the state of Finland and specialises in icebreaking services, special services provided by multipurpose vessels, international freight shipping, ferry traffic in the Finnish archipelago and oil spill response operations. The company has provided icebreakers to TGS previously and is expected to provide a similar vessel for the NEG13 survey.

    • PF Thor are expected to be used to provide a suitable vessel for the proposed seabed sampling work.

    This EMA has been prepared by Centre for Marine and Coastal Studies Ltd (CMACS) and NIRAS Greenland. CMACS is a specialist marine and coastal environmental survey and consultancy company. NIRAS Greenland, part of the NIRAS Group, is an engineering consultancy company with over 50 years of involvement in Greenland. The Greenlandic version of the report is translated by Greenland Consulting Services

    1.3 Purpose of the Project The overall purpose of the project is to acquire multi-client seismic data and oth-er geophysical and geological data that will be used by various exploration com-panies in relation to hydrocarbon resource prospecting. The data acquired by the survey will contribute to a more accurate and advanced understanding of the geology and hydrocarbon potential of the area. By conducting the project as a multi-client project, it will eliminate (or significantly reduce) the need for the vari-ous exploration companies to acquire the same data independently and thereby limit the overall impact to the environment.

  • 5 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    2 DESCRIPTION OF ACTIVITIES

    2.1 Overview and Programme The NEG survey is one of three surveys planned by TGS in Greenland waters in 2013. The others are off South East and South West Greenland and would be undertaken between June and October. Although separate assessments are being made the three surveys are not independent of each other; the same ac-quisition vessel (the Akademik Shatskiy or a similar vessel) is expected to work in each area. The intention is to develop a flexible programme, particularly to allow data to be collected to the south if the northern area is closed by ice condi-tions. Key dates for the NEG13 survey are provide in Table 2-1.

    Table 2-1: key dates in survey program.

    Activity Date Date of arrival in Greenland waters (earliest)

    15/08/2013

    Date of start of seismic acquisition (earliest)

    15/08/2013

    Date of seabed survey start (earliest) 15/08/2013 Date of seismic works completion (latest)

    15/10/2013

    Date of seabed survey end (latest) 15/10/2013

    The program covers the same area that was applied for in 2011 and 2012 (NEG11 and NEG12). The 2012 survey application was for up to 5,000 line kilo-metres of 2D seismic plus seabed sampling. A total of 3,402km of 2D seismic data were ultimately acquired in 2012. The 2013 application is for an equivalent programme. Previous survey coverage is summarised in Figure 2-1.

  • 6 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figure 2-1: previous and planned surveys by TGS off North East Greenland in relation to Licence Area and local protection zones.

    As indicated in Table 2-1, seabed survey is also proposed. This is described further in Section 2.3 below but will take place independently of the seismic sur-vey from another vessel.

    The proposed Survey Area may have sea ice (drift ice) and icebergs present all year round that are brought on the East Greenland Current from Arctic waters further north. Fast ice usually begins to form in the northern part of the Licence Area in September, moving further south through October. At least part of the survey is likely to require use of an ice breaker. There is good experience of working in ice in this area from previous surveys; in 2012 ice conditions were relatively favourable and there was very little pressure ice.

    The main purpose of the icebreaker is to move ice away from the survey (source) vessel in order to prevent damage to survey equipment or the survey vessel itself. Ice is deflected away from the seismic vessel using several tech-niques; ‘bump and flush’, ‘crush and flush’ and ‘cut and flush’ depending on the size of floes needing to be moved. In looser floes of small sea ice the ‘bump and flush’ technique is used to force ice away from the seismic vessel, the ‘crush and flush’ technique was used to break up larger pieces of sea ice before deflection away from the seismic vessel. The ‘cut and flush’ technique is used to break large floes that cannot be deflected.

  • 7 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Ice displaced by the bow of the icebreaker is directionally moved away from the seismic vessel by using angled propulsion to move the ice to the side. With the presence of the icebreaker, open water is maintained around the survey vessel allowing it to continue acquisition in waters 70-90% covered by ice.

    In surveys by TGS off North East Greenland prior to 2012 pressurised ice has proved a limiting factor during seismic acquisition. Pressurised sea ice causes floes to close in on each other making it difficult for the icebreaker to maintain open water around the seismic vessel. As ice is pushed away by the propulsion units the ice closes behind the vessel. Pressurised ice also asserts a greater force that has a much greater potential to damage both the towed seismic equipment and the vessel itself. Due to these reasons seismic acquisition can only be undertaken in waters of up to around 60% density of pressurised ice. In these circumstances the ‘cut and flush’ techniques can be used to remove ice but maintaining open water is more difficult. Ultimately, good planning, use of meteorological and metocean data and reconnaissance (e.g. by helicopter) is required to work safely and efficiently in this environment.

    2.2 Seismic Survey Seismic surveys acquire data on seabed geology using subsurface acoustic (sound) reflectivity to identify stratigraphic boundaries. The acoustic source is provided by an array of airguns towed behind the survey (or ’source’) vessel (Plate 2-1) which also tows hydrophones (a streamer) to ‘listen’ to the reflected sound. The airgun array is towed relatively close to the source vessel while the hydrophones are some kilometres further back.

    Plate 2-1: left: airgun array ready for deployment; right deployed.

    There are a number of types of seismic survey. The one proposed off North East Greenland is termed a two-dimensional (2D) survey. In this type of survey, seis-mic data (i.e. information on seabed geology, here relating in particular to hydro-carbon resource potential) is acquired from a series of relatively widely spaced survey lines. For NEG13 the lines will be between around 12 and 27km apart. This type of survey contrasts with more intensive surveys such as 3D and Verti-cal Seismic Profiling (VSP). This is an important point in relation to the EMA since it means that any environmental effects at a given location will be very short term and not repeated. In contrast, the survey will take place over a rela-

  • 8 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    tively large area and thus has potential to affect a wider area, albeit less inten-sively.

    Key parameters for the airgun array are provided in Table 2-2.

    TGS intend to conduct the survey using an array of 28 bolt guns totalling 3680 cubic inches and with a total pressure of 2000psi, each gun having equal pres-sure. The planned layout for the array is a triple string, each line having 8 or 10 individual guns and 4 to 5 sets of cluster (double) guns (Figure 2-2). A break-down of the individual gun volumes is provided in Table 2-3.

    In a seismic survey off North East Greenland in 2011 TGS reduced the volume of the array to 1,675 cubic inch (a single string). This is not desired from a data acquisition perspective as deeper imaging can suffer but ice cover can limit the size of the array that can be used simply because it might not be possible to manage multiple strings when there is ice present.

    The source array will be deployed from the stern of the vessel, usually at less than 250m distance, with the depth of the source between 8-12m from the sur-face. The signals are received by the hydrophones in streamers that are also deployed from the seismic vessel. Streamers are up to 8km in length; in 2012 this was reduced to around 5km to minimize the risk of ice damage. Only one streamer will be used.

    Reflected sound from the airguns that is received by the hydrophones will be analysed to provide information on geological targets between 500 and 10,000m below the seabed. This is relatively deep seismic imaging but the NEG13 and other surveys planned off Greenland are regional and one of their main goals is to map sedimentary basins. These basins are very deep, so deep seismic imag-ing is necessary.

    The vessel will conduct the survey whilst transiting at approximately 5 knots with a firing interval of 10 seconds (approximately every 25m). The survey vessel is intended to be operational 24 hours a day except in periods when weather or ice conditions do not allow for data acquisition.

  • 9 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Table 2-2: seismic survey parameters.

    Parameter Likely value (maximum)

    Number of active air guns 20 (28) Total active volume (cubic inches) 2,640 (3,680) Length of array/inline spread (m) 12 Width of array/Crossline spread (m) 24 Total pressure (psi) 2000 Peak to peak Pressure (bar-m) (143.1) Planned source depth (m) 8-12 Vessel speed (knots) 5 Firing frequency (s) 10 Firing interval (m) 25

    Figure 2-2: proposed layouts for 3,680in3 array.

  • 10 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Table 2-3: individual gun volumes.

    String 1 String 2 String 3 Gun Volume

    (in3) Gun Volume

    (in3) Gun Volume

    (in3) 1.1 250 2.1 200 3.1 250 1.2 250 2.2 200 3.2 250 1.3 200 2.3 150 3.3 200 1.4 200 2.4 150 3.4 200 1.5 100 2.5 100 3.5 100 1.6 100 2.6 100 3.6 100 1.7 70 2.7 70 3.7 70 1.8 70 2.8 70 3.8 70 1.9 40 3.9 40

    1.10 40 3.10 40

    2.3 Seabed sampling A seabed sampling survey of up to 120 benthic sites (100 gravity core, 20 dredge) is due to be undertaken between 15 August and 15 October 2013. This survey is independently operated from the seismic survey and is designed to provide supplementary data for areas where seismic data are insufficient or diffi-cult to obtain. The survey will provide valuable geological data regarding previ-ously identified areas of interest on the seabed as well as to ground-truth sedi-ment data. Sampling is often in areas where steep shelves and slopes are pre-sent. Gravity corers are also used on potential seep locations which tend to be depressions in the seabed.

    Seabed sampling will take place entirely within the survey Licence Area (Figure 2-1). Actual positions will be confirmed in the field since there needs to be some flexibility to respond to targets that may arise from the seismic work but it is ex-pected that effort will be focused on areas either surveyed previously or planned for survey in 2013.

    The methodology is based on seabed sampling surveys conducted by TGS in Baffin Bay during 2008 and is a continuation of a survey started in North East Greenland 2011 and continued in 2012 (purple and yellow dots respectively in Figure 2-1). Sampling will be undertaken in accordance with NORSOK (2004) sampling standards.

    The seabed survey vessel will work independently without the assistance from an ice breaker. The survey will therefore be time constrained as it will be essen-tial to complete seabed sampling before the area becomes icebound.

    Table 2-4 describes the equipment to be used.

  • 11 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Table 2-4: specifications for seabed sampling equipment.

    Parameter Data Type of Sediment expected Soft clay and rock samples Type of equipment used Gravity corer and dredge Weight of equipment in air Gravity corer: 800kg - dredge: 100kg Deck space required 8 x 4m Crane lifting force and arm length No crane needed during operations Manufacturer of equipment OSIL (osil.co.uk) Limitations (water depth, soil type) Cable length, stiffness of seafloor

    sediments Geometry and dimensions of cutting shoe

    Hollow cylinder, inner/outer diameter, 90/100mm outer diameter.

    Inside diameter of core barrel and liner 94/86mm Outside diameter of core barrel and liner

    100/90mm

    Whether a piston is used No piston will be used Weight and lengths available 3m core barrel Special handling requirements, e.g. free fall mechanism.

    Winch with free fall

    2.4 Logistics

    2.4.1 Vessels proposed The vessels identified below and in Plate 2-2 are those considered most likely to be used at this stage of survey planning. Alternative vessels may be used but this would not result in significant change to identified survey parameters.

    The proposed acquisition vessel (i.e. towing the airgun and hydrophone arrays) is the M/V Akademik Shatskiy or a similar vessel. This primary vessel will be supported by two further vessels, an icebreaker (e.g. MSV Botnica) and a sup-port vessel (e.g. M/V Kvitbjørn).

  • 12 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Plate 2-2: proposed survey vessels: top, Akademik Shatisky (source ves-sel); lower left Kvitbjørn (chase vessel); lower right, Botnica (ice breaker).

    As noted previously, seabed sampling will be pursued using a separate vessel, such as the M/V Sermilik II (Plate 2-3).

    Plate 2-3: proposed seabed sampling vessel, Sermilik II. The vessels all have comprehensive safety systems and are required to meet stringent standard to work for leading companies in the oil industry.

  • 13 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    The initial port of mobilisation is planned to be Tromsø in Norway. There will be the option to use Bergen (Norway), Longyearbyen (Svalbard) or Reykjavik (Ice-land) if the vessel requires a port at any stage. There are no initial plans for crew change but if one is required this will be done in either Longyearbyen or Rekjavik depending on logistics and availability. Any crew changes will be facilitated by the MSV Kvitbjorn. A helicopter will be available during the project and will be important for reconnaissance of survey areas within ice flows.

    No bunkering (refuelling) or resupplying arrangements are currently planned, it is believed that the vessels will be sufficiently supplied to complete the survey.

    2.4.2 Anticipated energy requirements The expected daily consumption of each vessel is outlined in Table 2-5.

    Table 2-5: typical fuel consumption rates for proposed survey vessels (from previous TGS surveys in the area).

    Vessel Type Fuel Type Typical Use per day (m3)

    Seismic Survey (acquisition vessel)

    Marine Gas Oil (MGO) 8.6

    Support/Chase and Seabed sampling (2 vessels)

    Marine Gas Oil (MGO) 4.8 (2 x 2.4)

    Ice Breaker Heavy Fuel Oil (HFO) 23

    Marine Diesel Oil (MDO) 2.2

    TOTAL Heavy Fuel Oil (HFO) 23

    Marine Diesel Oil (MDO) 2.2

    Marine Gas Oil (MGO) 13.4

    Sulphur content of fuels will be below 1.5% by weight.

    2.4.3 Use of Chemicals A variety of chemicals will be required during the survey. These include fluid used to fill streamer cables, lubricants for airguns, fuel oils etc.. All chemicals to be used have been tested and evaluated for ecotoxilogical properties according to OSPAR Harmonised Offshore Chemical Notification Format (HOCNF) stand-ards.

    Potential risk of spills is considered in Section 7.

  • 14 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    2.4.4 Waste Handling Each vessel has a waste handling plan and maintains a waste log book. Dis-charge of waste at sea is prohibited. All solid waste is to be discharged at ap-proved facilities in port with waste to be segregated into separate streams de-pending on type. All transfers will be logged.

    2.4.5 Air Emissions The survey will generate emissions to the atmosphere. These are proposed to be minimised in the following ways:

    • use of modern, well maintained and serviced vessels and equipment;

    • use of good quality fuel with low sulphur content (

  • 15 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    2.4.8 Built in mitigation In addition to the good environmental practice detailed in sections 2.4.3 to 2.4.7 the following mitigation detailed in Table 2-6 will be followed and is assumed when environmental effects of the proposed operations are considered in Sec-tion 7.

    Table 2-6: built in mitigation.

    Potential Impact Mitigation Notes Conflicts with other ves-sels (e.g. fishing, com-mercial traffic).

    Support (chase) vessel to liaise via radio to alert other vessels to activity and avoid conflicts.

    Fisheries Liaison Of-ficer(s) not proposed for NE Greenland due to anticipated low intensity of fishing activity in Sur-vey Area (Section 6.2).

    Disturbance of marine mammals/seabirds by survey vessels and air-craft.

    Helicopter pilot to have instructions to avoid flying low (

  • 16 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    3 PHYSICAL ENVIRONMENT Sea ice is present in the License area for much of the year. Winter ice begins to form around September and is present until June/July, with icebergs and some coastal ice being present all year round. In northern parts of the Survey and Li-cence areas coastal sea ice is expected to be present all year round (Boertmann & Mosbech (eds), 2011).

    In this region the East Greenland Current (EGC) brings cold, low salinity waters from the Arctic down into the North Atlantic along the east coast of Greenland (Boertmann & Mosbech (eds), 2011). This current also transports any drifting sea ice and icebergs in a net southerly direction and is responsible for a well stratified surface water column created due to a strong salinity based gradient (Coachmann & Aagaard, 1974).

    Where sea ice does break up, the physical conditions that occur as a result allow short but intense levels of primary production which fuel higher biological pro-cesses in the area (Boertmann & Mosbech (eds), 2011).

    3.1 Climate Climatic conditions in the License Area are influenced heavily by sea ice pres-ence throughout much of the year. Temperatures in the northern coastal regions can be as low as -30oC in the winter months with summer temperatures peaking just above freezing. Sea ice has a large impact on the coastal regions by limiting heat exchange between the sea and the air and reflecting thermal radiation thus limiting seawater warming. North Atlantic weather systems influence much of the east coast of Greenland’s weather patterns. More southerly regions are subject to cyclone activity and strong storms, during winter storm wind speeds can exceed 110mph (Przybylak, 2003). These winds tend to approach from the south and bring warmer air and precipitation. TGS have considerable experience of summer conditions from previous surveys off North East Greenland; during survey between 14 August and 4 October 2012 day temperatures gradually dropped from around 3°C mid‐August (with maximum of up to 6.5°C) down to ‐10°C by late September. Maxi-mum wind speed recorded was 32 knots.

    3.2 Bathymetry The License Area covers both continental shelf waters and deeper waters off the shelf that overly the abyssal plain. The width of the continental shelf ranges between approximately 120km from shore at its narrowest point to 310km at its widest (Figure 3-1).

  • 17 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Much of the continental slope in the License Area is of a fairly shallow gradient, with steeper gradients towards the east of the Licence area where the slope is located. The abyssal plain itself is approximately 2400m deep and there is an oceanic ridge formation projecting into the abyssal plain from the continental shelf beginning at approximately 77oN 5oW and extending south west, cf. Figure 3-1 Bathymetry.

    Figure 3-1: bathymetry

    The Survey Area is wholly within the relatively shallower water overlying conti-nental shelf. The depth of water the survey will be conducted in varies consider-ably between shallower coastal areas and deeper offshore areas. Depths typical-ly range between 80m and 300m. All the proposed seabed sampling sites are likely to be in water less than 100m deep, source of data: (GEBCO, u.d.).

    3.3 Oceanography The waters around Greenland, particularly north Greenland, are important areas of surface water cooling that create a cold dense mass of water known as the North Atlantic Deep Water (NADW). This water sinks and is understood to be the origin of a major thermohaline circulation system referred to as the global ocean conveyor belt. This system helps to provide the deep abyssal areas of the world’s oceans with oxygen and nutrients, the water movements prevent the oceans becoming permanently stratified and stagnant (Knauss, 1996; Boertmann & Mosbech (eds), 2011).

  • 18 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Many of the surface layer oceanographic processes in the Greenland coastal region occur due to the presence of the East Greenland Current (EGC). This is a current that is formed in the Arctic by the cooling of warmer northerly flowing North Atlantic Water (NAW) that is taken into the Arctic by the Norwegian Atlantic Current. Here, warmer water enters the Greenland Sea Gyre where it undergoes cooling through contact with the Arctic Ocean and associated sea ice. Cold freshwater run-off from the Arctic sea ice creates stratified low salinity surface waters (Polar Surface Water), whilst higher saline waters sinks to create the cold deep water mass of the NADW creating sharp thermohaline boundaries. In late summer and winter months it is this layer of low salinity surface water that begins to freeze and form sea ice (Knauss, 1996; Boertmann & Mosbech (eds), 2011). Major sea surface currents are summarised in Figure 3-2.

    Figure 3-2: major sea surface currents around Greenland (Boertmann & Mosbech (eds), 2011).

  • 19 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Water from the North Pacific also enters the Arctic through the Bering Strait where it intermingles before being incorporated into the EGC. The low salinity, cold waters of the EGC are then transported south along the east coast of Greenland before entering the North Atlantic. (Bacon et al., 2002) along with any sea ice or icebergs that are caught in the current. This is a main transport route for sea ice travelling south from the higher Arctic. Oceanographic investigations off the south coast of Greenland have suggested that the EGC is around 15km wide, 100m deep and centred roughly 10km off-shore and is 4psu lower than the salinity level in the surrounding waters (Bacon et al., 2002). Sea temperature differences between water off the west coast of Iceland and the EGC have been measured to change by as much 7oC over short distances (Hanna et al., 2002), thus setting up steep thermal gradients and frontal systems. The Irminger Current is a branch of the North Atlantic Current that separates and travels to the west of Iceland due to a raised seabed ridge named the Reykjane’s Ridge. Here, the Irminger Current itself branches into northerly and southerly flows. The northern branch sends warm water parallel to the EGC in the opposite direction around the north of Iceland before being incorporated into southward flowing cold water masses. The Irminger Current has a higher salinity (around 34 psu) and higher temperature (4-6oC) than the EGC and this creates a definitive front between the two water masses (Gyory, et al., 2008). These frontal bounda-ries have important implications in terms of biology, being associated with high levels of production. In summer months freshwater runoff from sea ice melt and terrestrial sources add to the cold, lower salinity nature of the Greenland coastal waters. These waters become stratified and relatively stable, particularly around the ice edges, and create a stable oceanographic surface layer where phytoplankton blooms to occur. It is also likely that at frontal regions, or hydrodynamic discontinuities, upwelling occurs bringing nutrients into the surface waters and allowing phyto-plankton blooms to occur (Boertmann & Mosbech (eds), 2011).

    3.4 Ice Conditions Sea ice formation and depletion is an important function in the Arctic, influencing oceanographic processes both regionally and globally. In winter, when sea ice forms, cold water with a lower salinity lies on top of more saline water creating a sharp halocline boundary. The lower salinity water cools to freezing point and ice crystals begin to form as freshwater pushes salt out creating pockets of hyper-saline water (brine). If the ice is fast forming these pockets become incorporated into the sea ice, if the ice is slower forming these pockets sink to join the full salinity layer bellow the halocline (Knauss, 1996).

  • 20 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    As sea ice recedes in the spring this process is reversed and the ice begins to break up creating areas of open water. When the ice begins to fragment and break up it is transported southwards along the EGC. The formation and depletion of sea ice also has important impacts on coastal oceanographic process by altering thermohaline profiles, which in turns stabilise the water column creating hydrographical discontinuities and localised areas of upwelling, which are important for local biological production (Boertmann & Mosbech (eds), 2011). There are two types of sea ice within the survey area – fast ice and drift ice. Fast ice tends to form in the coastal areas, this is ice that forms off the land and is a stable platform that acts as an extension of the land. This fast ice is permanent in the northern areas of Greenland and likely that it will be present to some extent year round in the northern most areas of the survey area, areas to the south fast ice formation will more likely become ice bound a bit later, probably in Septem-ber or October, depending on conditions (Boertmann & Mosbech (eds), 2011). The second type of ice found within the area of the survey is drift ice. This con-sists of various types of ice, mainly varying sized fragments of thinning sea ice that have broken apart and are transported south from the Arctic on the EGC. In this current ice tends to be varying sizes of icebergs which have become free moving and are either newly formed or previous years bergs that previously be-came ice locked. The drift ice is particularly dynamic as a result of its moving with the surface current tends to run along the edge of the more permanent drift ice but can be present year round as ice in the Arctic breaks up in summer and is transported south (Boertmann & Mosbech (eds), 2011). It is very likely that ice-bergs and drifting ice will be present in the Survey Area all year round. Shear zones can form between the more stable and permanent fast ice and the drift ice, these shear zones tend to form as ice free ‘cracks’ in the ice that create areas of open water. These areas can be significant in terms of biological pro-duction as they provide areas where marine mammals can breathe in otherwise ice covered water. The importance of these shears zones has not been fully assessed and it is difficult to predict as they tend to be variable in size and shape (Boertmann & Mosbech (eds), 2011). Polynyas are important areas associated with ice production, or more specifically because of the lack of ice formation. These are areas where local currents move the water sufficiently to prevent the surface from freezing and are often the sites of terrestrial fluvial inputs. They are important both biologically and oceanograph-ically. In terms of local oceanographically processes they are thought to be im-portant areas of thermal loss as sea ice is not present to act as an insulator, and because they are often sites of freshwater input, the temperature and salinity differences can cause localised water movements. In some polynyas, ice for-

  • 21 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    mation never occurs, but where it does it is usually later in the year and the ice breaks up earlier the following spring. This extends the time of biological produc-tivity in the polynya, especially its use by marine mammals whereas when winter ice forms the polynyas become important for breathing (Boertmann & Mosbech (eds), 2011; National Snow & Ice Data Center (u.d.). During winter time more or less the entire east coast forms coastal ice to some extent and is greatest to the north where the survey is proposed. In late summer the ice has broken up and the sea is covered by open drift ice (Figure 3-3). There are several areas along this coast where polynyas result in relatively ice free conditions throughout the year (Figure 5-1).

  • 22 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figure 3-3: sea ice chart showing presence of ice around the proposed survey area (Norwegian Meterological Institute, 2013).

  • 23 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figure 3-4: identified Polynyas within the NEG13 assessment area (Boertmann & Mosbech (eds), 2011).

    3.5 Baseline Chemical and Pollution Levels There have been various studies into baseline pollution levels in the Greenland marine environment. Dietz, Riget, & Johansen, 1996 concluded that lead levels in marine organisms were low but mercury, cadmium and selenium, levels ex-ceeded Danish food standard limits, although no conclusion as to geographic sources could be drawn (Boertmann & Mosbech (eds), 2011) except that in gen-eral cadmium levels were higher in Northwest Greenland. An increasing trend of heavy metal contamination has been found in some ani-mals, this is highest in marine mammals in Central West and North West of Greenland (Dietz, 2008). Due to metals accumulating through the environment, the top trophic levels tend to accumulate heavy metals in their tissues; this in-cludes humans who consume contaminated animals. Persistent Organic Pollutant (POPs) tend to be lower in Arctic waters due to the reduced level of industry and boat traffic, however, accumulations could still be a potential risk to higher trophic predators (Dietz, 2008; Boertmann & Mosbech (eds), 2011). Higher levels of POPs have been recorded in polar bears, Green-

  • 24 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    land halibut and Greenland sharks (Somniosus microcephalus) PCBs are a ma-jor element to those POPs recorded in higher trophic levels (Boertmann & Mosbech (eds), 2011). Specific knowledge of contaminants in the proposed Survey Area is limited alt-hough it does appear that there tends to be higher levels of contaminants, par-ticularly heavy metals, on the western side of Greenland (Boertmann & Mosbech (eds), 2011), Given that North East Greenland is a National Park with very few if any industrial activities and minimal ship traffic (Boertmann & Mosbech (eds), 2011) it could be assumed that baseline pollution and contamination levels in this region would be low. Any existing pollution, if present, is not considered to be of relevance to the pro-posed seismic or seabed survey. In particular, the seabed survey is very limited in its extent (less than 8m3 of material will be sampled by the main core survey assuming that all 100 cores were taken to a full 3m depth) and there is negligible potential to mobilise existing contaminants into the marine environment by this or dredge sampling. This matter is not considered further in the EMA beyond measures to avoid causing pollution through the survey itself (Section 7).

  • 25 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    4 PROTECTED SITES In the following, the protected areas near and within the License Area are pre-sented, followed by the identified value ecosystem components (VEC) assumed to be present within the License Area.

    4.1 Protected Areas North and northeast Greenland is protected as a National Park. The park is the world’s largest and covers a total of 972,000 km2 which incorporates large parts of Greenland and also includes the northeast coastal waters - in total it covers the area of 71oN – 83o40’N and 12oW – 63oW (Aastrup et al., 2005) (Figure 4-1). The purpose of the National Park is to maintain the state of the area, ensure opportunities for research and access for the public and to protect nature and cultural heritage. Within the Licence Area there are protection zones for walrus, narwhal and bowhead whale; however, it is not planned that seismic survey will enter these protected areas, cf. Figure 4-2.

    Figure 4-1: National Park of North and Northeast Greenland (NANOQ 2013).

  • 26 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Figure 4-2: Licence Area with the proposed seismic survey lines showing the protection zones for walrus, narwhal and bowhead whale.

    There are also some onshore sites that are designated for the protection of birds. The Ramsar area Hochstetter Forland (Figure 4-2) is the most important moult-ing area for pink-footed goose in Greenland and holds more than two percent of the flyway population. Furthermore, the site contains a rich diversity of breeding high-arctic waterbirds (Egevang & Boertmann, 2001). There are also eight Im-portant Bird Areas (IBAs) in the northern area. IBAs have been designated by the organisation BirdLife International. IBAs are designated sites, which are con-sidered important for the long term viability of bird populations (Skov et al., 1995). Selected coastal colonies of mainly eiders and murres are surrounded by sailing and/or aviation restriction zones ranging from 200 – 3000 m (IBA, 2013) (Figure 4-2).

    4.2 Summary of Valued Ecosystem Components (VECS) In order to identify potential interactions between petroleum activities and eco-system components the concept of valued ecosystem components (VEC) has been developed. VECs can be species, population, biological events or other environmental features that are important to the human population (not only eco-nomically), have a national or international profile, can act as indicators of envi-ronmental change or can be the focus of management or other administrative efforts. VECs include important flora and fauna, habitats and processes such as the primary production spring bloom (Boertmann & Mosbech (eds), 2011).

  • 27 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    The VECs selected are species which can potentially be impacted by oil activi-ties including exploration activities like seismic surveys and drilling. They also include species and events where changes can be detected (indicators) (Boertmann & Mosbech (eds), 2011):(cf. Table 4-1)

    Table 4-1: identified VECs with summary of valued ecosystem components which are to be found within or near the Licence Area, including status on Greenland Red List.

    Identified VECs Species Red list status Summary of importance

    Invertebrates

    Calanus hyperboreus Important food source for higher trophic levels and mechanism for carbon transport

    Parathemisto libellula Important food source for higher trophic levels and mechanism for carbon transport

    Fish

    Greenland Halibut (Reinhardtius hippo-glossoides)

    Major commercial species

    Polar Cod (Boreogadus saida)

    Ecological key species that pro-vides important food for much of the higher trophic levels

    Arctic Cod (Arctogadus glacialis)

    Ecological key species that pro-vides important food for much of the higher trophic levels

    Sea Birds

    Northern fulmar (Fulmarus glacialis)

    LC (Least concern)

    Some breeding colonies within the assessment area.

    Common eider (Somateria mollissima)

    LC (Least concern)

    Important predator on benthic environment, red listed species due to declining west coast pop-ulation

    King eider (Somateria spectabilis)

    LC (Least concern)

    Highly localised concentrations only occurring at a few sites during certain times of the sum-mer within the survey area.

  • 28 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Identified VECs Species Red list status Summary of importance

    Long-tailed duck (Clangula hyemalis)

    LC (Least concern)

    Over winter in Greenland waters but will travel through the pro-posed survey area on migrations to breeding grounds in Svalbard. Medium dependence on area.

    Black Legged kittiwake (Rissa tridactyla)

    VU (Vulnerable)

    Breeding colonies often concen-trated around polynyas and ear-ly ice break-up. The most im-portant breeding colonies are at polynyas within the survey area.

    Sabines gull (Larus sabini)

    NT (Near threat-ened)

    Small colonies throughout the coast. Red-listed due to small population size.

    Ross’s gull (Rhodostethia rosea)

    VU (Vulnerable)

    Very rare red listed species, only breeding at Northeast Water polynya in the proposed survey area.

    Ivory gull (Pagophila eburnea)

    VU (Vulnerable)

    Particularly high conservation and a red listed species. The most important area is the Northeast Water polynya in the proposed survey area.

    Arctic tern (Sterna paradisaea)

    NT (Near threat-ened)

    Breeding colonies along the coast.

    Thick billed murre (Uria lomvia)

    VU (Vulnerable

    The breeding population has an unfavorable conservation status in the proposed survey area. Localised concentrations at breeding sites within the survey area.

    Little Auk (Alle alle)

    LC (Least concern) National responsi-bility species

    Entire breeding population from Svalbard move through the pro-posed survey area during spring summer.

    Marine Mammals

    Polar Bear (Ursus maritimus)

    VU (Vulnerable) National responsi-bility species

    Significant proportion of the global population occur within the assessment area and the species has a high national and

  • 29 2D seismic survey offshore North East Greenland EMA report

    www.niras.gl

    Identified VECs Species Red list status Summary of importance

    international conservation value. They are globally and nationally endangered. They are also of high value for local hunters with-in the survey area. Areas of particular importance are ice edges and polynyas.

    Walrus (Odobenus rosmarus)

    NT (Near threat-ened) in NE Green-land

    Isolated and highly localized population with important areas within the assessment area. It is an important resource for local communitie