31
3. Wahlpflichtmodule Physik Im Wahlpflichtbereich Physik müssen insgesamt mindestens 14 LP/CP absolviert werden. Darüber hinaus können die Module des Wahlpflichtbereichs Physik auch im Wahlbereich genutzt werden, für den insgesamt maximal 17 LP/CP zur Verfügung stehen. Dadurch können sich interessierte Studenten bereits im Bachelorstudiengang in einem bestimmten Bereich der Physik spezialisieren. Das Angebot umfasst Module aus folgenden Bereichen der Physik: Experimentelle Physik mit Vorlesungen über Atomphysik, die Physik der Kondensierten Materie und die Teilchen- physik; theoretische Physik mit Angeboten im Bereich der Quantenstatistik, der Quantenfeld- theorie, der allgemeine Relativitätstheorie, der Theorie der Kondensierten Materie sowie der theoretische Teilchenphysik. Desweitern gibt es eine Vielzahl von Kursen in der Astro-, der Bio-, der Medizin- und der Umweltphysik. In allen Gebieten der Physik werden Projektpraktika (WPProj), weiterführende Seminare (WPSem) und Spezialvorlesungen (WPSpez) angeboten. Ein Teil dieser Module ist einem ständigen Wechsel ausgesetzt und wird von Semester zu Semester aktualisiert. Für eine früh- zeitig Spezialisierung ist die Belegung spezieller Mastermodulen (Mxxx) bereits im Bachelor möglich. Diese können dann in einem späteren Masterstudiengang durch weiterführende Ma- stermodule ersetzt werden. Die im Wahlpflichtbereich zur Verfügung stehenden Module sind in Tabelle 7 aufgeführt. Aus diesen Modulen müssen mindestens 14 LP/CP erbracht werden. 64

3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Embed Size (px)

Citation preview

Page 1: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3. Wahlpflichtmodule Physik Im Wahlpflichtbereich Physik müssen insgesamt mindestens 14 LP/CP absolviert werden. Darüber hinaus können die Module des Wahlpflichtbereichs Physik auch im Wahlbereich genutzt werden, für den insgesamt maximal 17 LP/CP zur Verfügung stehen. Dadurch können sich interessierte Studenten bereits im Bachelorstudiengang in einem bestimmten Bereich der Physik spezialisieren. Das Angebot umfasst Module aus folgenden Bereichen der Physik: Experimentelle Physik mit Vorlesungen über Atomphysik, die Physik der Kondensierten Materie und die Teilchen-physik; theoretische Physik mit Angeboten im Bereich der Quantenstatistik, der Quantenfeld-theorie, der allgemeine Relativitätstheorie, der Theorie der Kondensierten Materie sowie der theoretische Teilchenphysik. Desweitern gibt es eine Vielzahl von Kursen in der Astro-, der Bio-, der Medizin- und der Umweltphysik. In allen Gebieten der Physik werden Projektpraktika (WPProj), weiterführende Seminare (WPSem) und Spezialvorlesungen (WPSpez) angeboten. Ein Teil dieser Module ist einem ständigen Wechsel ausgesetzt und wird von Semester zu Semester aktualisiert. Für eine früh-zeitig Spezialisierung ist die Belegung spezieller Mastermodulen (Mxxx) bereits im Bachelor möglich. Diese können dann in einem späteren Masterstudiengang durch weiterführende Ma-stermodule ersetzt werden. Die im Wahlpflichtbereich zur Verfügung stehenden Module sind in Tabelle 7 aufgeführt. Aus diesen Modulen müssen mindestens 14 LP/CP erbracht werden.

64

Page 2: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Tabelle 7: Wahlpflichtbereich Physik Modulcode Modul LP/CP Term Wahlpflichtbereich Allgemein WPProj Projektpraktikum 4-12 WS/SS WPFSem Forschungsseminar 2 WS/SS WPSpez Spezialvorlesung Physik 2-5 WS/SS Wahlpflichtbereich Atom-, Molekül- und optische Physik WPAMO Akt. Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics and Photonics 4 SS Wahlpflichtbereich Astronomie und Astrophysik WPAstro Einführung in die Astronomie 10 WS/SS MKTP2 Theoretical Astrophysics 8 WS MWAstro1 Observational Methods 6 WS/SS MWAstro2 Stellar Astronomy and Astrophysics 6 WS/SS MWAstro3 Extragalactic Astrophysics 6 WS/SS MWAstro4 Cosmology 6 WS/SS MWAstro5 Observing the Big Bang 6 WS/SS Wahlpflichtbereich Biophysik MWBio1 Introduction to Biophysics 6 SS Wahlpflichtbereich Physik der kondensierte Materie MKEP2 Advances Solid State Physics 8 SS MWCMP1 Low Temperature Physics 6 WS MWCMP2 Surfaces and Nanostructures 6 WS Wahlpflichtbereich Umweltphysik MKEP4 Environmentntal Physics 8 SS MWEnv1 Atmospheric Physics 4 WS/SS MWEnv2 Physics of Terrestrial Systems 4 WS/SS MWEnv3 Physics of Aquatic Systems 4 SS/WS MWEnv4 Physics of Climate 4 SS/WS Zusatzqualifikation Teilchenphysik MKEP1 Advanced Particle Physics 1 8 WS MWHE2 Physics of Particle Detectors 4 SS Zusatzqualifikation Theoretische Physik MKTP1 Theoretical Quantum Statistics 8 WS MWTheo1 Quantum Field Theory 1 8 SS MWCMP5 Many-Particle Theory 8 SS

65

Page 3: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.1. Wahlpflichtmodule Allgemein Code: WPProj

Name des Moduls: Projektpraktikum

Studienfach bzw. Studiengänge: Physik

Veranstaltungstyp: Praktikum

Anzahl der LP: 4 - 12

Workload: 120 – 360 h

Kontaktstunden: 8 h/Woche

Modus: WPM

Turnus: SS/WS

Veranstaltung in dem Modul: • Projektpraktikum zur Bearbeitung eines begrenzten Themas bzw. der Mitarbeit

bei laufenden Forschungsprojekte. Sie finden bei experimentellen Arbeiten in den Labors einer Forschungsgruppe statt oder nach Vereinbarung auch in einem Indu-strielabor. Bei theoretischen Arbeiten werden die Studierenden in den Arbeits-gruppen betreut.

• Die Dauer des Projektpraktikums kann frei vereinbart werden, wobei 4 LP eine Kontaktzeit von ca. 90 Stunden entspricht. 12 LP/CP entspricht einer Praktikums-dauer von ca. 8 Wochen. Das Modul kann sich über 2 Semester erstrecken.

Inhalt des Moduls:

Einarbeitung in ein aktuelles Forschungsthema. Erarbeitung technischer Fertigkeiten. Um-gang mit Forschungsapparaturen und Programmsystemen.

Lernziele: Heranführung an aktuelle Forschungsthemen. Orientierungshilfe zur Wahl des physikalischen Vertiefungsgebiets. Erste Schritte zur selbstständigen Forschung.

Teilnahmevoraussetzungen: ab 4. Semester

Nützliche Vorkenntnisse: keine

Nützliche Literatur: wird vom jeweiligen Dozenten angegeben

Besonderheiten:

Prüfungsmodalitäten: wird bei Beginn der Veranstaltung vom Betreuer festgelegt

66

Page 4: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: WPFSem

Name des Moduls: Forschungsseminar

Studienfach bzw. Studiengänge: Physik

Veranstaltungstyp: Seminar

Anzahl der LP: 2

Workload: 60 h

Kontaktstunden: 45 (gesamt)

Modus: WPM

Turnus: SS/WS

Veranstaltung in dem Modul: • Seminar (2 SWS)

Inhalt des Moduls: • Erarbeitung von Themen aus einem aktuellen Forschungsgebiet. • Vorbereitung und Präsentation eines Vortrags (60 Minuten)

Lernziele: Vermittlung der theoretischen und praktischen Grundlagen moderner Experimen-te zur Atom- und Molekülphysik

Teilnahmevoraussetzungen: keine

Nützliche Vorkenntnisse: experimentelle und theoretische Grundlagen des Gebiets.

Nützliche Literatur: wird vom jeweiligen Dozenten angegeben, i. A. Originalliteratur

Besonderheiten:

Prüfungsmodalitäten: Vortrag und Handout

67

Page 5: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: WPSpez

Name des Moduls: Spezialvorlesung der Physik

Studienfach bzw. Studiengänge: Physik

Veranstaltungstyp: Vorlesung (mit Übungen)

Anzahl der LP: 2-5

Workload: 90 h

Kontaktstunden: 2/Woche

Modus: WPM

Turnus: SS/WS

Veranstaltung in dem Modul: • Vorlesung (2 SWS; 2-3 LP) • evtl. Übungen (1 SWS; 1-2 LP)

Inhalt des Moduls: • Vorlesung zu einem aktuellen Thema der Physik. Besonders adressiert an Studier-

ende, die in diesem Gebiet die Bachelorarbeit machen wollen, oder sich weiter spezialisieren wollen. Diese Vorlesungen werden in unregelmäβigem Rhythmus angeboten, teilweise mit, teilweise ohne zusätzliche Übungen.

Lernziele: Frühzeitige Heranführung an aktuelle Forschungsthemen für besonders motivierte Studenten.

Teilnahmevoraussetzungen: Wahlpflichtvorlesungen aus diesem Arbeitsgebiet.

Nützliche Vorkenntnisse: keine

Nützliche Literatur: wird vom jeweiligen Dozenten angegeben

Besonderheiten:

Prüfungsmodalitäten: wird bei Beginn der Veranstaltung vom Dozenten festgelegt

68

Page 6: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.2. Wahlpflichtmodule Atom-, Molekül- und optische Physik Code: WPAMO

Name des Moduls: Aktuelle Themen der Atom- Molekül- und optischen Physik

Studienfach bzw. Studiengänge: Physik

Veranstaltungstyp: Vorlesung und Übung

Anzahl der LP: 4

Workload: 120 h

Kontaktstunden: 3/Woche

Modus: WPM

Turnus: WS

Veranstaltung in dem Modul: • Vorlesung (2 SWS)

• Übungen (1 SWS)

Inhalt des Moduls: • Kurzer Überblick über atomphysikalische Prinzipien und Methoden • Atomstrahlquellen und Nachweis von Atomen • Laserspektroskopie und Hochfrequenzspektroskopie • Atome in äußeren Feldern, Fallen für neutrale Atome, Experimente mit kalten A-

tomen • Ionenfallen und Speicherringe, Experimente mit gespeicherten Ionen • Ausgewählte „Hot Topics“ der aktuellen Forschung

Lernziele: Vermittlung einer Einführung in die aktuelle Forschung in der Atom-, Molekül- und optischen Physik.

Teilnahmevoraussetzungen: PEP3

Nützliche Vorkenntnisse: PEP4

Nützliche Literatur: wird vom jeweiligen Dozenten angegeben

Besonderheiten:

Prüfungsmodalitäten: wird bei Beginn der Veranstaltung vom Dozenten festgelegt

69

Page 7: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MKEP3 (Mastermodul)

Course Title: Advanced Atomic, Molecular and Optical Physics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 6/week

Mode: WPM

Term: WS

Module Parts: • Lecture on Advanced Atomic, Molecular and Optical Physics (4 hours/week)

• Excersise with homework (2 hours/week)

Module Content: • Review of one-electron atomic systems • Two- and many-electron atomic systems • Electronic structure and binding in molecules • Atoms and molecules in static external fields • Interaction with radiation • Atomic collisions and radiationless processes • Particle preparation, particle detection • Sources of electromagnetic radiation • Atomic and molecular spectroscopy • Cooling and trapping

Objective: Experimental and theoretical basics of modern atomic, molecular and optical physics.

Prerequisits: PEP1-PEP3

Useful Knowledge: English

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

70

Page 8: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAMO1 (Mastermodul)

Course Title: Experimental Optics and Photonics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: SS

Module Parts: • Lecture on “Experimental Optics and Photonics” (2 hours/week) • Excersise with homework (1 hours/week)

Module Content: • Ray optics • Wave optics • Beam optics, Gaussian optics • Fourier optics • Wave guides, fiber optics, integrated optics • Interference, coherence • Photons and atoms • Amplification of light • Laser theory • Types of lasers • Pulsed lasers • Non-linear optics • Modern applications

Objective: Basic principles and experimental methods of optics and photonics.

Prerequisits: PEP1-PEP3

Useful Knowledge: English

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

71

Page 9: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.3. Wahlpflichtmodule Astronomie und Astrophysik Code: WPAstro

Name des Moduls: Einführung in die Astronomie

Studienfach bzw. Studiengänge: Physik

Veranstaltungstyp: Vorlesung und Übung, Praktikum

Anzahl der LP: 10

Workload: 300 h

Kontaktstunden: 9/Woche

Modus: WPM

Turnus: SS/WS

Veranstaltungen in dem Modul: • Vorlesung Einführung in die Astronomie I mit Übungen • Vorlesung Einführung in die Astronomie II mit Übungen

• Praktikum Astrophysikalisches Praktikum I

Inhalt des Moduls: Teilmodul 1: Vorlesung „Einführung in die Astronomie I“ (WS, 4LP)

• Astronomische Grundlagen (4): astronomische Beobachtung, Methoden und In-strumente; Orientierung an der Sphäre; Grundbegriffe elektromagnetischer Strahlung; Entfernungsmessung; das Erde-Mond-System; terrestrische und Gas-planeten, kleine Objekte; extrasolare Planeten

• Sternaufbau (5): Zustandsgrößen, Sternatmosphären und Linienspektren; Hertzsprung-Russell-Diagramm; Sternaufbaugleichungen, Energietransport und Opazität; stellare Energieerzeugung, nukleare Reaktionsraten und Tunneleffekt; Fusionsreaktionen

• Sternentwicklung (3): Hauptreihe, Riesensterne und Spätphasen; weiße Zwerge, Chandrasekhar-Masse; Supernovae, Neutronensterne, Pulsare und Supernova-Überreste; Doppel- und Mehrfachsterne; Sternhaufen

• Interstellares Medium (3): Komponenten, Gas und Staub; Ionisation und Rekom-bination, Strömgren-Sphären; Heizung und Kühlung; Anreicherung mit Metallen

Teilmodul 2: Vorlesung „Einführung in die Astronomie II“ (SS, 4 LP) • Galaxien (4): Aufbau und Eigenschaften normaler Galaxien und der Milchstraße;

Skalierungsrelationen; Spektren; Leuchtkraftfunktion; kosmologische Entwick-lung der Sternentstehung; schwarze Löcher in Galaxien, aktive Galaxien und ihre Eigenschaften; vereinheitlichte Modelle

• Galaxienhaufen (3): optische Eigenschaften und Haufengas; hydrostatisches Modell; Skalierungsrelationen; Häufigkeit und Entwicklung

• Gravitationslinsen (2): Grundlagen, Massenverteilung in Galaxien und Galaxienhaufen; kosmologischer Linseneffekt

• Großräumige Verteilung von Galaxien und Gas (3): Strukturen in der räumlichen Galaxienverteilung; Rotverschiebungseffekte; Biasing; Lyman-α-Wald; Gunn-Peterson-Effekt und kosmische Reionisation

• Kosmologische Rahmenbedingungen (3): Friedmann-Lemaître-Modelle, kos-mologisches Standardmodell; Ursprung und Entwicklung von Strukturen; Halos aus dunkler Materie; Entstehung von Galaxien

72

Page 10: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Teilmodul 3: Praktikum „Astrophysikalisches Praktikum I“ (WS, 2 LP) Anhand konkreter astrophysikalischer Problemstellungen werden astronomisch-astrophysikalische Arbeitstechniken in folgenden Fachgruppen vermittelt:

• Kenndaten von Teleskopen und Detektoren; astronomische Koordinatensysteme, astrometrische Arbeitstechniken: Definitionen, Transformationen, zeitliche Änderungen, Eigenbewegungen, astrometrische Entfernungsmessung

• Photometrische Arbeitstechniken: Objektdetektion, Messungen von Intensitäten und Spektralindizes, Erstellung und Anwendung von Farben-Helligkeits-Diagrammen: Photometrische Entfernungsmessung

• Spektroskopische Arbeitstechniken: Wellenlängeneichung, Geschwindigkeits-messung, Spektralklassifikation Bestimmung stellarer Zustandsgrößen: Massen, Temperaturen, Alter, Zusammensetzung, Neutronensterne

• Physik aktiver Galaxien

Lernziele: Einführung für alle Studenten mit Interesse an Astronomie in die Grundlagen der Astronomie und Astrophysik; Darstellung und Ausführung der grundlegenden Schritte zu astronomischer Datengewinnung, -analyse, und -interpretation, und allgemeiner Arbeitstech-niken astrophysikalischer Forschung

Teilnahmevoraussetzungen: • Einführung in die Astronomie und Astrophysik I: elementare Kenntnisse der

Physik und Mathematik • Einführung in die Astronomie und Astrophysik II: Einführung in die Astronomie

und Astrophysik I • Praktikum: Einführungen in die Astronomie und Astrophysik I und II

Nützliche Vorkenntnisse: keine

Nützliche Literatur: wird vom jeweiligen Dozenten angegeben

Besonderheiten: Praktikum einwöchig ganztägig während der vorlesungsfreien Zeit

Prüfungsmodalitäten: Die Regelungen zum Leistungsnachweis werden vom Dozenten zu Beginn der Veranstaltung festgelegt.

73

Page 11: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MKTP2 (Mastermodul)

Course Title: Theoretical Astrophysics

Program: Physics (Master)

Type: Lecture with Excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 6/week

Mode: WPM

Term: WS

Module Parts: • Lecture on Theoretical Astrophysics (4 hours/week) • Exercise with homework (2 hours/week)

Module Content: • Radiative processes(9): Macroscopic radiation measurements; emission, absorp-

tion and scattering, radiative transfer; Bremsstrahlung and synchrotron radiation; ionization and recombination; spectra

• Hydrodynamics (9): Basics and equations of motion; ideal and viscous fluids and currents; sound waves, supersonic currents and shock waves; instabilities, convec-tion and turbulance

• Plasmaphysics (6): Basics of collisionless plasmas; dielectric tensor; dispersion relation, longitudinal waves and Landau damping; magneto-hydrodynamic equa-tions; waves in magnetized plasmas; hydrodynamic waves

• Stellardynamics (6): Relaxation; Jeans equations and Jeans theorem; tensor-virial theorem; equilibrium and stability of self-gravitating systems; dynamical friction; Fokker-Planck approximation

Objective: Introduction to the fields of theoretical physics, which are of special importance for theoretical astrophysics, and which are not covered by the course lectures of theoretical physics; target audiance are students with special interest in astronomy and astrophysics or in theoretical physics

Prerequisits: PTP1, PTP2, PTP3, PTP4

Useful Knowledge: WPAstro

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

74

Page 12: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAstro1 (Mastermodul)

Course Title: Observational Methods

Program: Physics (Master)

Type: Lecture and Laboratory Course

Credit Points: 6

Workload: 180 h

Teaching Hours: 6/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on Observational Methods (4 hours/week) • Laboratory Course (2 hours/week)

Module Content:

Module Part 1: Lecture „Observational Methods“ (4 LP) • Optics and telescopes (4): geometrical optics, Fraunhofer diffraction; refracting

and reflecting telescopes; construction of telescopes and their properties; imaging errors, aberration and their corrections; structure and mounting of telescopes

• Influence of the atmosphere on astronomical observations (4): Transmission, emission, their wavelength dependence and correction methods; atmospheric tur-bulence and seeing

• adaptive and active optics (2): Basics; wavefront sensors and correction methods; practical application

• Detectors (3): Prinzipals and construction of CCDs, sensitivity, linearity and sta-bility; read-out methods, charge transfer and accumulation, read-out noise; infra-red detectors and arrays

• Imaging, photometry and spectroscopy (2): Reduction and combination of image data; photometric units, filter systems, pointspread function, measuring methods and calibration; spectroscopic methods, reduction of spectroscopic data

Module Part 2: Astrophysical Laboratory Course II (2 LP) By means of well-posed astrophysical problems on the following topics advanced astronomi-cal/astrophysical techniques concerning sampling, data bases and statistical methods will be trained:

• Planetary systems: Discovering methods, properties, observed frequencies; • Stellardynamics: Dynamiks of stellar systems, mass determinations; • Galaxy evolution: Morphological properties, stellar populations, intergalactic me-

dium; • Radiative processes: Thermal, non-thermal, radiative transfer; • Observational cosmology: Distance determination, quantification of cosmological

parameters

Objective: Presentation of modern astronomical telescopes and instruments, their functional properties and limits for students with special interest in astronomy; performing the practical course, solving exercises and presentation of the results.

75

Page 13: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Prerequisits: Basic knowledge on electromagnetic radiation and Fourier theory; Introduction to Astronomy and Astrophysics I and II (WPAstro)

Useful Knowledge: Theoretical astrophysics

Recommended Literature: To be announced by lecturer

Specialities: Exercises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

76

Page 14: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAstro2 (Mastermodul)

Course Title: Stellar Astronomy and Astrophysics

Program: Physics (Master)

Type: Lecture with excersises, seminar

Credit Points: 6

Workload: 180 h

Teaching Hours: 5/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on Stellar Astronomy and Astrophysics (2 hours/week) • Exercise (1 hour/week)

• Seminar on Special Topic in Stellar Astronomy and Astrophysics (2 hours/week)

Module Content: Module Part 1: Lecture “Stellar Astronomy and Astrophysics“ (4 LP)

• Structure and evolution of stars (5): Stellar structure equations, energy transfer, stellar models; evolution of stars with different masses; stellar pulsations; degen-erated equation of state; evolution of binary systems; final stages and supernovae

• Nuclear processes and element formation (3): Fusion processes, cross sections and tunneling; detection of the fusion by Neutrinos; growth of higher order elements, resonances; r- and s-process

• Stellar atmospheres (5): radiative transfer, grey atmosphere, local thermodynamic equilibrium. Theory of line spectra; determination of stellar parameters using spectral analysis; stellar winds

• Formation of stars and planets (2): Conditions for star formation, metals, dust and molecular clouds; early phases of star formation, proto-stellar discs; planet forma-tion, extrasolar planets; enrichment with heavy elements

Module Part 2: Seminar (2LP) • Presentations and discussions on actual topics in stellar astronomy and astropysics

Objective: detailed presentation of the theory of structure and evolution of stars for students with special interest in astronomy and astrophysics

Prerequisits: WPAstro, MKTP2

Useful Knowledge: English

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

77

Page 15: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAstro3 (Mastermodul)

Course Title: Extragalactic Astrophysics

Program: Physics (Master)

Type: Lecture with excersises, seminar

Credit Points: 6

Workload: 180 h

Teaching Hours: 5/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on “Galactic and Extragalactic Astrophysics” (2 hours/week) • Exercise (1 hour/week)

• Seminar on Special Topic in “Galactic and Extragalactic Astrophysics” (2 hours/week)

Module Content: Module Part 1: Lecture “Galactic and Extragalactic Astrophysics” (4 LP)

• Galaxy formation and evolution (3): cosmological initial conditions, semi-analytic models; angluar momentum, discs and star formations; population synthesis and chemical evolution; merging; structure and dynamics of the Milky Way;

• Active galaxies (4): Black Holes in Galaxies; continuum and line spectra, vari-ability; emission mechanisms and unified models; cosmological evolution; feed-back of active galaxies on the environment;

• Galaxy clusters (4): optical, X—ray and radio emission, Sunyaev-Zel'dovich ef-fect; models, scaling relations and deviations; galaxy populations; cosmlogical evolution;

• Largescale matter distribution (2): Correlation functions; biasing mechanisms; de-formations in redshift space, velocity field; statistics and cosmological evolution of intergalactic absorption lines;

• Cosmic radiation (2): Properties and interpretation of the X-ray and infrared background; Cosmic Rays, acceleration mechanisms and transport effects; cosmic re-ionization, physical mechanisms and observations

Module Part 2: Seminar (2LP) • Presentations and discussions on actual topics in galactic and extragalactic astro-

physics

Objective: Detailed presentation of the physics of normal and active galaxies, galaxy clusters and larger structures as well as the cosmological evolution for students with special interest in astronomy and astrophysics

Prerequisits: WPAstro, MKTP2

Useful Knowledge: English

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

78

Page 16: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAstro4 (Mastermodul)

Course Title: Cosmology

Program: Physics (Master)

Type: Lecture with excersises, seminar

Credit Points: 6

Workload: 180 h

Teaching Hours: 5/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on “Cosmology” (2 hours/week) • Exercise (1 hour/week)

• Seminar on Special Topic in “Cosmology” (2 hours/week)

Module Content: Module Part 1: Lecture “Cosmology” (4 LP)

• Homogeneous and isotropic cosmology (4): Friedmann-Lemaître models, geome-try, redshift and dynamics; parameters, distance measures and ages; therma evolu-tion, freezing out of reactions; primordial nucleosynthesis and recombination

• Inhomogeneities in the universe (5): Evolution of density and velocity perturba-tions; power spectra, Zel’dovich approximation and nonlinear evolution; spherical collapse model and extended Press-Schechter formalism

• Early universe (3): Structures in the Cosmic Microwave Background, simplified theory, power spectrum and interpretation; basics of cosmic inflation; accelerated expansion, dark energy and possible cosmological effects

• Late universe (3): Structures in the evolved universe; largescale gas and galaxy distribution, power spectrum and interpretation; gravitational lenses, cosmic shea-ring and amplification; evolution of the galaxy cluster population

Modul Part 2: Seminar (2LP) • Presentations and discussions on actual topics in cosmology

Objective: Detailed presentation of the cosmological standard model, the cosmological evo-lution and structure formation for students with special interest in astronomy and astrophys-ics, in particle astrophysics and in theoretical physics

Prerequisits: PTP4

Useful Knowledge: WPAstro, MKTP2

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

79

Page 17: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWAstro5 (Mastermodul)

Course Title: Cosmology

Program: Physics (Master)

Type: Lecture with excersises, seminar

Credit Points: 6

Workload: 180 h

Teaching Hours: 5/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on “Observing the Big Bang” (2 hours/week) • Exercise (1 hour/week)

• Seminar on Special Topic in “Cosmology” (2 hours/week)

Module Content: Module Part 1: Lecture “Observing the Big Bang” (4 LP)

• Expansion and age of the universe (3): Friedman models, expansion rate and Hubble constant, age determination of astronomical objects, constraints on the age of the universe

• Matter in the universe (3): Primordial nucleosynthesis, light element frequencies and cosmic baryon density, evidence for Dark Matter and density estimation

• Cosmic microwave background (3): temperature and spectrum, structures in the microwave background, cosmological consequences

• Cosmic structures (3): Structures in the galaxy distribution, correlation functions and power spectra, gravitational lensing effects and cosmic shearing, normaliza-tion of the density fluctuations

• Dark Energy and Inflation (3): Type Ia supernovae, accelerated cosmic expansion, model of cosmological inflation and observable consequences, Dark Energy and possibilities of their investigation

Modul Part 2: Seminar (2LP) • Presentations and discussions on actual topics in cosmology

Objective: Presentation of the empirical fundamentals of the cosmological standard model for students with special interest in cosmology and the world model.

Prerequisits: PEP1-PEP4

Useful Knowledge: WPAstro

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: To be defined by lecturer before beginning of course

80

Page 18: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.4. Wahlpflichtmodule Biophysik Code: MWBio1 (Mastermodul)

Course Title: Introduction to Biophysics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 6

Workload: 180 h

Teaching Hours: 6/week

Mode: WPM

Term: SS

Module Parts: • Lecture on “Introduction to Biophysics” (4 hours/week) • Excersise (2 hours/week)

Module Content: • Methods of structural biology (X-Rays, EM, NMR, LM) • Membranes and biological energy • Measurement of neural activity • Single Molecule Spectroscopy • Imaging of living tissue • Information in living tissue • Chemo-mechanical coupling • Catalysis

Objective: Introduction to basic concepts of biophysics; practical excersises.

Prerequisits: PEP4, UKBio

Useful Knowledge: –

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

81

Page 19: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.5. Wahlpflichtmodule Physik der kondensierten Materie Code: MKEP2

Course Title: Advanced Physics of Condensed Matter

Program: Physics (Master)

Type: Lecture with excersises, seminar

Credit Points: 8

Workload: 200 h

Teaching Hours: 6/week

Mode: WPM

Term: WS

Module Parts: • Lecture on Advanced Condensed Matter Physics (4 hours/week) • Excersise with homework (2 hours/week)

Module Content: • Formation and structure of solids • Defects • Crystal Binding • Structure determination • Lattice dynamics in the harmonic approximation • Non-harmonic properties of the atomic lattice • Electrons in the solid’s potential • Transport of electrons in the solid • Dielectric and optical properties • Semiconductor Physics • Magnetism • Superconductivity

Objective: Introdcution to current questions in condensed matter physics.

Prerequisits: PEP1-PEP4

Useful Knowledge: none

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: 2-hour written exam

82

Page 20: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWCMP1 (Mastermodul)

Course Title: Low Temperature Physics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 6

Workload: 180 h

Teaching Hours: 6/week

Mode: WPM

Term: WS

Module Parts: • Lecture on “Low Temperature Physics” (4 hours/week)

• Excersise (2 hour/week)

Module Content: • Properties of quantum fluids: superfluid 3He and 4He, normalfluid 3He, • Properties of solids at low temperatures: specific heat, thermal transport, electri-

cal conductivity, magnetic properties, atomic tunnelling systems, superconduc-tivity

• cooling techniques, thermometry

Objective: Theoretical and experimental basics of condensed matter physics at low temperatures. Introduction to a modern field of research.

Prerequisits: PEP4

Useful Knowledge: PEP5

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

83

Page 21: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWCMP2 (Mastermodul)

Course Title: Surfaces and Nanostructures

Program: Physics (Master)

Type: Lecture with excersices; visits to laboratory

Credit Points: 6

Workload: 180 h

Teaching Hours: 5/week

Mode: WPM

Term: WS

Module Parts: • Lecture on “Surfaces and Nanostructures” (4 hours/week)

• Excersises with homework (1 hour/week) • 2 Visits to Laboratory

Module Content: • Structure, electronic and vibration properties of surfaces • Adsorbates, thin films, and nano-objects • Dimension and size effects • Experimental methods • Formation of nanostructures (self-organization)

Objective: Theoretical and experimental basics on surfaces and nanostructures, familiari-zing with the current research and its applications.

Prerequisits: PEP5

Useful Knowledge: PEP4, PTP4

Recommended Literature: To be announced by lecturer

Specialities: The lecture course includes 2 visits to the laboratory and weekly homework.

Form of Testing and Examination: defined by lecturer before beginning of course

84

Page 22: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.6. Wahlpflichtmodule Umweltphysik Code: MKEP4 (Mastermodul)

Course Title: Environmental Physics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 6/week

Mode: WPM

Term: SS

Module Parts: • Lecture on “Environmental Physics” (4 hours/week) • Excersise with homework (2 hours/week)

Module Content: • Molecular basis of transport processes

Einstein's approach to Brownian, Fokker-Planck transport of scalar and vectorial quantities, macroscopic properties

• Fluid dynamics conservation laws (mass, momentum, angular momentum, energy), dimensionless numbers, approximations, turbulence

• Modelling concepts models, ODE- and PDE-formulations, finite automata, fundamentals of numerical solutions

• Fundamentals of reaction kinetics mass action law, reaction dynamics, chemical systems

• System Earth and its workings compartments (atmosphere, oceans, land, cryosphere), fluxes and cycles (energy, water, carbon), the climate machine

Objective: Fundamental understanding of the physical processes and interactions of the Earth system

Prerequisits: PEP1, PEP2, PEP3

Useful Knowledge: –

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: 2-hour written exam

85

Page 23: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWEnv1 (Mastermodul)

Course Title: Atmospheric Physics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on “Atmospheric Physics I “(WS, 2CP) • Lecture on “Atmospheric Physics II” (SS, 2CP)

Module Content:

Atmospheric Physics I (2 SWS Lecture with additional 1 SWS preparation and exercises): • Fundamentals of atmospheric physics (structure, composition, dynamics,

globalcirculation, radiation) and some applications

Atmospheric Physics II (2 SWS Lecture with additional 1 SWS preparation and exercises): • Applications to atmospheric physics (atmospheric oscillations-NAO, SAO, El

Nino/ENSO, paleo-, present and future atmosphere, trace gas cycles, atmospheric photochemistry, measurement techniques)

Objective: Advanced understanding of the physical and chemical processes of the Atmos-phere in the Climate System

Prerequisits: MKEP4

Useful Knowledge: –

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: Each part: 1-hour written exam

86

Page 24: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWEnv2 (Mastermodul)

Course Title: Physics of Terrestrial Systems

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: WS/SS

Module Parts: • Lecture on “Soil Physics I” (WS, 2CP) • Lecture on “Soil Physics II” (SS, 2CP)

Module Content:

Soil Physics I (2 SWS Lecture with additional 1 SWS preparation and exercises): • Fluids in porous media • Groundwater flow • Soil water flow

Soil Physics II (2 SWS Lecture with additional 1 SWS preparation and exercises): • Solute transport • Soil heat • Soil-atmosphere interaction

Objective: Advanced understanding of the physical processes of Terrestrial Systems in the Earth System

Prerequisits: MKEP4

Useful Knowledge: –

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: Each part: 1-hour written exam

87

Page 25: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWEnv3 (Mastermodul)

Course Title: Physics of Aquatic Systems

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: SS/WS

Module Parts: • Lecture on “Aquatic Systems I” (SS, 2CP) • Lecture on “Aquatic Systems II” (WS, 2CP)

Module Content:

Aquatic Systems I (2 SWS Lecture with additional 1 SWS preparation and exercises): • Fundamentals of physical oceanography and limnology • Heat balance of water bodies, gas exchange • Flow and transport in surface water

Aquatic Systems II (2 SWS Lecture with additional 1 SWS preparation and exercises): • Flow and transport in groundwater • Isotope and tracer methods in aquatic systems (groundwater, lakes, ocean) • Model concepts for aquatic systems

Objective: Advanced understanding of the physical processes in Aquatic Systems, the meth-ods to study them, and their role in the Climate System

Prerequisits: MKEP4

Useful Knowledge: ...

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: Each part: 1-hour written exam

88

Page 26: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWEnv4 (Mastermodul)

Course Title: Physics of Climate

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: SS/WS

Module Parts: • Lecture on “Physics of the Climate System” (SS, 2CP) • Lecture on “Paleo Climate” (WS, 2CP)

Module Content:

Physics of the Climate Systems (2 SWS lecture with additional 1 SWS prep. and exercises): • The Sun and its variability (orbital and solar physics) • Oceanic structure, composition and circulation • Atmospheric structure, composition and circulation • The cyrosphere in the climate system • The soil in the climate system • Radiative transfer and climate • Climate variability • Climate change

Paleoclimate (2 SWS lecture with additional 1 SWS preparation and exercises): • The formation of the solar system • Structure and evolution of early planetary atmospheres (Mars, Venus and Earth) • Past and present atmospheric structure, composition and circulation • Climate through the Earth’s history (past 4.5 Gyrs)

Objective: Advanced understanding of the Climate System and its changes in the past

Prerequisits: MKEP4

Useful Knowledge: ...

Recommended Literature: To be announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: Each part: 1-hour written exam

89

Page 27: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.7. Wahlpflichtmodule Teilchenphysik Code: MKEP1 (Mastermodul)

Course Title: Advanced Particle Physics I

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 6/week

Mode: WPM

Term: WS

Module Parts: • Inroductory Lecture on Experimental Particle Physics (4 hours/week)

• Excersises with homework (2 hours/week)

Module Content:

The focus of the lecture are the experimental tests of the building blocks of matter and their fundamental interactions:

• Test of QED in electron-positron annihilation • Probing the structure of the nucleon • Strong interaction • Weak interaction: charged and neutral currents • Electro-weak unification: The Standard Model • Flavor oscillations and CP violation • Physics beyond the Standard Model • Particle physics and cosmology

Objective: Overview of the experimental foundation of modern particle physics and intro-duction into today’s main experimental questions. The tutorials provide the possibility for further discussions.

Prerequisites: PEP4, PTP4

Useful Knowledge: PEP5

Literature: announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

90

Page 28: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWHE2 (Mastermodul)

Course Title: Physics of Particle Detectors

Program: Physics (Master)

Type: Lecture, tutorial and excersises

Credit Points: 4

Workload: 120 h

Teaching Hours: 3/week

Mode: WPM

Term: SS

Module Parts: • Inroductory lecture into the physics and the technical realization

of particle detectors (2 hours/week)

• Journal Club where on the basis of recent publications details of a particular re-search area are discussed (1 hour/week)

Module Content: Focus of the lecture is the physics and the layout of detector components used in modern particle physics experiments. Topics are

• Interaction of particles with matter • Scintillators and ToF detectors • Gas detectors • Silicon detectors • Calorimeters • Detector for particle identification • Large detector systems

Objective: Introduction of the detector techniques used in modern particle physics ex-periments. The tutorials, including exercises, provide the possibility for discussions.

Prerequisits: PEP4, PTP4

Useful Knowledge: PEP5

Recommended Literature: announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

91

Page 29: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

3.8. Wahlpflichtmodule Theorie Code: MKTP1 (Mastermodul)

Course Title: Theoretical Quantum Statistics

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 3/week

Mode: WPM

Term: WS

Module Parts: • Lecture on “Quantum Statistics” (4 hours/week) • Excersise with homework (2 hours/week)

Module Content: • Foundations of statistics, information, entropy • Statistical description of physical systems • Ensembles, density of states • Irreversibility • State variables, ideal and real gases, thermodynamic potentials, the fundamental

laws of thermodynamics • Material constants, equilibrium of phases and chemical equilibrium, law of mass

action, ideal solutions • Fermi- and Bose-statistics, ideal quantum gases • Phase transitions, critical phenomena (Ising model) • Transport theory (linear response, transport equations, master equation, Boltz-

mann equation, diffusion) • The theory of the solid state as an example for a nonrelativistic field theory • Applications, for example specific heat of solids, thermodynamics of the early

universe etc.

Objective: Firm grasp of the laws of thermodynamics and of the description of ensembles in the framework of classical and quantum statistics. Knowledge of applications to phase transitions and condensed matter, plasma and astro physics.

Prerequisits: PEP3, PTP4

Useful Knowledge: –

Recommended Literature: announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

92

Page 30: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWTheo1 (Mastermodul)

Course Title: Quantum Field Theory 1

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 4/week

Mode: WPM

Term: SS

Module Parts: • Lecture on “Quantum Field Theory 1” (4 hours/week)

• Excersise with homework (2 hours/week)

Module Content: • Theory of classical fields • Klein-Gordon and Dirac equations • Noether’s theorems • Quantisation of free fields • Fock space • Path integrals • S-Matrix • QED and Feynman rules

Objective: To have a firm command of relativistic field equations and the theory of free quantum fields. The students should be able to use Feynman rules to calculate scattering am-plitudes and cross sections for simple reactions in QED.

Prerequisits: PEP3, PTP4

Useful Knowledge: MKTP1

Recommended Literature: announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

93

Page 31: 3. Wahlpflichtmodule Physik - uni-heidelberg.de · Themen der Atom-, Molekül- und opt. Physik 4 WS MKEP3 Advanced Atomic, Molecular and Optical Physics 8 WS MWAMO1 Experimental Optics

Code: MWCMP5 (Mastermodul)

Course Title: Many-Particle Theory

Program: Physics (Master)

Type: Lecture with excersises

Credit Points: 8

Workload: 240 h

Teaching Hours: 4/week

Mode: WPM

Term: SS

Module Parts: • Lecture on “Many-Particle Theory” (4 hours/week)

• Excersise with homework (2 hours/week)

Module Content: • Second Quantisation: Identical particles, Boson and Fermion operators • Fermion Systems: Fermi sphere, correlation function, Hartree-Fock

approximation, electron gas • Bose Systems: Correlation function, weakly interacting Bose Gas,

Bogoliubov theory, mean field Gross-Pitaevsky equation for Bose condensates

• Spin Systems: Classification, Spin waves, Ising and Heisenberg model, Phase transitions, Monte-Carlo simulation, Renormalization group, Mermin-Wagner theorem

• Green’s Functions: Linear response theory, Density-density correlation function, Random phase approximation, BCS Theory

• Fermi Liquid Theory: Interaction representation, Zero sound, Examples: Nuclear theory, Solid state physics, Non-Fermi liquids

• Localization Problem: Metal-insulator transition, Hubbard model, High Tc superconductors, Anderson localization – Mott localization

Objective: Firm command of the foundations of many particle thory; ability to use Bose and Fermion operators in calculations; good knowledge of applications of the theory of solid systems.

Prerequisits: PEP3, PTP4

Useful Knowledge: MKTP1

Recommended Literature: announced by lecturer

Specialities: Excersises with homework

Form of Testing and Examination: defined by lecturer before beginning of course

94