27
DESIGN OF 33 KV STRUCTURAL POLE 60 Deg / D.E. pole tower - E13.65+2 M Ext Technical specifications : Nomal span 60 M Wind span 75 M Max. weight span 115 M Min. weight span -200 M Line deviation = 60 Deg Temperature range : Min. temp 5 C Ave. temp. 32 C Max temp. 75 C Power conductor particulars : Name : 230 sqmm. AAAC Panther ( Al. 19/3.94 mm) Diameter 1.97 cm Gross area 2.317 Weight/M 0.637 Kg/m Breaking strength 6971.05 Kg Final Mod.of Elasticity 5.50E+05 Kg/scm Coefficient of linear expansion 2.30E-05 Insulator disc dia. 280 mm Disc thickness 170 mm Disc insulator length Dil = 4 x 900 mm Wind pressure calculations : Reliability level for 50 yr. load perio 1 Yearly reliability 1.00E-02 Bhubaneswar wind zone 5 Basic wind speed 50 M/sec 3 sec.peak gustwind speed factor 1.375 Meteorological wind speed Vr = Vb 36.36 m/s Risk coeff. for level. 1 & wind zone 5 1 Terrain rough. coeff. for category 2 1 Design wind speed Vd = Vr 36.36 m/s Design wind pressure Pd = 0.6 x Vd x 79 Kg/m2 Wind load on conductor : Drag coefficient Cdc = 1.00 Gust response factor Gc = 1.8 Wind load on conductor/M Wdc = Pd x Cdc 2.81 Wind load on conductor Fwc = Pd x Cdc x 211 Wind load on tension insulator strings : Drag coef.Cdi 1.2 Gust response factor G 1.95

33 KV E pole design

Embed Size (px)

DESCRIPTION

design of power transmission pole

Citation preview

Page 1: 33 KV E pole design

DESIGN OF 33 KV STRUCTURAL POLE REV F

60 Deg / D.E. pole tower - E13.65+2 M Ext Dt 11/7/11

Technical specifications :Nomal span L = 60 MWind span Lw = 75 MMax. weight span Lmx = 115 MMin. weight span Lmn = -200 MLine deviation = 60 DegTemperature range :Min. temp Tmn = 5 CAve. temp. Tav = 32 CMax temp. Tmx = 75 CPower conductor particulars :Name : 230 sqmm. AAAC Panther ( Al. 19/3.94 mm)Diameter = 1.97 cm Gross area Ac = 2.317 scmWeight/M Wc = 0.637 Kg/mBreaking strength Tu = 6971.05 KgFinal Mod.of Elasticity E = 5.50E+05 Kg/scmCoefficient of linear expansion Alf = 2.30E-05

Insulator disc dia. Dd = 280 mmDisc thickness Dt = 170 mmDisc insulator length Dil = 4 x Dt + 220 = 900 mm

Wind pressure calculations :Reliability level for 50 yr. load period = 1Yearly reliability = 1.00E-02Bhubaneswar wind zone = 5Basic wind speed Vb = 50 M/sec3 sec.peak gustwind speed factor Ko = 1.375Meteorological wind speed Vr = Vb/Ko = 36.36 m/sRisk coeff. for level. 1 & wind zone 5 K1 = 1Terrain rough. coeff. for category 2 K2 = 1Design wind speed Vd = VrxK1xK2 = 36.36 m/sDesign wind pressure Pd = 0.6 x Vd x Vd = 79 Kg/m2

Wind load on conductor :Drag coefficient Cdc = 1.00Gust response factor Gc = 1.8Wind load on conductor/M Wdc = Pd x Cdc x d x Gc = 2.81 KgWind load on conductor Fwc = Pd x Cdc x L x d x Gc = 211 Kg

Wind load on tension insulator strings :Drag coef.Cdi = 1.2 Gust response factor Gi = 1.95

Page 2: 33 KV E pole design

Wind load on string ( Wi = Cdi x Pd x Dd x Dil x Gi ) Kg = 47

Page 3: 33 KV E pole design

SAG TENSION CALCULATIONS :Del = Wc/Ac = 0.275Case 1 : Everyday temp. & still wind -Max.conductor tension T1 = 400 KgConductor stress F1 = 172.64 Kg/cm2Q1 = Sqrt [ 0 x 0 + Wc x Wc ] / Wc = 1L x L x Del x Del x E x Q1 xQ1 / 24 = 6.24E+06F1xF1x[ F1-(K-ExAlfx(tav-tav )]= LxLxDelxDelxExQ1xQ1/24 = 6.24E+06ExAlfx(tav-tav)= 0 F1 x F1 x ( F1 - K ) = 6.24E+06

K = -36.588Case 2 : Maximum temp. & still wind -Q2 = Sqrt [ 0 x 0 + Wc x Wc ] / Wc = 1L x L x Del x Del x E x Q2 xQ2 / 24 = 6.24E+06F2xF2x[ F2-(K-ExAlfx(tmx-tav))]=LxLxDelxDelxExQ2xQ2/24= 6.24E+06E x Alf x ( tmx - tav ) = 5.44E+02F2xF2x( F2-(K - 5.44E+02 ) ] = 6.24E+06

F2 = 96.005 Condr. tension T2 = 222 KgMax. sag = 1.289 M

Case 3 : Everyday temp. & full wind -Q3 = Sqrt [ Wdc x Wdc +Wc x Wc ] / Wc = 4.528L x L x Del x Del x E x Q3 xQ3 / 24 = 1.28E+08F3xF3x[F3-( K-ExAlfx(tav-tav))]= LxLxDelxDelxExQ3xQ3/24 = 1.28E+08ExAlfx(tav-tav)= 0 F3 x F3 x ( F3 - K ) = 1.28E+08

F3 = 491.890 Condr. tension T3 = 1140Case 4 : Minimum temp. & 36 % of full wind -Q4 = Sqrt [ 0.36xWdc x 0.36xWdc +Wc x Wc ] / Wc = 1.878L x L x Del x Del x E x Q4 xQ4 / 24 = 2.20E+07F4xF4x[ F4-(K-ExAlfx(tmn-tav))]= LxLxDelxDelxExQ4xQ4/24= 2.20E+07ExAlfx(tmn-tav)= -3.42E+02

F4 x F4 x ( F4 - (K - -3.42E+02 ) ] = 2.20E+07F3 = 426.119 Condr. tension T3 = 987

SUMMARYCase Condition Tension (Kg) Sag (M)

Case 1 Ave. temp & still wind 400 0.717Case 2 Max temp & still wind 222 1.289Case 3 Ave. temp & full wind 1140 0.252Case 4 Min temp & 36% wind 987 0.290

Page 4: 33 KV E pole design

Pole base width = 0.75 M Top cage width = 0.45Insulator string end shift (mm)= 450 String end dip = 40 mmDepth of jumper = 945 mmProviding pilot insulator to restrict jumper swing.

Swing angle Elec. clearance Jumper Xarm X to X tip X to X armDeg. mm swing projection horztl. vertl.

0 335 0 785 2020 132010 335 164 949 2348 1305

Provide conductor horizontal spacing : 2.4 M & minimum vertical spacing : 1.32 MNote : Swing angle 10 deg. taken with pilot insulator attachment.Bottom X-arm height :

Max. conductor sag = 1.289 MMin. ground clearance = 9.161 M from GL > 6.100 MBottom X-Arm height = 10.450 M from GL

Middle X-arm ht. = 11.770 M from GLTop X-arm ht. = 13.090 M from GL

Wind load on body of pole :Top part : Panel height = 2.64 Brace length = 0.52Panel net surface area Ae = 2x0.0.09x2.64+6x0.04x0.55+3*0.3*0.1 = 0.270Panel solidarity ratio = 0.270/(0.40*2.64) = 0.26Panel drag coefficient Cdt = 2.66 Gust response factor Gt = 2.03Wind load on pole panel Fwt = Pd x Cdt x Ae x Gt x Ht. = 115 Kg

Providing 15 nos panels in bottom part.Part 2: Panel height = 10.0 Brace length = 24.0Panel net surface area Ae = 2(0.15*10+0.045x12) = 4.08Panel solidarity ratio = 4.08/((0.45+0.75)/2*10) = 0.68Panel drag coefficient Cdt = 2.00 Gust response factor Gt = 1.92Wind load on pole bottom ht. Fwt = Pd x Cdt x Ae x Gt = 1238 Kg

Loads acting on poleReliability requirement : -Wind load at pole X arms =

Top X Mid X Bottom X Mid pole29 57 184 620 Kg

N.C. B.W.C. B.W.C.Transverse loads : 60 deg devn. 0 degWind load on conductor = 211 127 127 KgWind load on insulators = 117 117 117 KgLine devn. Component = 1140 570 0 Kg

Total = 1468 813 244 Kg

Page 5: 33 KV E pole design

Total transverse load acting on pole structure :Top X Mid X Bottom X Mid pole

N.C. 1500 1525 1655 620 KgB.W.C. 845 875 1000 620 Kg

Vertical loads : N.C. B.W.C. 0 deg BWCWeight of conductor Max = 73 44 44 Kg

Min = -127 -76 -76 KgWeight of insulator string = 60 60 60 Kg

Total Max = 135 105 105 KgTotal Min = -65 -15 -15 Kg

Longitudinal loads : 0 990 1140 Kg

Security requirement : - N.C. B.W.C. B.W.C.Transverse loads : 60 deg devn. 0 degWind load on conductor = 0 0 0 KgWind load on insulators = 0 0 0 KgLine devn. Component = 400 200 0 Kg

Total = 400 200 0 KgVertical loads : N.C. B.W.C. B.W.C.Weight of conductor Max = 73 44 44 Kg

Min = -127 -76 -76 KgWeight of insulator string = 60 60 60 Kg

Total Max = 135 105 105 KgTotal Min = -65 -15 -15 Kg

Longitudinal loads : 0 350 400 Kg

Safety requirement : - N.C. B.W.C. B.W.C.Transverse loads : 60 deg devn. 0 degWind load on conductor = 0 0 0 KgWind load on insulators = 0 0 0 KgLine devn. Component = 400 200 0 Kg

Total = 400 200 0 KgVertical loads : N.C. B.W.C. B.W.C.Weight of conductor Max = 73 44 44 Kg

Min = -127 -76 -76 KgWeight of insulator string = 60 60 60 KgWeight of lineman = 150 150 150 Kg

Total Max = 285 255 105 KgTotal Min = -65 -15 -15 Kg

Erection loads = 350 350 350 KgLongitudinal loads : 0 500 500 Kg

Page 6: 33 KV E pole design

Reliability : Top X Mid X Bottom X Mid poleTransverse loads :

N.C. 1500 1525 1655 620 KgB.W.C. 845 875 1000 620 Kg

Vertical loads :Max N.C. 135 135 135 0 Kg

B.W.C. 105 105 105 0 KgMin N.C. -65 -65 -65 0

B.W.C. -15 -15 -15 0Longitudinal loads :

N.C. 0 0 0 0 KgB.W.C. 990 990 990 0 Kg

Security : Top X Mid X Bottom X Mid poleTransverse loads :

N.C. 400 400 400 0 KgB.W.C. 200 200 400 0 Kg

Vertical loads :Max N.C. 135 135 135 0 Kg

B.W.C. 105 105 105 0 KgMin N.C. -65 -65 -65 0 Kg

B.W.C. -15 -15 -15 0 KgLongitudinal loads :

N.C. 0 0 0 0 KgB.W.C. 350 350 350 0 Kg

Safety : Top X Mid X Bottom X Mid poleTransverse loads :

N.C. 400 400 400 0 KgB.W.C. 200 200 200 0 Kg

Vertical loads :Max N.C. 285 285 285 0 Kg

B.W.C. 255 255 285 0 KgMin N.C. -65 -65 -65 0 Kg

B.W.C. -15 -15 -15 Kg KgLongitudinal loads :

N.C. 0 0 0 0 KgB.W.C. 500 500 500 0 Kg

DEAD END CASE Reliability : Top X Mid X Bottom X Mid poleTransverse loads :

N.C. 275 305 430 620 KgB.W.C. 170 200 325 620 Kg

Page 7: 33 KV E pole design

Vertical loads :Max N.C. 135 135 135 0 Kg

B.W.C. 105 105 105 0 KgMin N.C. -65 -65 -65 0 Kg

B.W.C. -15 -15 -15 0 KgLongitudinal loads :

N.C. 1140 1140 1140 0 KgB.W.C. 0 0 0 0 Kg

Tower pole loading tree

Page 8: 33 KV E pole design
Page 9: 33 KV E pole design
Page 10: 33 KV E pole design

POLE TOWER DESIGNV-shape X-arms : X-arm length = 502.5 mmX-arm width = 450 Height = 400 True length = 551Force due lateral forces = 907 Force due to Max. V.L.= 196Force due lontdnl. forces = 1394 Force due to Min. V.L. = -90Max. comprn.= 2498 Kg Max. tension = 2391 KgChannel 2x ISMC 75 Area = 9.10 Eff. Length= 55Rad of gryn = 1.19 Max Sl. Ratio (l/r) = 46.3 F.A.S.Actual comp.stress ( Kg/cm2 ) = 274 Allow comp str. 2415 8.80Net eff. Area = 7.42 Actual tens. Str 322Bendg moment 175 KgmSecn mod. Zx = 20.9 Bendg stress= 837 Kg/scmCheck bendg : = 274/ 2415 + 837/ 1650 = 0.68 < 1.0Provide 2x M16 bolt in connection. Strength = 8930 KgProvide L 45x45x4 as Xarm tie member with 1x M16 bolt in connection.Part 1 : From 10.45 M above Conc lvl. : Top portion Width = 350Max. BM. Mxx = 2*845*2.44+(1525+875)*1.12 = 6812 Kg.m

Max.B.M. Myy =2*990*2.44+990*1.12 = 5940 Kg.mAxial force/leg = 15628 Kg. Max. V.L./ leg= 3x(135+105)/4 = 180Self wt./leg = 50 Kg. Min. V.L./ leg= - 3x(65+15)/4 = -60Max. comprn.= 15858 Kg Max. tension = 15638 KgLeg section = 4x L 90x90x6 Area = 10.50 Eff. Length= 40Rad of gryn = 1.75 Max Sl. Ratio (l/r) = 22.9 F.A.S.Actual comp.stress ( Kg/cm2 ) = 1510 Allow comp str. 2519 1.67Net eff. Area = 8.40 Actual tens. Str 1862 < 2540Provide 6 Nos stgr M16 bolts in leg lap jt. Strength = 26790 KgTranverse face bracings :Max. horztl. Shear = 1500+845+1525+875 4746 KgMax. torsion due long. force = 2376 Kgm. 3 panel height mm = 400Axila force in bracing (Kg) = 4112 Eff. Length= 54 cmBracing section = 2 x L40x40x4 Area = 3.07Rad of gryn = 0.77 Max Sl. Ratio (l/r) = 70.8 F.A.S.Actual comp.stress (Kg/cm2) = 1339 Allow comp str. 2338 1.75Net eff. Area = 2.71 Actual tens. Str 1519 < 2540Longitudinal face bracings :Max. horztl. Shear = 2x(275+305+430) = 2021 KgMax. torsion due long. force = 2736 Kgm. 3 panel height mm = 400Axila force in bracing (Kg) = 3466 Eff. Length= 54 cmBracing section = 2 x L40x40x4 Area = 3.07Rad of gryn = 0.77 Max Sl. Ratio (l/r) = 70.8 F.A.S.Actual comp.stress (Kg/cm2) = 1129 Allow comp str. 2338 2.07Net eff. Area = 2.71 Actual tens. Str 1280 < 2540

Page 11: 33 KV E pole design

X plan bracings at Xarm lvl. :Max. torsion due long. force = 2735 KgmAxila force in plan bracing (Kg) = 5228 Eff. Length= 49 cmBracing section = 2 x L45x45x4 Area = 3.47Rad of gryn = 0.87 Max Sl. Ratio (l/r) = 56.9 F.A.S.Actual comp.stress (Kg/cm2) = 1507 Allow comp str. 2410 1.60Net eff. Area = 3.06 Actual tens. Str 1710 < 2540At 10.0 M Lvl. :Max. BM. Mxx = 7631 Kg.m Max. horztl. Shear = 7401Max.B.M. Myy= 6534 Kg.m Max. horztl. Shear = 2970

Part 3 : From 4.0 M to 10.5 M above G.L :Max. BM. Mxx = 7631+7401*6.41+620*1.41 55922 Kg.mMax.B.M. Myy= 6534+2970*6.41 25563 Kg.m

Axial force/leg = 71856 Kg Max. Vert. load/ leg 3(105+135)/4 = 180Self wt./leg = 150 Kg Min. Vert. load/ leg -3(15+65)/4 = -60Max. comprn.= 72203 Kg Max. tension = 71783 KgLeg Section = L150x150x16 Gr. area = 45.60 Eff. Length= 79Rad of gryn = 2.94 Max Sl. Ratio (l/r) = 26.9 F.A.S. Actual compr. stress = 1583 Allow comp str. 2511 1.59Net eff. area = 41.40 Actual tensile stress = 1734 < 2540Provide 10 M16 bolts in leg lap joint. Strength = 89300 Kg

Part 4 : Upto 4.0 M above conc. lvl :Max. BM. Mxx = 7631+7401*9.58+620*4.58 81332 Kg.mMax.B.M. Myy= 6534+2970*9.58 34972 Kg.m

Axial force/leg = 89465 Kg Max. Vert. load/ leg 3(105+135)/4 = 180Self wt./leg = 215 Kg Min. Vert. load/ leg -3(15+65)/4 = -60Max. comprn.= 89881 Kg Max. tension = 89331 KgLeg Section = L150x150x20 Gr. area = 56.20 Eff. Length= 98Rad of gryn = 2.93 Max Sl. Ratio (l/r) = 33.4 F.A.S. Actual compr. stress = 1599 Allow comp str. 2495 1.56Net eff. area = 49.20 Actual tensile stress = 1816 < 2540Provide 12 M16 bolts in leg butt joint. Strength = 107160 Kg

Page 12: 33 KV E pole design

Design of bottom part bracings :Shear moment 3110 Torsion = 4232 Total S.M. = 7343

Bracg slope 57.000 TnB = 1.5399TnL = 0.014056 1-TnL*TnB 0.9784 1+TLB/1-T LB 1.0442

Bracing Mkd B1 B2 B3 B4 B5Panel top lvl. 9960 9378 8770 8134 7471Panel top C/C 370 386 403 421 440Panel height 582 608 635 663 692

Panel btm C/C 386 403 421 440 459Bracing length 694 725 757 791 826

Axial force 8916 8538 8177 7830 7498Section 2L60x60x5 2L60x60x5 2L60x60x5 2L60x60x5 2L50x50x5

Area 5.75 5.75 5.75 5.75 4.79Actl comp str 1551 1485 1422 1362 1565Rad. Of gyrn. 1.82 1.82 1.82 1.82 1.52Slender ratio 38.15 39.84 41.60 43.44 54.32Allow stress 2481 2476 2470 2464 2421

F.O.S. 1.60 1.67 1.74 1.81 1.55Net eff area 2.707 2.707 2.707 2.707 2.707

Actl tensile str 3294 3154 3021 2893 2770

Bracing Mkd B6 B7 B8 B9 B10Panel top lvl. 6779 6056 5301 4512 3689

Panel top width 459 480 501 523 546Panel height 723 755 789 823 860

Panel btm width 480 501 523 546 570Bracing length 862 900 940 982 1025

Axial force 7181 6876 6585 6306 6039Section 2L50x50x5 2L50x50x5 2L45x45x5 2L45x45x5 2L45x45x5

Area 4.79 4.79 4.28 4.28 4.28Actl comp str 1499 1436 1539 1473 1411Rad. Of gyrn. 1.52 1.52 1.36 1.36 1.36Slender ratio 56.72 59.23 69.13 72.19 75.39Allow stress 2410 2399 2348 2330 2311

F.O.S. 1.61 1.67 1.53 1.58 1.64Net eff area 2.707 2.707 2.707 2.707 2.707

Actl tensile str 2653 2540 2433 2330 2231

Bracing Mkd B11 B12 B13Panel top lvl. 2829 1931 993

Panel top width 570 596 622Panel height 898 938 979

Panel btm width 596 622 650Bracing length 1071 1118 1168

Axial force 5783 5538 5300Section 2L45x45x5 2L45x45x5 2L45x45x5

Page 13: 33 KV E pole design

Area 4.28 4.28 4.28Actl comp str 1351 1294 1238Rad. Of gyrn. 1.36 1.36 1.36Slender ratio 78.72 82.20 85.85Allow stress 2291 2268 2243

F.O.S. 1.70 1.75 1.81Net eff area 2.707 2.707 2.707

Actl tensile str 2136 2046 1958

Approx. bill of quantitties :Stub 4xL150x150x20 696.8 Bracings L 50x50x5 73.9Stub cleats 4x L50 x 50 x 5 11.4 Bracings L 45x45x5 214.9Legs part 3 4xL150x150x20 705.6 Belts, Xplans L40x40x4 55.0Legs part 2 4xL150x150x16 930.8 X-arm strut 6x !SMC 75 72.8Legs part 1 4xL90x90x6 98.4 Pl.8th & clts L130x130x12 50.4Bracings 32 L 60x60x5 103.3 Total Kg = 3020Anti climbing spike assbly = 5 B/N: M16 - @ 1 % Kg = 10

2.00 M Extension :Wind load on body extn :Net effarea Ae = 1.059 Total areaAg= 1.580Panel solidarity ratio = Ae / Ag = 0.67 Panel drag coefficient Cdt = 2.00Gust factor Gt = 1.98 W.L.on extn. = Pd x Cdt x Gt x Ae = 331Max. BM. Mxx = 7676+7394*9.575+550*5.0 98662 Kg.mMax.B.M. Myy= 6534+2970*9.575 41165 Kg.m

Axial force/leg = 95903 Kg Max. Vert. load/ leg 3(105+135)/4 = 180Self wt./leg = 300 Kg Min. Vert. load/ leg -3(15+65)/4 = -60Max. comprn.= 96383 Kg Max. tension = 95663 KgLeg Section = L200x200x16 Gr. area = 61.80 Eff. Length= 85Rad of gryn = 3.96 Max Sl. Ratio (l/r) = 21.5 F.A.S. Actual compr. stress = 1560 Allow comp str. 2521 1.62Net eff. area = 56.20 Actual tensile stress = 1702 < 2540Provide 14 M16 bolts in leg butt joint. Strength = 125020 KgDesign of bottom part bracings :Shear moment= 3364 Torsion = 4232 Total S.M. = 7596

Bracing Mkd B16 B17 B18Panel top lvl. 2000 1350 685

Panel top width 650 679 709Panel height 650 665 685

Panel btm width 679 709 740Bracing length 929 961 997

Axial force 4001 3793 3609

Page 14: 33 KV E pole design

Section 2L45x45x5 2L45x45x5 2L45x45x5Area 4.28 4.28 4.28

Actl comp str 935 886 843Rad. Of gyrn. 1.36 1.36 1.36Slender ratio 68.34 70.66 73.31Allow stress 2352 2339 2324

F.O.S. 2.52 2.64 2.76Net eff area 2.707 2.707 2.707

Actl tensile str 1478 1401 1333

Approx. bill of quantitties :Legs part 1 4 L200x200x16 388.0 Stub 4x 4L200x200x16 766.3Bracings 24x L45x45x5 82.4 Less normlstub L150x150x20 -708Stub cleats 4x L45 x 45 x 5 11.6 Total Kg = 540 B/N: M16 - @ 1 % Kg = 51. All structural steel shall conform to IS: 2062 Grade E250 ( FE410 W classification ).2. All bolts & nuts shall conform to IS: 12427 property class 4.6 as per IS: 6639.3. All welds shall be of min. 6 mm size unless stated.4. Fabrication shall conform to IS: 800.FOUNDATION LOADS :

MAX. V. L. MIN. V. L. Mxx SHEAR TORSIONNORMAL 3842 2628 113159 8021 4103EXTN 4382 3168 133785 8352 4103