3527315152-2

Embed Size (px)

Citation preview

  • 7/31/2019 3527315152-2

    1/6

    Electrocrystallization in Nanotechnology. Edited by Georgi StaikovCopyright 8 2007 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 978-3-527-31515-4

    Contents

    Preface xi

    List of Contributors xiii

    I Fundamentals

    1 The Impact of Electrocrystallization on Nanotechnology 3

    Georgi Staikov and Alexander Milchev

    1.1 Introduction 3

    1.2 Thermodynamic Properties of Large and Small Phases 4

    1.2.1 The State of Thermodynamic Equilibrium 4

    1.2.2 Electrochemical Supersaturation and Undersaturation 6

    1.2.3 The Thermodynamic Work for Nucleus Formation 7

    1.2.3.1 Classical Nucleation Theory 81.2.3.2 Atomistic Nucleation Theory 9

    1.3 Kinetics of Nucleus Formation in Electrocrystallization 10

    1.4 Energy State of the Electrode Surface and Spatial Distribution of

    Nanoclusters 11

    1.5 Electrochemical Growth of Nanoparticles and Ultrathin Films 14

    1.5.1 Growth of 3D Nanoclusters 15

    1.5.2 Growth of 2D Nanoclusters and Formation of UPD Monolayers 17

    1.6 Localization of Electrocrystallization Processes and Nanostructuring 20

    1.7 Conclusion 24

    Acknowledgments 25References 25

    2 Computer Simulations of Electrochemical Low-dimensional Metal Phase

    Formation 30

    Marcelo M. Mariscal and Ezequiel P. M. Leiva

    2.1 Introduction 30

    2.2 Molecular Dynamics Simulations 32

    2.2.1 Generalities 32

    2.2.2 Nanostructuring of Metallic Surfaces 33

    V

  • 7/31/2019 3527315152-2

    2/6

    2.3 Monte Carlo Method 37

    2.3.1 Generalities 37

    2.3.2 Off-lattice Models 40

    2.3.2.1 Stability of Metallic Nanostructures 40

    2.3.3 Lattice Models 44

    2.3.3.1 Introduction 442.3.3.2 Electrocrystallization 46

    2.3.3.3 Dynamics of Crystal Growth 51

    2.3.3.4 Simulation of a Complex Underpotential Deposition System 53

    2.4 Brownian and Langevin Dynamics Simulations 54

    2.4.1 Generalities 54

    2.4.2 Applications in Electrochemical Nanostructuring and Crystal

    Growth 55

    2.5 Conclusions and Outlook 58

    Acknowledgments 59

    References 59

    3 Electrodeposition of Metals in Templates and STM Tip-generated 0D

    Nanocavities 61

    Wolfgang Kautek

    3.1 Introduction 61

    3.2 Bottom-up Template Approach 61

    3.3 Top-down SPM Approach 66

    3.4 Thermodynamics of Low-dimensional Phases 68

    3.5 Experiments on the Electrodeposition in STM-tip-generated

    Nanocavities 693.6 Underpotential Behavior of Bismuth on Gold 70

    3.7 Zero-dimensional Bi Deposition 72

    3.8 Conclusions 74

    Acknowledgment 75

    References 75

    4 Nanoscale Electrocrystallization of Metals and Semiconductors from Ionic

    Liquids 79

    Walter Freyland, Chitradurga L. Aravinda, and Ditimar Borissov

    4.1 Introduction 794.2 Some Electrochemical and Interfacial Characteristics of Ionic Liquids

    (ILs) 80

    4.3 Variable Temperature Electrochemical SPM Technique for Studies with

    Ionic Liquids 81

    4.4 Underpotential Deposition of Metals: Phase Formation and

    Transitions 82

    4.4.1 Ag on Au(111): Aqueous versus Ionic Liquid Electrolytes 83

    4.4.2 Zn on Au(111): Spinodal Decomposition and Surface Alloying 86

    4.5 Overpotential Deposition of Metals, Alloys and Semiconductors 89

    VI Contents

  • 7/31/2019 3527315152-2

    3/6

    4.5.1 CoaAl, NiaAl and TiaAl Alloy Deposition 89

    4.5.2 Nanoscale Growth of AlaSb Compound Semiconductors 92

    4.6 Concluding Remarks 93

    Acknowledgment 94

    References 94

    5 Superconformal Film Growth 96

    Thomas P. Moffat, Daniel Wheeler, and Daniel Josell

    5.1 Introduction 96

    5.2 Competitive Adsorption: Inhibition versus Acceleration 98

    5.3 Quantifying the Impact of Competitive Adsorption on Metal Deposition

    Kinetics 101

    5.4 Feature Filling 104

    5.5 Shape Change Simulations 107

    5.6 Stability Analysis 110

    5.7 Conclusions and Outlook 112References 113

    II Preparation and Properties of Nanostructures

    6 Localized Electrocrystallization of Metals by STM Tip Nanoelectrodes 117

    Werner Schindler and Philipp Hugelmann

    6.1 Electrochemistry in Nanoscale Dimensions 117

    6.2 Jump-to-Contact Metal Deposition 118

    6.3 Scanning Electrochemical Microscope 120

    6.4 STM Tip Electrochemical Nanoelectrodes 1206.5 Metal Deposition by STM Tip Electrochemical Nanoelectrodes 122

    6.6 Metal Dissolution by STM Tip Electrochemical Nanoelectrodes 124

    6.7 The Importance of Nanoelectrode Tip Shape and Surface Quality 127

    6.8 Localized Electrodeposition of Single Metal Nanostructures 129

    6.9 Summary and Outlook 134

    Acknowledgments 136

    References 136

    7 Fabrication of Ordered Anodic Nanoporous Alumina Layers and their

    Application to Nanotechnology 138Hidetaka Asoh and Sachiko Ono

    7.1 Introduction 138

    7.2 Self-ordered Anodic Porous Alumina 139

    7.2.1 Introduction 139

    7.2.2 Controlling Factor of Self-ordering of Pore Arrangement in Anodic

    Porous Alumina 140

    7.2.3 Typical CurrentTime Transients at Constant Voltages 141

    7.2.4 Change in the Porosity of Anodic Alumina with Increasing Formation

    Voltage 142

    Contents VII

  • 7/31/2019 3527315152-2

    4/6

    7.2.5 Typical Self-ordering Behavior 144

    7.2.6 High-current-density/High-electric-field Anodization 145

    7.2.7 New Self-ordering Conditions 147

    7.3 Ideally Ordered Anodic Porous Alumina 148

    7.3.1 Two-step Anodization 148

    7.3.2 Fabrication of Ideally Ordered Anodic Porous Alumina 1507.3.3 Square Cell Arrangement 150

    7.3.4 Detailed Observation of Square Cells 152

    7.4 Anodic Porous Alumina with 3D Periodicity 154

    7.4.1 Modulation of Channel Structure 154

    7.4.2 2D/3D Composite Porous Alumina 154

    7.5 Application of Nanoporous Alumina to a Mask for Fabrication of

    Nanostructures 156

    7.5.1 Nanopatterning: Conventional Lithography vs. Natural Lithography 156

    7.5.2 Anodization of Al on a Si Substrate 157

    7.5.3 Natural Lithography of Si Surfaces Using Anodic Porous Alumina as aMask 160

    7.6 Summary 161

    Acknowledgments 162

    References 162

    8 Electrochemical Fabrication of Metal Nanocontacts and Nanogaps 167

    Fang Chen and N. J. Tao

    8.1 Introduction 167

    8.2 Electrochemical Fabrication of Metal Nanocontacts 168

    8.2.1 STM/AFM Assisted Method 1698.2.2 Electrodeposition on Surface-supported Electrodes 170

    8.2.3 Self-terminated Method 172

    8.2.4 Electrochemical Etching 173

    8.2.5 Nanocontacts Prepared Using Nanopores 174

    8.2.6 Solid State Electrochemical Reaction 174

    8.2.7 Properties of Metal Nanocontacts 175

    8.2.7.1 Mechanical Properties 175

    8.2.7.2 Electron Transport 177

    8.2.7.3 Electrochemical Properties 178

    8.2.7.4 Device Properties 1808.2.7.5 Magnetic Properties 181

    8.2.7.6 Sensing Properties 182

    8.3 Electrochemical Fabrication of Metal Nanogaps 183

    8.3.1 AC-loop Monitoring System 185

    8.3.2 DC-loop Monitoring System 186

    8.3.3 Electric Double Layer as Feedback 187

    8.3.4 High-frequency Impedance as Feedback 188

    8.3.5 Application of Nanogaps 188

    8.4 Summary 190

    VIII Contents

  • 7/31/2019 3527315152-2

    5/6

    Acknowledgment 191

    References 191

    9 Nanowires by Electrochemical Step Edge Decoration (ESED) 195

    Reginald M. Penner

    9.1 Introduction 1959.2 General Considerations 196

    9.3 Direct Nanowire Electrodeposition 198

    9.4 Compound Nanowires by Cyclic Electrodeposition/Stripping 200

    9.5 Electrochemical/Chemical Synthesis of Nanowires 202

    9.6 Nanowire Thinning by Electrooxidation 204

    9.7 Summary 206

    Acknowledgments 206

    References 206

    10 Electrochemical Fabrication of Arrayed Nanostructures 208Takayuki Homma

    10.1 Introduction 208

    10.2 Formation of Metal Nanodots Along the Step Edge of the Si(111)

    Surface 208

    10.3 Maskless Fabrication of Metal Nanodot Arrays using Electroless

    Deposition Induced by Controlled Local Surface Activities 210

    10.4 Conclusion 215

    References 216

    11 Electrodeposition of Two-dimensional Magnetic Nanostructures on SingleCrystal Electrode Surfaces 217

    Philippe Allongue and Fouad Maroun

    11.1 Introduction 217

    11.2 Ultrathin Magnetic Films 219

    11.2.1 Magnetic Moment of Ultrathin Films 220

    11.2.2 In Situ Magnetic Characterizations 223

    11.2.2.1 Alternating Gradient Field Magnetometry (AGFM) 224

    11.2.2.2 Magneto Optical Kerr Effect (MOKE) 225

    11.2.3 Description and Exploitation ofin SituMagnetic Measurements 225

    11.3 Electrochemical Growth and Magnetic Properties of Iron Group Films onAu(111) 227

    11.3.1 Electrochemistry of Au(111) in Iron Group Metal Solutions 227

    11.3.2 Ni/Au(111) 228

    11.3.2.1 Morphology and Structure 228

    11.3.2.2 Magnetic Properties 229

    11.3.3 Co/Au(111) 230

    11.3.3.1 Morphology and Structure 230

    11.3.3.2 Magnetic Properties 232

    11.3.4 Fe/Au(111) 235

    Contents IX

  • 7/31/2019 3527315152-2

    6/6

    11.3.4.1 Morphology and Structure 235

    11.3.4.2 Magnetic Properties 237

    11.4 Concluding Remarks 238

    Acknowledgments 239

    References 239

    12 Electrodeposition and Properties of Nanoscale Magnetic/Non-magnetic

    Metallic Multilayer Films 242

    Laszlo Peter and Imre Bakonyi

    12.1 Introduction 242

    12.2 Electrodeposition 243

    12.2.1 Electrolyte Composition 243

    12.2.2 Deposition Conditions of the More Noble Layer 246

    12.2.3 Deposition of the Less Noble Layer 247

    12.2.4 Various Multilayer Deposition Modes 249

    12.2.5 Nucleation of the Layers on Each Other 24912.3 Properties 250

    12.3.1 Structure 250

    12.3.2 Magnetic Properties 253

    12.3.3 Magnetoresistance 256

    12.4 Summary 258

    Acknowledgments 259

    References 259

    Index 261

    X Contents