3705Test3 Sol

Embed Size (px)

DESCRIPTION

3705Test3 Sol

Citation preview

  • MATH3705 A | Test 3: Wed. 2:35pm{3:25pm, Mar 6

    Name and Student Number:

    Total points: 20. No partial marks for Questions 1-3.

    Closed book! Non-programmer calculators are allowed!

    1. Let f(x) =

    x+ x2 x3; 0 x < 1;2 + x; 1 x < 2. Let fodd(x) be the 4-periodic odd extension of[2]

    f(x). Which of the following is the expression of fodd(x) when 1 < x < 0?

    (a) 2 + x (b) x x2 + x3 (c) x+ x2 + x3 (d) x x2 x3 (e) x x2 + x3

    Solution: (d)

    fodd(x) = f(x) = (x+ x2 + x3) = x x2 x3:

    2. Let f(x) =

    1 x; 0 x < 1;0:5; 1 x < 2. Determine the value to which the Fourier sine series[2]

    of f(x) converges at x = 12:3 .

    (a) 0:3 (b) 0:5 (c) 0:3 (d) 0:7 (e) 0:7

    Solution: (d). The period of the Fourier sine series of f(x) is 4.fodd(12:3+)+fodd(12:3)

    2= fodd(12:3) = fodd(12 + 0:3) = fodd(0:3) = 1 0:3 = 0:7:

    3. Let f(x) be 2-periodic and f(x) =

    3; x < 0;0; 0 x < . Find the Fourier sine coe-[2]

    cient b3.

    (a) 2 (b) 3=2 (c) 3=2 (d) 0:5 (e) 1=2

    Solution: (a).

    b3 =1

    Z

    f(x) sin(3x)dx =1

    Z 0

    3 sin(3x)dx+

    Z 0

    0 sin(3x)dx

    =

    Z 0

    3 sin(3x)dx = cos(3x)j0 = 2:

  • 4. Let f(x) =

    1 x; 0 x < 1;2; 1 x < 2. Let an (n = 0; 1; 2; :::) be the coecients of the Fourier[4]

    cosine series. Find a2.

    Solution: Note that L = 2.

    a2 =2

    L

    Z L0

    f(x) cos(2x

    L) dx =

    Z 20

    f(x) cos(x) dx

    =

    Z 10

    (1 x) cos(x) dx+Z 21

    2 cos(x) dx

    =

    1

    (1 x) sin(x) 1

    2cos(x)

    10

    +

    2

    sin(x)

    21

    = 12

    cos() +1

    2=

    2

    2:

    5. Let f(x) be 2-periodic and f(x) =

    sin(x); 1 x < 0;1; 0 x < 1. Find the Fourier cosine[4]

    coecient a2.

    Solution: Note that L = 1. Thus

    a2 =1

    1

    Z 11

    f(x) cos(2x)dx =

    Z 01

    sin(x) cos(2x)dx+

    Z 10

    1 cos(2x)dx

    =

    Z 01

    sin(x+ 2x) + sin(x 2x)2

    dx+1

    2sin(2x)j10

    =

    Z 01

    sin(3x) sin(x)2

    dx+ 0 =1

    2

    13

    cos(3x) 1cos(x)

    01

    =1

    2

    2

    3+

    1

    3cos(3) 1

    cos()

    =

    2

    3:

    6. The solution of the heat equation wt = 2wxx; 0 x L; t 0, subject to the boundary[6]

    conditions w(0; t) = w(L; t) = 0 is given by

    w(x; t) =1Xn=1

    bn sinnx

    L

    e(

    nL )

    2t:

  • Find the solution u(x; t) of uxx =116ut, subject to the boundary conditions u(0; t) =

    2; u(2; t) = 4, and the initial condition u(x; 0) = 5 + x.

    Solution: Here = 4, L = 2, A = 2, B = 4. Let u(x; t) = v(x) + w(x; t) with

    v(x) =B A

    Lx+ A = x+ 2: (1point)

    Then w(x; t) = u(x; t) v(x);) w(x; 0) = u(x; 0) v(x) = 5 + x x 2 = 3:)

    wxx =1

    16wt; w(0; t) = w(2; t) = 0; w(x; 0) = 3: (2points)

    Thus

    w(x; t) =1Xn=1

    bn sinnx

    L

    e(

    nL )

    2t =

    1Xn=1

    bn sinnx

    2

    e(2n)

    2t;

    where bn satises

    bn =2

    L

    Z L0

    (3) sinnx

    L

    dx

    =

    Z 20

    3 sinnx

    2

    dx

    =

    6n

    cos(nx

    2)

    20

    = 6n

    [cos(n) 1] = 6[(1)n+1 + 1]

    n(2points)

    u(x; t) = (x+ 2) +1Xn=1

    6[(1)n+1 + 1]n

    sinnx

    2

    e(2n)

    2t: (1point)