4
MATH3705 Tutorial 7 Determine the following: 1. F (e 0.5|x| ). Solution: Let f (x)= e −|x| . Then F (e 0.5|x| )= F (f (0.5x)) = 1 0.5 ˆ f ( λ 0.5 ) = 4 1+4λ 2 . 2. F (e −|x4| ). Solution: Let f (x)= e −|x| . Then by the second shifting theorem, F (e −|x4| )= F (f (x - 4)) = e i4λ ˆ f (λ)= 2e i4λ 1+λ 2 . 3. F (e ix e −|x| ). Solution: Let f (x)= e −|x| . Then by the first shifting theorem, F (e ix e −|x| )= ˆ f (λ - 1) = 2 1+(λ1) 2 . 4. F (e 2ix−|x+3| ). Solution: By the second shifting theorem, F (e −|x+3| )= 2e -i3λ 1+λ 2 . Then by the first shift- ing theorem, F (e 2ix−|x+3| )= F (e 2ix e −|x+3| )= 2e -i3(λ+2) 1+(λ+2) 2 . 5. F 1 { e -i3λ 1+λ 2 } . Solution: By the second shifting theorem, F 1 { e -i3λ 1+λ 2 } = 1 2 e −|x+3| . 6. F 1 { 1 1+(λ+5) 2 } . Solution: By the first shifting theorem, F 1 { 1 1+(λ+5) 2 } = 1 2 e 5ix−|x| . 1

3705Tut7-W13

  • Upload
    minyoun

  • View
    212

  • Download
    0

Embed Size (px)

DESCRIPTION

3705Tut7-W13

Citation preview

Page 1: 3705Tut7-W13

MATH3705 Tutorial 7

Determine the following:

1. F(e−0.5|x|).

Solution: Let f(x) = e−|x|. Then F(e−0.5|x|) = F(f(0.5x)) = 10.5

f̂(

λ0.5

)= 4

1+4λ2 .

2. F(e−|x−4|).

Solution: Let f(x) = e−|x|. Then by the second shifting theorem, F(e−|x−4|) =

F(f(x− 4)) = ei4λf̂ (λ) = 2ei4λ

1+λ2 .

3. F(e−ixe−|x|).

Solution: Let f(x) = e−|x|. Then by the first shifting theorem, F(e−ixe−|x|) = f̂ (λ− 1) =2

1+(λ−1)2.

4. F(e2ix−|x+3|).

Solution: By the second shifting theorem, F(e−|x+3|) = 2e−i3λ

1+λ2 . Then by the first shift-

ing theorem, F(e2ix−|x+3|) = F(e2ixe−|x+3|) = 2e−i3(λ+2)

1+(λ+2)2.

5. F−1{

e−i3λ

1+λ2

}.

Solution: By the second shifting theorem, F−1{

e−i3λ

1+λ2

}= 1

2e−|x+3|.

6. F−1{

11+(λ+5)2

}.

Solution: By the first shifting theorem, F−1{

11+(λ+5)2

}= 1

2e5ix−|x|.

1

Page 2: 3705Tut7-W13

7. F{xe−3x2

}.

Solution:

F(xe−3x2

)= F

(−1

6[e−3x2

]′)

= −1

6F([e−3x2

]′)

= −1

2(−iλ)F

(e−3x2

)=

2

√π√3e−λ2/12.

8. F{(x+ 2)e−(x+2)2

}.

Solution: F{(x+ 2)e−(x+2)2

}= e−2iλF

(xe−x2

)= e−2iλ i

√πλ2

e−λ2/4.

9. F{xe−x2+3ix

}.

Solution: F{xe−x2+3ix

}= F

{e3ixxe−x2

}= i

√π(λ+3)2

e−(λ+3)2/4.

10. F−1{e−λ2

}.

Solution: F−1{e−λ2

}= 1

2√πe−x2/4.

11. F−1{e2iλ−λ2

}.

Solution: F−1{e2iλ−λ2

}= 1

2√πe−(x−2)2/4.

12. F−1{λe−λ2

}.

Solution: F−1{λe−λ2

}= −ix

4√πe−x2/4.

13. F−1{e−(λ+2)2

}.

Solution: F−1{e−(λ+2)2

}= 1

2√πe2ix−x2/4.

2

Page 3: 3705Tut7-W13

14. F{xe−3x2

}.

Solution:

F(xe−3x2

)= F

(−1

6[e−3x2

]′)

= −1

6F([e−3x2

]′)

= −1

2(−iλ)F

(e−3x2

)=

2

√π√3e−λ2/12.

15. F{(x+ 2)e−(x+2)2

}.

Solution: By the second shifting theorem,

F{(x+ 2)e−(x+2)2

}= e−2iλF

(xe−x2

)= e−2iλ i

√πλ

2e−λ2/4.

16. F{xe−x2+3ix

}.

Solution: By the first shifting theorem and the result for F{xe−x2

}, we have F

{xe−x2+3ix

}=

F{e3ixxe−x2

}= i

√π(λ+3)2

e−(λ+3)2/4.

17. F−1{e−λ2

}.

Solution: Since F−1{e−tλ2

}= 1

2√tπe−x2/(4t), we have F−1

{e−λ2

}= 1

2√πe−x2/4.

18. F−1{e2iλ−λ2

}.

Solution: Note that

F−1{e−λ2

}=

1

2√πe−x2/4.

By the second shifting theorem,

F−1{e2iλ−λ2

}= F−1

{e2iλe−λ2

}=

1

2√πe−(x−2)2/4.

3

Page 4: 3705Tut7-W13

19. F−1{λe−λ2

}.

Solution:

F−1{λe−λ2

}= F−1

{d

(−1

2e−λ2

)}= ixF−1

{−1

2e−λ2

}= −ix

2

1

2√πe−x2/4 =

−ix

4√πe−x2/4.

20. F−1{e−(λ+2)2

}.

Solution: By the first shifting theorem and the question 4 above, F−1{e−(λ+2)2

}=

12√πe2ix−x2/4.

4