14
General Description The MAX9945 operational amplifier features an excellent combination of low operating power and low input volt- age noise. In addition, MOS inputs enable the MAX9945 to feature low input bias currents and low input current noise. The device accepts a wide supply voltage range from 4.75V to 38V and draws a low 400μA quiescent cur- rent. The MAX9945 is unity-gain stable and is capable of rail-to-rail output voltage swing. The MAX9945 is ideal for portable medical and industri- al applications that require low noise analog front-ends for performance applications such as photodiode trans- impedance and chemical sensor interface circuits. The MAX9945 is available in both an 8-pin μMAX ® and a space-saving, 6-pin TDFN package, and is specified over the automotive operating temperature range (-40°C to +125°C). Applications Medical Pulse Oximetry Photodiode Sensor Interface Industrial Sensors and Instrumentation Chemical Sensor Interface High-Performance Audio Line Out Active Filters and Signal Processing Features +4.75V to +38V Single-Supply Voltage Range ±2.4V to ±19V Dual-Supply Voltage Range Rail-to-Rail Output Voltage Swing 400μA Low Quiescent Current 50fA Low Input Bias Current 1fA/Hz Low Input Current Noise 15nV/Hz Low Noise 3MHz Unity-Gain Bandwidth Wide Temperature Range from -40°C to +125°C Available in Space-Saving, 6-Pin TDFN Package (3mm x 3mm) MAX9945 38V, Low-Noise, MOS-Input, Low-Power Op Amp ________________________________________________________________ Maxim Integrated Products 1 19-4398; Rev 1; 12/10 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. Ordering Information PART TEMP RANGE PIN- PACKAGE TOP MARK MAX9945ATT+ -40°C to +125°C 6 TDFN-EP* AUE MAX9945AUA+ -40°C to +125°C 8 μMAX +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. μMAX is a registered trademark of Maxim Integrated Products, Inc. IN- IN+ OUT V EE V CC PHOTODIODE SIGNAL CONDITIONING/ FILTERS ADC MAX9945 Typical Operating Circuit

38V, Low-Noise, MOS-Input, Low-Power Op Amp · 2010. 12. 18. · p-p) 10 100 1000 10,000 5 10 15 25 20 30 0 1 rload = 100kΩ large signal-step response max9945 toc18 4μs/div +5v-5v

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • General DescriptionThe MAX9945 operational amplifier features an excellentcombination of low operating power and low input volt-age noise. In addition, MOS inputs enable the MAX9945to feature low input bias currents and low input currentnoise. The device accepts a wide supply voltage rangefrom 4.75V to 38V and draws a low 400µA quiescent cur-rent. The MAX9945 is unity-gain stable and is capable ofrail-to-rail output voltage swing.

    The MAX9945 is ideal for portable medical and industri-al applications that require low noise analog front-endsfor performance applications such as photodiode trans-impedance and chemical sensor interface circuits.

    The MAX9945 is available in both an 8-pin µMAX® anda space-saving, 6-pin TDFN package, and is specifiedover the automotive operating temperature range(-40°C to +125°C).

    ApplicationsMedical Pulse Oximetry

    Photodiode Sensor Interface

    Industrial Sensors and Instrumentation

    Chemical Sensor Interface

    High-Performance Audio Line Out

    Active Filters and Signal Processing

    Features� +4.75V to +38V Single-Supply Voltage Range

    � ±2.4V to ±19V Dual-Supply Voltage Range

    � Rail-to-Rail Output Voltage Swing

    � 400µA Low Quiescent Current

    � 50fA Low Input Bias Current

    � 1fA/√√Hz Low Input Current Noise

    � 15nV/√√Hz Low Noise

    � 3MHz Unity-Gain Bandwidth

    � Wide Temperature Range from -40°C to +125°C

    � Available in Space-Saving, 6-Pin TDFN Package(3mm x 3mm)

    MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    ________________________________________________________________ Maxim Integrated Products 1

    19-4398; Rev 1; 12/10

    For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at www.maxim-ic.com.

    Ordering Information

    PART TEMP RANGEPIN-PACKAGE

    TOPMARK

    MAX9945ATT+ -40°C to +125°C 6 TDFN-EP* AUE

    MAX9945AUA+ -40°C to +125°C 8 µMAX —

    +Denotes a lead(Pb)-free/RoHS-compliant package.

    *EP = Exposed pad.

    µMAX is a registered trademark of Maxim Integrated Products, Inc.

    IN-

    IN+

    OUT

    VEE

    VCCPHOTODIODE

    SIGNALCONDITIONING/

    FILTERSADC

    MAX9945

    Typical Operating Circuit

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    2 _______________________________________________________________________________________

    ABSOLUTE MAXIMUM RATINGS

    ELECTRICAL CHARACTERISTICS(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C,unless otherwise noted.) (Note 2)

    Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

    Supply Voltage (VCC to VEE) ..................................-0.3V to +40VIN+, IN-, OUT Voltage......................(VEE - 0.3V) to (VCC + 0.3V)IN+ to IN- .............................................................................±12VOUT Short Circuit to Ground Duration....................................10sContinuous Input Current into Any Pin .............................±20mAContinuous Power Dissipation (TA = +70°C)

    6-Pin TDFN-EP (derate 23.8mW/°C above +70°C)Multilayer Board ....................................................1904.8mW

    8-Pin µMAX (derate 4.8mW/°C above +70°C)Multilayer Board ......................................................387.8mW

    Operating Temperature Range .........................-40°C to +125°CJunction Temperature ......................................................+150°CStorage Temperature Range .............................-65°C to +150°CLead Temperature (soldering, 10s) .................................+300°CSoldering Temperature ....................................................+260°C

    PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

    DC ELECTRICAL CHARACTERISTICS

    TA = +25°C VEEVCC -1.2

    Input Voltage Range VIN+, VIN-Guaranteed byCMRR

    TA = TMIN to TMAX VEEVCC -1.4

    V

    TA = +25°C ±0.6 ±5Input Offset Voltage VOS

    TA = TMIN to TMAX ±8mV

    Input Offset Voltage Drift VOS - TC 2 µV/°C

    -40°C ≤ TA ≤ +25°C 50 150 fA

    -40°C ≤ TA ≤ +70°C 12 pA

    -40°C ≤ TA ≤ +85°C 55 pAInput Bias Current (Note 3) IB

    -40°C ≤ TA ≤ +125°C 1.9 nA

    VCM = VEE to VCC - 1.2V,TA = +25°C

    78 94

    Common-Mode Rejection Ratio CMRRVCM = VEE to VCC - 1.4V,TA = TMIN to TMAX

    78 94

    dB

    VEE + 0.3V ≤ VOUT ≤ VCC - 0.3V,ROUT = 100kΩ to GND

    110 130

    Open-Loop Gain AOLVEE + 0.75V ≤ VOUT ≤ VCC - 0.75V,ROUT = 10kΩ to GND

    110 130

    dB

    Output Short-Circuit Current ISC 25 mA

    Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

    PACKAGE THERMAL CHARACTERISTICS (Note 1)TDFN-EP

    Junction-to-Ambient Thermal Resistance (θJA) ............42°C/WJunction-to-Case Thermal Resistance (θJC) ...................9°C/W

    µMAXJunction-to-Ambient Thermal Resistance (θJA) .......206.3°C/WJunction-to-Case Thermal Resistance θJC ...................42°C/W

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    _______________________________________________________________________________________ 3

    PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

    ROUT = 10kΩ to GND TA = TMIN to TMAXVEE +0.26

    VEE +0.45

    Output Voltage Low VOLROUT = 100kΩ toGND

    TA = TMIN to TMAXVEE +0.05

    VEE +0.15

    V

    ROUT = 10kΩ to GND TA = TMIN to TMAXVCC -0.45

    VCC -0.24

    Output Voltage High VOHROUT = 100kΩ toGND

    TA = TMIN to TMAXVCC -0.15

    VCC -0.03

    V

    AC ELECTRICAL CHARACTERISTICS

    Input Current-Noise Density IN f = 1kHz 1 fA/√Hz

    Input Voltage Noise VNP-P f = 0.1Hz to 10Hz 2 µVP-Pf = 100Hz 25

    f = 1kHz 16.5Input Voltage-Noise Density VNf = 10kHz 15

    nV/√Hz

    Gain Bandwidth GBW 3 MHz

    Slew Rate SR 2.2 V/µs

    Capacitive Loading (Note 4) CLOAD No sustained oscillations 120 pF

    Total Harmonic Distortion THDVOUT = 4.5VP-P, AV = 1V/V,f = 10kHz, ROUT = 10kΩ to GND

    97 dB

    POWER-SUPPLY ELECTRICAL CHARACTERISTICS

    Power-Supply Voltage Range VCC - VEE Guaranteed by PSRR, VEE = 0V +4.75 +38 V

    Power-Supply Rejection Ratio PSRR VCC - VEE = +4.75V to +38V 82 100 dB

    TA = +25°C 400 700Quiescent Supply Current ICC

    TA = TMIN to TMAX 850µA

    ELECTRICAL CHARACTERISTICS (continued)(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C,unless otherwise noted.) (Note 2)

    Note 2: All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design.Note 3: Guaranteed by design. IN+ and IN- are internally connected to the gates of CMOS transistors. CMOS GATE leakage is so

    small that it is impractical to test in production. Devices are screened during production testing to eliminate defective units.Note 4: Specified over all temperatures and process variation by circuit simulation.

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    4 _______________________________________________________________________________________

    Typical Operating Characteristics(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C,unless otherwise noted.)

    QUIESCENT SUPPLY CURRENTvs. SUPPLY VOLTAGE AND TEMPERATURE

    MAX

    9945

    toc0

    1

    SUPPLY VOLTAGE (V)

    SUPP

    LY C

    URRE

    NT (µ

    A)

    353025201510

    300

    400

    500

    600

    2005

    TA = +125°C

    TA = +25°C

    TA = -40°C

    OUTPUT VOLTAGE SWING LOWvs. TEMPERATURE

    MAX

    9945

    toc0

    2

    TEMPERATURE (°C)

    V OL -

    VEE

    (V)

    100 120806040200-20

    0.10

    0.05

    0.15

    0.20

    0.25

    0-40

    ISINK = 1.0mA

    ISINK = 0.1mA

    OUTPUT VOLTAGE SWING HIGHvs. TEMPERATURE

    MAX

    9945

    toc0

    3

    TEMPERATURE (°C)

    V CC

    - VOH

    (V)

    100 120806040200-20

    0.10

    0.05

    0.15

    0.20

    0.25

    0-40

    ISOURCE = 1.0mA

    ISOURCE = 0.1mA

    INPUT BIAS CURRENTvs. TEMPERATURE

    MAX

    9945

    toc0

    4

    TEMPERATURE (°C)

    I BIA

    S (p

    A)

    10080600 20 40-20

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -10-40 120

    INPUT VOLTAGE0.1Hz TO 10Hz NOISE

    MAX9945 toc05

    1s/div1µV/div

    INPUT VOLTAGE-NOISE DENSITYvs. FREQUENCY

    MAX

    9945

    toc0

    6

    FREQUENCY (Hz)

    INPU

    T VO

    LTAG

    E-NO

    ISE

    DENS

    ITY

    (nV/

    Hz

    )

    10,000 100,000100010010

    100

    1000

    101

    TOTAL HARMONIC DISTORTIONvs. FREQUENCY

    MAX

    9945

    toc0

    7

    FREQUENCY (Hz)

    THD

    (dB)

    100,00010,0001000

    -90

    -70

    -80

    -110

    -100

    100

    VCC - VEE = 30V,4.5VP-P, RL = 10kΩ

    TOTAL HARMONIC DISTORTION + NOISEvs. FREQUENCY

    MAX

    9945

    toc0

    8

    FREQUENCY (Hz)

    THD+

    N (d

    B)

    -90

    -80

    -70

    -60

    -50

    -100100,00010,000100 100010

    VCC - VEE = 30V4.5VP-P RL = 10kΩ

  • INPUT OFFSET VOLTAGEvs. COMMON-MODE VOLTAGE

    MAX

    9945

    toc0

    9

    COMMON-MODE VOLTAGE (V)

    INPU

    T OF

    FSET

    VOL

    TAGE

    (μV)

    1050-10 -5

    1000

    800

    0

    600

    400

    200

    -15

    MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    _______________________________________________________________________________________ 5

    INPUT OFFSET VOLTAGEvs. TEMPERATURE

    MAX

    9945

    toc1

    0

    TEMPERATURE (°C)IN

    PUT

    OFFS

    ET V

    OLTA

    GE (µ

    V)100 1208040 60-20 0 20

    1000

    800

    0

    600

    400

    200

    -40

    VCM = 0V

    VCM = VEE

    VCM = VCC - 1.2V

    OPEN-LOOP GAINvs. FREQUENCY

    MAX

    9945

    toc1

    1

    FREQUENCY (Hz)

    OPEN

    -LOO

    P GA

    IN (d

    B)

    120

    80

    -40

    40

    0

    1m 1 10 100 1k 10k 100k 1M 10M

    COMMON-MODE REJECTION RATIOvs. FREQUENCY

    MAX

    9945

    toc1

    2

    FREQUENCY (Hz)

    CMRR

    (dB)

    1M100k100 1k 10k

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10010 10M

    POWER-SUPPLY REJECTION RATIOvs. FREQUENCY

    MAX

    9945

    toc1

    3

    FREQUENCY (Hz)

    PSRR

    (dB)

    1M100k10k1k10010

    -100

    -80

    -60

    -40

    -20

    0

    -1201 10M

    UNIPOLARPSRR-

    UNIPOLARPSRR+

    BIPOLARPSRR

    RESISTOR ISOLATIONvs. CAPACITIVE LOAD

    MAX

    9945

    toc1

    4

    RISO (Ω)

    C LOA

    D (p

    F)

    10010

    1000

    10,000

    1001

    STABLE

    UNSTABLE

    Typical Operating Characteristics (continued)(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C,unless otherwise noted.)

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    6 _______________________________________________________________________________________

    Typical Operating Characteristics (continued)(VCC = +15V, VEE = -15V, VIN+ = VIN- = VGND = 0V, ROUT = 100kΩ to GND, TA = -40°C to +125°C, typical values are at TA = +25°C,unless otherwise noted.)

    LARGE SIGNAL-STEP RESPONSEMAX9945 toc19

    1μs/div

    +1V

    -1V

    VOUT500mV/div

    AV = 1V/VVIN = 2VP-PRL = 10kΩCL = 100pF

    SMALL SIGNAL-STEP RESPONSEMAX9945 toc20

    2μs/div

    +20mV

    -20mV

    VOUT10mV/div

    AV = 1V/VVIN = 40mVP-PRL = 100kΩ

    LARGE-SIGNAL RESPONSEvs. FREQUENCY

    MAX

    9945

    toc1

    7

    FREQUENCY (kHz)

    OUTP

    UT V

    OLTA

    GE (V

    P-P)

    10,000100010010

    5

    10

    15

    25

    20

    30

    01

    RLOAD = 100kΩ

    LARGE SIGNAL-STEP RESPONSEMAX9945 toc18

    4μs/div

    +5V

    -5V

    VOUT2.5V/div

    AV = 1V/VVIN = 10VP-PRL = 10kΩCL = 100pF

    OUTPUT IMPEDANCEvs. FREQUENCY

    MAX

    9945

    toc1

    6

    FREQUENCY (Hz)OU

    TPUT

    IMPE

    DANC

    E (Ω

    )1M100k10k1k100

    0.10

    1.00

    10.00

    100.00

    1000.00

    0.0110 10M

    ACL = 10

    ACL = 1

    OP-AMP STABILITYvs. CAPACITIVE AND RESISTIVE LOADS

    MAX

    9945

    toc1

    5

    PARALLEL LOAD RESISTANCE (kΩ)

    PARA

    LLEL

    LOA

    D CA

    PACI

    TANC

    E (p

    F)

    10,000100 1000

    1000

    100

    10,000

    1010

    STABLE

    UNSTABLE

  • Detailed DescriptionThe MAX9945 features a combination of low input cur-rent and voltage noise, rail-to-rail output voltage swing,wide supply voltage range, and low-power operation.The MOS inputs on the MAX9945 make it ideal for useas transimpedance amplifiers and high-impedancesensor interface front-ends in medical and industrialapplications. The MAX9945 can interface with smallsignals from either current-sources or high-outputimpedance voltage sources. Applications include pho-todiode pulse oximeters, pH sensors, capacitive pres-sure sensors, chemical analysis equipment, smokedetectors, and humidity sensors.

    A high 130dB open-loop gain (typ) and a wide supplyvoltage range, allow high signal-gain implementationsprior to signal conditioning circuitry. Low quiescentsupply current makes the MAX9945 compatible withportable systems and applications that operate undertight power budgets. The combination of excellent THD,low voltage noise, and MOS inputs also make theMAX9945 ideal for use in high-performance active fil-ters for data acquisition systems and audio equipment.

    Low-Current, Low-Noise Input StageThe MAX9945 features a MOS-input stage with only50fA (typ) of input bias current and a low 1fA/√Hz (typ)input current-noise density. The low-frequency inputvoltage noise is a low 2µVP-P (typ). The input stageaccepts a wide common-mode range, extending fromthe negative supply, VEE, to within 1.2V of the positivesupply, VCC.

    Rail-to-Rail Output StageThe MAX9945 output stage swings to within 50mV (typ)of either power-supply rail with a 100kΩ load and pro-vides a 3MHz GBW with a 2.2V/µs slew rate. Thedevice is unity-gain stable, and unlike other deviceswith a low quiescent current, can drive a 120pF capaci-tive load without compromising stability.

    Applications InformationHigh-Impedance Sensor Front Ends

    High-impedance sensors can output signals of interestin either current or voltage form. The MAX9945 inter-faces to both current-output sensors such as photo-diodes and potentiostat sensors, and high-impedancevoltage sources such as pH sensors.

    For current-output sensors, a transimpedance amplifieris the most noise-efficient method for converting theinput signal to a voltage. High-value feedback resistorsare commonly chosen to create large gains, while feed-back capacitors help stabilize the amplifier by cancel-ing any zeros in the transfer function created by ahighly capacitive sensor or cabling. A combination oflow-current noise and low-voltage noise is important forthese applications. Take care to calibrate out photodi-ode dark current if DC accuracy is important. The highbandwidth and slew rate also allows AC signal pro-cessing in certain medical photodiode sensor applica-tions such as pulse oximetry.

    MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    _______________________________________________________________________________________ 7

    Pin DescriptionPIN

    TDFN-EP µMAXNAME FUNCTION

    1 6 OUT Amplifier Output

    2 4 VEENegative Power Supply. Bypass VEE with 0.1µF ceramic and 4.7µF electrolyticcapacitors to quiet ground plane if different from VEE.

    3 3 IN+ Noninverting Amplifier Input

    4 2 IN- Inverting Amplifier Input

    5 1, 5, 8 N.C. No Connection. Not internally connected.

    6 7 VCCPositive Power Supply. Bypass VCC with 0.1µF ceramic and 4.7µF electrolytic capacitorsto quiet ground plane or VEE.

    — — EPExposed Pad (TDFN Only). Connect to VEE externally. Connect to a large copper planeto maximize thermal performance. Not intended as an electrical connection (TDFN only).

  • MA

    X9

    94

    5

    For voltage-output sensors, a noninverting amplifier istypically used to buffer and/or apply a small gain to, theinput voltage signal. Due to the extremely high imped-ance of the sensor output, a low input bias current witha small temperature variation is very important for theseapplications.

    Power-Supply DecouplingThe MAX9945 operates from a +4.75V to +38V, VEE ref-erenced power supply. Bypass the power-supplyinputs VCC and VEE to a quiet copper ground plane,with a 0.1µF ceramic capacitor in parallel with a 4.7µFelectrolytic capacitor, placed close to the leads.

    Layout TechniquesA good layout is critical to obtaining high performanceespecially when interfacing with high-impedance sen-sors. Use shielding techniques to guard against para-sitic leakage paths. For transimpedance applications,for example, surround the inverting input, and thetraces connecting to it, with a buffered version of itsown voltage. A convenient source of this voltage is thenoninverting input pin. Pins 1, 5, and 8 on the µMAXpackage are unconnected, and can be connected toan analog common potential, or to the driven guardpotential, to reduce leakage on the inverting input.

    A good layout guard rail isolates sensitive nodes, suchas the inverting input of the MAX9945 and the tracesconnecting to it (see Figure 1), from varying or large volt-age differentials that otherwise occur in the rest of thecircuit board. This reduces leakage and noise effects,allowing sensitive measurements to be made accurately.

    Take care to also decrease the amount of stray capaci-tance at the op amp’s inputs to improve stability. Toachieve this, minimize trace lengths and resistor leadsby placing external components as close as possible tothe package. If the sensor is inherently capacitive, or isconnected to the amplifier through a long cable, use alow-value feedback capacitor to control high-frequencygain and peaking to stabilize the feedback loop.

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    8 _______________________________________________________________________________________

    1

    2

    8

    7

    μMAX

    3

    4

    6

    5MAX9945

    IN-

    IN+

    MAX9945

    VOUT

    +

    -

    +

    Figure 1. Shielding the Inverting Input to Reduce Leakage

    MAX9945

    IN+

    IN-10kΩ

    10kΩ

    Figure 2. Input Differential Voltage Protection

  • Input Differential Voltage ProtectionDuring normal op-amp operation, the inverting and non-inverting inputs of the MAX9945 are at approximatelythe same voltage. The ±12V absolute maximum inputdifferential voltage rating offers sufficient protection formost applications. If there is a possibility of exceedingthe input differential voltage specification, in the pres-ence of extremely fast input voltage transients or due tocertain application-specific fault conditions, use exter-nal low-leakage pico-amp diodes and series resistorsto protect the input stage of the amplifier (see Figure 2).The extremely low input bias current of the MAX9945allows a wide range of input series resistors to be used.If low input voltage noise is critical to the application,size the input series resistors appropriately.

    MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    _______________________________________________________________________________________ 9

    Chip InformationPROCESS: BiCMOS

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    10 ______________________________________________________________________________________

    1 6OUT VCC

    2 5VEE N.C.

    3 4IN+ IN-

    TDFN

    MAX9945OUT

    N.C.VEE

    1

    2

    8

    7

    N.C.

    VCCIN-

    IN+

    N.C.

    µMAX

    TOP VIEW

    3

    4

    6

    5

    MAX9945

    EP

    ++

    Pin Configurations

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    ______________________________________________________________________________________ 11

    Package InformationFor the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in thepackage code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to thepackage regardless of RoHS status.

    PACKAGE TYPE PACKAGE CODE OUTLINE NO.LAND

    PATTERN NO.

    6 TDFN-EP T633+2 21-0137 90-0058

    8 µMAX U8+1 21-0036 90-0092

    http://www.maxim-ic.com/packageshttp://pdfserv.maxim-ic.com/package_dwgs/21-0137.PDFhttp://pdfserv.maxim-ic.com/package_dwgs/21-0036.PDFhttp://pdfserv.maxim-ic.com/land_patterns/90-0058.PDFhttp://pdfserv.maxim-ic.com/land_patterns/90-0092.PDF

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    12 ______________________________________________________________________________________

    COMMON DIMENSIONS

    SYMBOL MIN. MAX.

    A 0.70 0.80

    D 2.90 3.10

    E 2.90 3.10

    A1 0.00 0.05

    L 0.20 0.40

    PKG. CODE N D2 E2 e JEDEC SPEC b [(N/2)-1] x e

    PACKAGE VARIATIONS

    0.25 MIN.k

    A2 0.20 REF.

    2.00 REF0.25±0.050.50 BSC2.30±0.1010T1033-1

    2.40 REF0.20±0.05- - - - 0.40 BSC1.70±0.10 2.30±0.1014T1433-1

    1.50±0.10 MO229 / WEED-3

    0.40 BSC - - - - 0.20±0.05 2.40 REFT1433-2 14 2.30±0.101.70±0.10

    T633-2 6 1.50±0.10 2.30±0.10 0.95 BSC MO229 / WEEA 0.40±0.05 1.90 REF

    T833-2 8 1.50±0.10 2.30±0.10 0.65 BSC MO229 / WEEC 0.30±0.05 1.95 REF

    T833-3 8 1.50±0.10 2.30±0.10 0.65 BSC MO229 / WEEC 0.30±0.05 1.95 REF

    2.30±0.10 MO229 / WEED-3 2.00 REF0.25±0.050.50 BSC1.50±0.1010T1033-2

    0.25±0.05 2.00 REF10 0.50 BSC MO229 / WEED-32.30±0.101.50±0.10T1033MK-1

    0.40 BSC - - - - 0.20±0.05 2.40 REFT1433-3F 14 2.30±0.101.70±0.10

    Package Information (continued)For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in thepackage code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to thepackage regardless of RoHS status.

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    ______________________________________________________________________________________ 13

    α

    α

    Package Information (continued)For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in thepackage code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to thepackage regardless of RoHS status.

  • MA

    X9

    94

    5

    38V, Low-Noise, MOS-Input,Low-Power Op Amp

    Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

    14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

    © 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.

    Revision History

    REVISIONNUMBER

    REVISIONDATE

    DESCRIPTIONPAGES

    CHANGED

    0 2/09 Initial release —

    1 12/10Updated Input Bias Current spec in the Electrical Characteristics table andupdated Note 3

    2, 3

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice