29
3D CONGRUENCY – THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo and Environmental Engineering Chair of Geodesy

3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

3D CONGRUENCY – THE POINT CLOUD PROBLEM

Prof. Dr.-Ing. habil. Thomas A. Wunderlich

Technical University of Munich

Department of Civil, Geo and Environmental

Engineering

Chair of Geodesy

Page 2: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Monitoring by TLS – practicing

unfinished theories

Que

lle: B

raun

, 201

1

• Deformation Analysis

• Challenges

• Theoretical Models

• Applications

• Critical Evaluation

INGEO2017 | 2

Page 3: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Although theories are unfinished yet:

practice started already!

Que

lle: F

aro-

3d-s

oftw

are.

com

Que

lle: M

aar,

201

7Q

uelle

: Maa

r, 2

017

INGEO2017 | 3

Page 4: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Principal task: proof of significant geometrical

changes of an object between two observation epochs

• Rigid body movements (translations, rotations, tilt) or/and

• Change in shape (bending, buckling, torsion)

One of the two epochs may be predetermined by an as-planned or an as-built

geometry from CAD or BIM (s1= ? mm)

Que

lle: E

ling,

200

9

INGEO2017 | 4

Page 5: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Classic congruence analysis of networks[Pelzer, 1971]

• Checking identical approximate coordinates and

free adjustment of both eopochs (discrete points)

• Testing comparable accuracy of both epochs – if

true: calculation of common s0

• Setting up vector of coordinate differences and the

corresponding cofactor matrix

• Global test of congruency – in case of zero

hypothesis rejection (T>F): tests to prove stable

control points, datum transformation on

approximate coord. of those points

• 2nd step of analysis: locating displaced object

points one by one, applying forward or backward

strategy

• Statement of object point deformations in direction

and magnitude - generalization

Que

lle: D

IN 1

8710

-4

INGEO2017 | 5

Page 6: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Why discretization/generalization and not

straightforward monitoring by TLS?

Processing immense point quantities (up to millions or billions)

• Thinning out to mitigate processing load and time frequently proves necessary

• or alternative deriving representative points → again discretization of distinct points

No identical points from epoch to epoch

In contrast to conventional observation of single points, which are pegged, signalized

and can be aimed at repeatable, laser points of a point cloud will not hit identical object

spots in different epochs

No unambiguous assignment of points from different epochs to one another

While we have a definite geometric assignment between the coordinate realizations of

a discrete object point in two epochs, there are various specifications (models of

assignment) conceivable concerning point clouds

INGEO2017 | 6

Page 7: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

1 -2 Bilder zum Zwischentitel

Models of assignment (I)

Que

lle: W

ang,

201

4INGEO2017 | 7

Page 8: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Models of assignment (II)[Vosselman & Maas, 2010]

• Point to Point (P2P)

range images, virtual targets, grids

• Point to Surface (P2S)

triangulation (e.g. TIN - triangulated irregular networks), tiling

implicite functions (analytical surfaces)

explicite functions (free-form surfaces, e.g. B-splines, NURBS)

• Surface to Surface (S2S)

best-fit of entire surfaces (ICP - iterative closest point algorithms)

best-fit of surface segments

INGEO2017 | 8

Page 9: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2P virtual targets: highway bridge Freimann[Schäfer, 2008, 2009, 2017]

INGEO2017 | 9

Page 10: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2P grid: lock gate Gabcikovo[Schäfer et al., 2004]

INGEO2017 | 10

Page 11: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2S TIN: oldtimer check before/after

transport[Wasmeier, 2016]

INGEO2017 | 11

Page 12: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2S tiling: NATM-tunnel Stuttgart[Ohlmann-Lauber, 2010]

INGEO2017 | 12

Page 13: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2S implicit functions – ellipsoid Futuro-

House[Ratke, 2006]

INGEO2017 | 13

Page 14: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

S2S implicit functions – cylinder industry

chimneys[Kregar et al., 2015]

INGEO2017 | 14

Page 15: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

P2S explicit functions – B-spline surface

model[Braun, 2011]

Que

lle: B

raun

, 201

1

INGEO2017 | 15

Page 16: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Critical evaluation – potential for

improvement (I)

Areal, but maybe limited deformation statement

• sometimes only rigid body movements derivable

• frequently reduction to one dimension instead of 3d statement

INGEO2017 | 16

Page 17: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

3d deformations by surface structure

matching of tiles[Chmelina et al., 2012]

INGEO2017 | 17

Page 18: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Critical evaluation – potential for

improvement (II)

Areal, but maybe limited deformation statement

• sometimes only rigid body movements derivable

• frequently reduction to one dimension instead of 3d statement

Possible new parameters to characterize deformations hardly used

• e.g. differences of areas, differences of volumes (local, total)

• exception: change of focal length at radio telescope [Uni Bonn]

INGEO2017 | 18

Page 19: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Paraboloid parameter radio telescope

Effelsberg[Holst & Kuhlmann, 2011, 2014, 2015]

INGEO2017 | 19

Page 20: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Critical evaluation – potential for

improvement (III)

Areal, but maybe limited deformation statement

• sometimes only rigid body movements derivable

• frequently reduction to one dimension instead of 3d statement

Possible new parameters to characterize deformations hardly used

• e.g. differences of areas, differences of volumes (local, total)

• exception: change of focal length at radio telescope [Uni Bonn]

Tests of Significance?

• current research object except rare attempts in PhD theses

INGEO2017 | 20

Page 21: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Test of representative points at dam

Okertal[Eling, 2009]

INGEO2017 | 21

Page 22: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Fusion of image and scan evaluation

(RGB+D) [Wagner, 2016]

Que

lle: W

agne

r, 2

016

INGEO2017 | 22

functional

interpolation of ranges

(depth image) at the

locations of identical

object points for both

epochs

stitched images

mapped to

panoramic sphere;

identification of

identical points in

two epochs

Page 23: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Concept of rigorous deformation analysis

using laser scans and camera images – MS60[Wagner, Wiedemann, Wunderlich, 2017]

INGEO2017 | 23

matched image

points of 1 & 2

scan points 1

control points

scan points 2

interpolated

ranges

object

Free station

epoch 1Free station

epoch 2

Page 24: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

THANK YOU FOR YOUR ATTENTION – MUITO OBRIGADA

Page 25: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

References• Akca, D. (2007): Least Squares 3D Surface Matching. Ph.D. thesis, Institute of Geodesy and Photogrammetry, ETH Zurich,

• Besl, P. J.; McKay, N. D. (1992): Method for registration of 3-D shapes. In Robotics-DL tentative. International Society for Optics

and Photonics. S. 586-606

• Bureick, J.; Neuner, H.; Harmening, C.; Neumann, I. (2016): Curve- and surface-approximation of 3D-pointclouds. allgemeine

vermessungs-nachrichten (avn), 123(8).

• Chmelina, K.; Jansa, J.; Hesina, G.; Traxler, C. (2012): A 3-d laser scanning system and scan data processing method for the

monitoring of tunnel deformations. Journal of Applied Geodesy, 6(3-4), 177-185.

• Cignoni, P.; Rocchini, C.; Scopigno, R. (1998): Metro: measuring error on simplified surfaces. Computer Graphics Forum, S.

167–174.

• Eling, D. (2009): Terrestrisches Laserscanning für die Bauwerksüberwachung. Dissertation, Leibnitz Universität Hannover.

• Friedli, E.; Wieser, A. (2016): Identification of Stable Surfaces within Point Clouds for Areal Deformation Monitoring. In:

Proceedings of the 3rd Joint International Symposium on Deformation Monitoring (JISDM), Vienna, Austria.

• Ge, X. (2016): Terrestrial Laser Scanning Technology from Calibration to Registration with Respect to Deformation Monitoring.

Dissertation, Technische Universität München.

• Ge, X.; Wunderlich, Th. (2016): Surface-based matching of 3d point clouds with variable coordinates in source and target system.

ISPRS Journal of Photogrammetry and Remote Sensing, 111, 2016(1), S. 1-12.

• Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. (2005): Change detection on points cloud data acquired with a ground

laser scanner. ISPRS Archives XXXVI/3-W19., S. 30-35 .

• Heunecke, O.; Kuhlmann, H.; Welsch, W.; Eichhorn, A.; Neuner, H. (2013): Auswertung geodätischer Überwachungsmessungen.

Wichmann.

• Holst, C. Kuhlmann, H. (2016): Challenges and present fields of action at laser scanner based deformation analyses. Journal of

Applied Geodesy, 10(1), S. 17–25.

INGEO2017 | 25

Page 26: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

• Holst, C.; Kuhlmann, H. (2011): Bestimmung der elevationsabhängigen Deformation des Hauptreflektors des 100m-

Radioteleskops Effelsberg mit Hilfe von Laserscannermessungen. Schriftenreihe DVW, 66, S. 161-180.

• Holst, C.; Neuner, H.; Wieser, A.; Wunderlich, T.; Kuhlmann, H. (2016): Calibration of Terrestrial Laser Scanners. allgemeine

vermessungs-nachrichten (avn) 123(6), S. 147–157.

• Holst, C.; Nothnagel, A.; Blome, M.; Becker, P.; Eichborn, M.; Kuhlmann, H. (2015): Improved area-based deformation analysis of

a radio telescope’s main reflector based on terrestrial laser scanning. Journal of Applied Geodesy, 9(1), S. 1–13.

• Holst, C.; Schmitz, B.; Schraven, A.; Kuhlmann, H. (2017): Eignen sich in Standardsoftware implementierte

Punktwolkenvergleiche zur flächenhaften Deformationsanalyse von Bauwerken? zfv, 142(2), S. 98-110.

• Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. (2012): Use of LIDAR in landslide

investigations: a review. Natural Hazards, 61(1), S. 5–28.

• Kahmen H.; Wunderlich Th. (1994): On Characteristic Deformations of Conical Shells. In: Proc. Of The 1St Turkish Symp. On

Deformations, Vol.II, TU Istanbul, 1994.

• Kahmen, H.; Wunderlich, T. (1994): On characteristic deformations of conical shells. In: Ankara, Turkey (Hrsg.), Chamber of

Surveying Engineers: Proceedings of the 1st Turkish Symposium on Deformations, S. 1031–1038.

• Kregar, K.; Ambrožič, T.; Kogoj, D.; Vezočnik, R.; Marjetič, A. (2015): Determining the inclination of tall chimneys using the TPS

and TLS approach, Measurement, Volume 75, November 2015, S. 354-363.

• Lague, D.; Brodu, N.; Leroux, J. (2013): Accurate 3D comparison of complex topography with terrestrial laser scanner:

application to the Rangitikei canyon (NZ). ISPRS Journal of Photogrammetry and Remote Sensing, 2013(82), S. 10–26.

• Lindenbergh, R.; Pfeifer, N. (2005): A statistical deformation analysis of two epochs of terrestrial laser data of a lock. In: Proc. of

Optical 3D Measurement Techniques, 2005(2), S. 61–70.

• Lindenbergh, R.; Pietrzyk, P. (2015): Change detection and deformation analysis using static and mobile laser scanning. Applied

Geomatics, 7(2), S. 65–74.

References

INGEO2017 | 26

Page 27: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

• Mill, T. (2016): Simulation of terrestrial laser scanning errors occurring during deformation monitoring. In: Proceedings of 3rd Joint

International Symposium on Deformation Monitoring.

• Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. (2016): A review of the use of terrestrial laser scanning application for

change detection and deformation monitoring of structures. Survey Review, 49(353), S. 99-116.

• Neitzel, F.;Johannes, L. (2009): Anwendung des tachymetrischen Laserscannings in der Überwachung eines historischen

Bauwerkes. In: Photogrammetrie—Laserscanning—optische 3D-Messtechnik, Beiträge der Oldenburger 3D-Tage 2009, S. 127-136.

• Neuner, H.; Holst, C.; Kuhlmann, H. (2016): Overview on Current Modelling Strategies of Point Clouds for Deformation Monitoring.

allgemeine vermessungs-nachrichten (avn), 123(11-12), S. 328-339.

• Niemeier, W. (2008): Ausgleichungsrechnung. Statistische Auswertemethoden, de Gruyter. Berlin, New York.

• Ohlmann-Lauber, J. (2010): TLS für Felssturzbeobachtungen, Schriftenreihe DVW, 64, S. 129-138.

• Ohlmann-Lauber, J. (2012): Filterungsansätze zur Bestimmung flächenhafter Deformationen aus TLS-Daten. Niemeier, W., Riedel,

B., Lehmann, M. (Hrsg.) Tagungsband GeoMonitoring 2012, S. 127-142.

• Ohlmann-Lauber, J.; Schäfer, T. (2011): Ansätze zur Ableitung von Deformationen aus TLS-Daten.In: Schriftenreihe DVW, 66.

• Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M. H., Metzger, R. (2009): Characterization and monitoring of the Åknes rockslide

using terrestrial laser scanning. Natural Hazards and Earth System Sciences, 9(3), S. 1003-1019.

• Ratke, K. (2006): Erfassung, Formanalyse und Modellierung des FUTURO-Hauses von Matti Suuronen, Diplomarbeit, Technische

Universität München.

• Reiterer, A. (2013): Neue Beobachtungskonzepte für bildgestützte Totalstationen in der Angewandten Geodäsie –

Entwicklungsschritte und Anwendungen. Habilitation, Technische Universität München.

• Schäfer, T.; Weber, T.; Kyrinovic, P.; Zámecniková, M. (2004): Deformation measurement using terrestrial laser scanning at the

hydropower station of Gabcíkovo. In: INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering

Surveying, Bratislava, Slovakia.

References

INGEO2017 | 27

Page 28: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

• Schneider, D. (2006): Terrestrial laser scanning for area based deformation analysis of towers and water damns. In: Proc. of 3rd

IAG/12th FIG Symp, Baden, Austria, S. 22–24.

• van Goor, B. (2011):. Change detection and deformation analysis using Terrestrial Laser Scanning. Masterarbeit, Delft University

of Technology.

• Vosselman, G.; Maas, H. G. (Hrsg.) (2010): Airborne and terrestrial laser scanning. Whittles Publishing.

• Wagner A. (2016): New Geodetic Monitoring Approaches using Image Assisted Total Stations. Dissertation, Technische

Universität München.

• Wieser, A.; Neuner, H. (2016): Uncertainties of terrestrial laserscanning related to surfaces and materials. allgemeine

vermessungs-nachrichten (avn), 123(8).

• Wujanz, D. (2016): Terrestrial Laser Scanning for Geodetic Deformation Monitoring. Dissertation ,Technische Universität Berlin.

• Wujanz, D.; Krueger, D.; Neitzel, F. (2016): Identification of stable areas in unreferenced laser scans for deformation

measurement. In: The Photogrammetric Record 2016.

• Wunderich, Th.; Niemeier, W.; Wujanz, D.; Holst, Ch.; Neitzl, F.; Kuhlmann, H. (2016): Areal Deformation Analysis from TLS Point

Clouds – The Challenge. allgemeine vermessungs-nachrichten (avn), 123(11-12), S.340-350.

• Wunderlich, Th., 2016: Zweimal scannen – und danach?, Vortragsvideo, OVG, https://www.youtube.com/watch?v=DzlaIpibYJw

• Zeibak, R.; Filin S. (2007): Change detection via terrestrial laser scanning. International Archives of Photogrammetry and Remote

Sensing. 36(3/W52): S. 430-435.

References

INGEO2017 | 28

Page 29: 3D CONGRUENCY THE POINT CLOUD PROBLEM · 3D CONGRUENCY –THE POINT CLOUD PROBLEM Prof. Dr.-Ing. habil. Thomas A. Wunderlich Technical University of Munich Department of Civil, Geo

Hammelburg bridge – load test (14.09.2017)

• Task: crack detetction (position & width), solution camera images + control pints

observed by TPS eingemessen (non-stable stationsl, free stationing in each epoch

by means of stable benchmarks)

• Superior solution; RGB+D: all from one instrumentt,

full 3D-deformations derivable

39

Regions of

RGB+D captures