48
3D EM Simulations 3D EM Simulations 1 www.cst.com ube / v2.0 / 2008

3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

3D EM Simulations3D EM Simulations

1 www.cst.comube / v2.0 / 2008

Page 2: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Overview

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and ResonancesTime Domain and Resonances

• Cavities and Particles• Electron Guns• CollectorCollector• Wakefields

2 www.cst.com

Page 3: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Eigenmode SolverTheoretical BackgroundTheoretical Background

In free space travelling waves can i t f f i

PECf PMC

exist for any frequencies.

If such a plane wave is reflected at a f ll ( l i i )

f f

perfect wall (electric or magnetic) there will be a standing wave. This standing wave exists independently from the frequency.

f f

The insertion of a second wall does not affect those standing wave as long as the distance L between the

f=c/L f=c/L

gwalls fits perfectly to the wave-length. The standing wave of this closed structure is called an eigenmode.

The frequency and the shape of the next eigenmode fitting between those two walls is predictable.

3 www.cst.com

f=2c/L f=2c/L

Page 4: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Eigenmode Computationg

rrrrr σHjErotrr

ωμ−=EjE

jjEEjHrot

rrrrrεω

ωσεωσωε =+=+= )(

1 EErotrotrr

εωμ

21=

Eigenvalue equation for the resonant structure modesand resonance frequencies.

μ

4 www.cst.com

q

Eigenvalues ω and eigenvectors Er

Page 5: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Eigenmodesg

f1=34.7 GHz f2=52.0 GHz

f3=54.3 GHz f4=57.9 GHz f5=67.7 GHz

5 www.cst.com

Page 6: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Eigenmode Solverg

Main user input:1

Which eigenmode method should be used?(AKS might be faster for well behaved examples, JD is more robust and might even find good solutions for bad conditioned problems)

2 1

How many modes are required?The AKS method always calculates internally at least 10 modes. (Therefore nearly no difference in

2

( ycpu time between 1 and 10 modes).The JD method calculates one mode after another, therefore 10 modes need roughly 10times the simulation time of 1 mode.Therefore the number of modes should be decreased when using the JD method.Th

6 www.cst.com

Page 7: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

A simple lossfree Cavityy

Mode1

E H

3 symmetry planes only 1/8 Mode2

y y p yof the volume needs to be calculated

Mode3

7 www.cst.comcavity_03.zip

Page 8: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Energy Densitiesgy

electric energy density0.5 ε E_peak^2

magnetic energy density0.5 μ H_peak^2

Volume Integration of Energy Density is possible via Result Template0D / Evaluate Field in arbitrary Coordinates (0D, 1D, 2D, 3D)

Note: for a lossfree eigenmode both integrals (el. + mag.energy) will be 1 Joule,i th i ill ti b t l t i d ti fi ld

8 www.cst.com

since the energy is oscillating between electric and magnetic field.

Page 9: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Plotting Fields and getting Field Values

All modes are normed to 1 Joule stored energy.

E / H / surface currentE / H / surface currentare stored as peak values.

9 www.cst.com

Page 10: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Benchmark Pillbox

h1 1 Influence of Meshingh1 r1 Influence of Meshing

E H Q theory=50 940Q_theory=50 940Q_simul=50 990

cpu-timepass 1 = 16secpass 5 = 2 min

surface current J

f_theory=229.485MHzf_simul=229.444MHz

10 www.cst.compillbox_01.zip

Page 11: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

The Quality Factor QyrmsP

WfperiodperconsumedEnergy

gyStoredEnerQ ⋅⋅=

•=

ππ 2___

2

• for a lossfree structure P=0 infinite Q

the higher Q, the longer the energy is kept

• different kind of losses exist:• skin effect (surface) losses: Qwall• dielectric (volume) losses: Q• dielectric (volume) losses: Qdiel• losses due to connected feeding lines: Qext• losses due to energy transfer between beam and mode: Qbeam

11111+++

beamextdielwalltot QQQQQ+++=

11 www.cst.com

As a circuit model, all losses can be seen as a parallel circuit, acting on the same mode.

Page 12: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Calculation of Qwall and Qdielwall diel

Results -> Loss and Q-Calculation performs a loss calculation in the ppostprocessing based on perturbation theory. It handles metallic lossesdue to finite conductivity (skin effect) as well as dielectric losses.

frq = 2.96289815e+010 Hz

Q=2*Pi*frq * Energy / Loss_rms

Loss rms = 0 5 Loss peakLoss_rms = 0.5 Loss_peak

Energy = 1 Joule

12 www.cst.com

Page 13: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Integration of Voltage, Calculation of Shunt Impedance & R/QCalculation of Shunt Impedance & R/Q

Shunt Impedance Rs=Vo^2/(2W)with Vo : voltage „seen“ by a charged interacting particle.

For voltage integration also the Transit Time Factor can be specified, which defines the speed ofthe particle (beta=v/c) and guarantees a ( ) gphase-correct integration of electr. field.

R/Q (R over Q) only depends on the geometry(not on the loss mechanism) and is therefore(not on the loss mechanism) and is therefore often used to compare different cavity structures.

13 www.cst.com

Page 14: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Example Superconducting Cavityeasy construction via Macros ->

Construct -> Superconducting Cavityp g y

14 www.cst.comellipt_cav_01.zip

Page 15: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Eigenmode SolverCalc lation of QCalculation of Qext

Results of the Q-Factor calculation: Log FileLanger filter

E g external Q factor comparison for the Langer filter

3323324.546

Steiglitz-McBrideCST Q_extf [GHz]

E.g. external Q-factor comparison for the Langer filter

847290707 185

24132262007.080

3053054.572

15 www.cst.com • Oct-09

847290707.185

Page 16: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Other methods for loaded Q calc lationcalculation

• Using the transient analysis• Amplitude E-field inside a resonator is given:

load

0

Q2t

0 eE)t(E ⋅⋅ω

⋅= load

0Q2

t

eE

)t(E ⋅⋅ω

=or

M it d i E fi ld b

0E

• Monitored using an E-field probe• Measure the time difference Δt in which the E-field is damped by a factor of 1/e then Q load is given by

0load ftQ ⋅Δ⋅π=

16 CST Microwave Studio • www.cst-world.com • Oct-09

Page 17: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Other methods for loaded Q calc lationcalculation

Signal: 503.7 at t1=200 nsSignal: 503 7/e = at t2= 423 6ns0l d ftQ ⋅Δ⋅π= Signal: 503.7/e at t2 423.6nsΔt = t2 –t1 = 223.6nsf0 = 2.4615 GHzQload = 1729

0load ftQ Δπ

1/e

17 CST Microwave Studio • www.cst-world.com • Oct-09

Page 18: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Time Domain Simulation and SResonant Structures

Slow energy decay since energy is kept in the resonanceSlow energy decay since energy is kept in the resonance Long Simulation TimePrediction of signal by Autoregressive FilterUsage of Frequency Domain SolverUsage of Frequency Domain Solver

Energy Decay Transient Activity

18 www.cst.com | Oct-09

Page 19: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Time Domain SimulationAR Filter

Original S Parameter

Stop at 31.0 ns

Original S-Parameter from Time Signals

Without online-AR cpu=100 sec

S-Parameter predicted by

AR Filter

Stop at 1.4 ns

AR Filter

19 www.cst.com | Oct-09

With online-AR-Filter cpu=15 sec (1port)

Page 20: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Frequency Domain Solverq y

• Simulation performed at single frequencies• Simulation performed at single frequencies • Simulation of Steady State• Broadband Frequency Sweep

20 www.cst.com • Oct-09

Page 21: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Thermal Calculation

Surface and volume losses from previous eigenmode

simulation can be used to perform a thermal analysis

21 www.cst.com

Page 22: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Overview

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and ResonancesTime Domain and Resonances

• Cavities and Particles• Electron Guns• Collector• Collector• Wakefields

22 www.cst.com

Page 23: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Tracking AlgorithmWorkflow:

1. Calculate electro- and magnetostatic fields

2. Calculate force on charged particles

3. Move particles according to the previously calculated force Trajectory

Velocity ( ) )( BvEqvmd rrrr×+= ( )2/112/111 +++++ ×+Δ+ nnnnnnn BEt

rrryupdate( ) )( BvEqvm

dt×+= ( )2/112/111 +++++ ×+Δ+= nnnnnnn BvEtqvmvm

Position updateddr vt= 3/2 1/2 1n n nr r tv+ + += +Δ

r r r

23 www.cst.com | Oct-09

dt

Page 24: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Tesla-Type 9-Cell Cavity

Electric Field calculated by

MWS-E

24 www.cst.com | Oct-09

Page 25: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Tesla-Type 9-Cell Cavity

Particle Trajectory(color indicates the(color indicates the

energy of the particles)

25 www.cst.com | Oct-09

Page 26: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

TESLA – Two-Point-Multipactingg

• Eigenmode at 1.3 GHz• Emax = 45 MV/m

26 www.cst.com | Oct-09

Page 27: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

TESLA – Two-Point-Multipactingg

time

half hf periodhalf hf period

27 www.cst.com | Oct-09

Page 28: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Overview

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and ResonancesTime Domain and Resonances

• Cavities and Particles• Electron Guns• Collector• Collector• Wakfields

28 www.cst.com

Page 29: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Emission ModelsSpace Charge Limited Emission:

d

Child-Langmuir Model

Assumption: )(dΦ dAssumption:

•Unlimited number of particles

)(dΦ

)0(Φ

PEC

•Particle extraction depends on field close to emitting surface

d

PEC

Virtual CathodeChilds Law:d

( )3/2

2

( ) (0)4 29s

dqJd

εΦ −Φ

= rent

29 www.cst.com | Oct-09

29 m d

Cur

r

Voltage

Page 30: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Emission ModelsThermionic Emission:

Assumption:Temperature Limited

Assumption:

•Limited number of particles

rent

•Particle extraction depends on field close to emitting surfacentil all particles are emitted

Cur

r

Space Charge Limiteduntil all particles are emitted Limited

Richardson Dushman Equation:

Voltage

Richardson-Dushman Equation:

kTe-

ATJΦ

2

30 www.cst.com | Oct-09

kTs eATJ = 2

Page 31: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Gridded GunPotential

B-Field

permanent magnets

31 www.cst.com | Oct-09

control grid

Page 32: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Gridded Gun - Mesh

32 www.cst.com

Page 33: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

S-DALINAC Electron SourceVacuum

-100kV

0V

Photocathode Diagnosis and Manipulation

33

Manipulation

See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

Page 34: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

S-DALINAC Electron Source

Electron trajectory

34 See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

Page 35: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

S-DALINAC Electron Source

Electric potential

35 See also Bastian Steiner, PhD Thesis, TEMF, TU Darmstadt

Page 36: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Overview

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and ResonancesTime Domain and Resonances

• Cavities and Particles• Electron Guns• Collector• Collector• Wakefields

36 www.cst.com

Page 37: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Collector

Potential

37 www.cst.com | Oct-09

Page 38: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Collector, including secondary electron emissionemission

E0 = 50 keV E0 = 125 keV

E0 = 200 keV E0 = 275 keV

38 www.cst.com | Oct-09E0 = initial energy of the electrons

Page 39: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Overview

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and ResonancesTime Domain and Resonances

• Cavities and Particles• Electron Guns• Collector• Collector• Wakefields

40 www.cst.com

Page 40: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

WakefieldsWhat does the Wakefield Solver do?

S f CS S Ssimple explanation: Special current excitation of CST MWS T-Solver.

more complex explanation: - Moving charged particles are represented as Gaussian current density

- At structure discontinuities the intrinsic electromagnetic fields of the moving charged particles causes the appearance of „Wakefields“c a ged pa t c es causes t e appea a ce o „ a e e ds

- These Wakefields can act back on the particles which is expressed in terms of a Wakepotential

41 www.cst.com | Oct-09

Page 41: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

WakefieldsBeam Position Monitor

detailed

42 www.cst.com | Oct-09

Note: Beta smaller than 1 is possible.

deta edview

Page 42: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

WakefieldsBeam Position Monitor

Output Signals at the electrode ports excited by the beam

150

Port 1

0

Port 1Port 2

-1500 7

Time/ns

43 www.cst.com | Oct-09Electric field vs. time

Page 43: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Wakefields

Normalized output at the

electrodeelectrode

44 www.cst.com | Oct-09See also: P. Raabe, VDI Fortschrittsberichte, Reihe 21, Nr. 128, 1993

Page 44: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

WakefieldsPillbox Cavity

Beam definition

Structure

45 www.cst.com | Oct-09

Page 45: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Wakefields/(V

/C)

R f P l

Wl(s

)/ Reference PulseWl(s)

46 www.cst.com | Oct-09

Page 46: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Wakefields

47 www.cst.com | Oct-09

Page 47: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

Wakefields

48 www.cst.com | Oct-09

Page 48: 3D EM Simulations3D EM Simulations - CERN€¦ · Eigenmode Computation rot Er j rH r σ r r r r =− ωμ E j E j rot H j E E j r r r r r ωε ω σ = ωε +σ = ω(ε+ ) = 1 rot

SUMMARY

C iti• Cavities– Eigenmodes– Q Factor– Time Domain and Resonances– Time Domain and Resonances

• Cavities and Particles• Electron Guns• Collector• Collector• Wakefields

49 www.cst.com