19
3D Imaging of Microstructural Evolution in SOFC Anodes George J. Nelson Assistant Professor Mechanical and Aerospace Engineering University of Alabama in Huntsville

3D Imaging of Microstructural Evolution in SOFC Anodes

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3D Imaging of Microstructural Evolution in SOFC Anodes

3D Imaging of Microstructural Evolution in SOFC AnodesGeorge J. NelsonAssistant ProfessorMechanical and Aerospace EngineeringUniversity of Alabama in Huntsville

Page 2: 3D Imaging of Microstructural Evolution in SOFC Anodes

Overview

• The Solid Oxide Fuel Cell• Why Three-Dimensional Imaging?• SOFC Anode Degradation▫ X-ray nanotomography measurements

▫ Characterization and analysis of microstructure

▫ Identification of degradation mechanisms

• Summary and Conclusions• Potential Extensions

Page 3: 3D Imaging of Microstructural Evolution in SOFC Anodes

The Solid Oxide Fuel Cell (SOFC)• Electrolyte: solid ion

conducting ceramic• Key microstructural

features:▫ Porous electrodes▫ Dispersed reaction sites

Fuel Channel

Electrolyte

Anode

Air ChannelInterconnect

Cathode

Interconnect

Planar SOFC

Tubular SOFC

(Fuel Cell Handbook, 2004)Triple Phase Boundary (TPB)

Page 4: 3D Imaging of Microstructural Evolution in SOFC Anodes

The Need for 3D Image Data

• 3D networks supply reactants to reaction sites.• 3D microstructure evolves during operation.• 2D data is not the whole picture.

M. Raetz, Yes/NoCannarozzo et al., J. Fuel Cell Sci. Tech., 4(2) 99-106, 2007.

Page 5: 3D Imaging of Microstructural Evolution in SOFC Anodes

Observing SOFC Microstructure

• Transmission x-ray microscope▫ Condenser gathers monochromatic x-ray

beam and directs it onto sample.▫ Fresnel zoneplate lens focuses x-rays.▫ CCD records the final x-ray image.

• Absorption contrast imaging▫ X-ray nanotomography performed above

and below x-ray absorption edge.Below Edge

8317 eV

Above Edge

8357 eV

K. N. Grew, Y. Chu, W. K. S. Chiu et al., J. Electrochem. Soc., 157(6) B783-BB792 , 2010.

Page 6: 3D Imaging of Microstructural Evolution in SOFC Anodes

Experimental Details

Breakdownofsamplesetforstacksbasedonthefinereferencemicrostructure.Stack Operational

Time(h)RVEReplicatesperSample RVEReplicates

perStackReference 0 REFN23(3),REFN25(3) 6Stack A 158 SAC4‐C01(2),SAC4N01(2),SAC4N11(2) 6Stack B 240 SBC1‐C01(2),SBC1N27(3) 5Stack C 1130 SCC3‐C01(2),SCC3N12(2) 4

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.

• Samples taken from cells operated in long term SOFC tests (Faes et al., Fuel Cells, 9(6), 841-851, 2009).

• X-ray absorption contrast imaging applied to map 3D anode microstructure and composition while preserving samples.

• Multiple representative volume elements (RVEs) extracted from sample x-ray nanotomography data.

Page 7: 3D Imaging of Microstructural Evolution in SOFC Anodes

Comparison to SEM Results

• X-ray nanotomographyphase sizes are within experimental error of SEM stereological results.

StackofOrigin(TestTime)

MeanNiParticleDiameter,µmX‐rayNanotomography SEMSectioning

Reference(t=0h) 0.66(± 0.25) 0.58(± 0.25)StackA(t=158h) 0.83(± 0.16) 0.67(± 0.31)StackB(t=240h) 0.91(± 0.13) 0.70(± 0.33)Stack C(t=1130h) 0.77(± 0.13) 0.73(± 0.35)

Representative Volume Element (RVE)

6.625 µm

Faes et al., Fuel Cells, 9(6), 841-851 2009

10 µm

Segmented SEMX-ray Nanotomography

Page 8: 3D Imaging of Microstructural Evolution in SOFC Anodes

0

0.4

0.8

1.2

1.6

0 400 800 1200

Mean Nickel Pha

se Diameter, µ

m

Operational Time, h

RVE Mean

Stack Mean

First Order Model

Critical Diameter

00.20.40.60.81

0 500 1000Operational Time, hOperational Time, hY

SZ

Ph

ase

Dia

met

er, µ

m

Anode Microstructural Evolution

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.

• Nanotomographydata analyzed for multiple RVEs.

• Distinct growth seen in mean diameter of Ni phase.▫ Large initial growth

constrained after longer operation.

• Behavior suggests a pinning mechanism.▫ Ceramic YSZ

restricts further growth of Ni.

▫ Critical diameters follow YSZ trends.

Page 9: 3D Imaging of Microstructural Evolution in SOFC Anodes

0

0.4

0.8

1.2

0 400 800 1200

Effective TP

B Len

gth, m

‐2

Operational Time (h)

RVE MeanStack MeanFirst Order Model

×1013

Operational Time (h)

1.2

0.8

0.4

0Eff

ecti

ve T

PB L

engt

h, m

-2

0 400 800 1200

Active Sites Lost

Impacts of Microstructural Evolution

InfluenceofoperationaltimedNi TPBL Nom.(Eff) Ni‐YSZContactAreaNom. (Eff.) Ni Contiguity

p‐value 0.0184 0.0066(0.0133) 0.0084(0.0186) 0.0198

0

1

2

3

0 400 800 1200Effective Ni‐YSZ Contact Area, m

‐1

Operational Time (h)

RVE MeanStack MeanFirst Order Model

×106

Operational Time (h)

0 400 800 1200

3

2

1

0Ni-

YSZ

Con

tact

Are

a, m

-1

Contact Area Lost

50

60

70

80

90

100

0 400 800 1200

Nickel Contiguity, %

Operational Time (h)

RVE Mean

Stack Mean

Linear Fit

Operational Time (h)

100

90

80

70

60

50Ni P

hase

Con

tigu

ity,

%0 400 800 1200

Networks Broken

3D IMAGING REVEALS PHYSICAL MECHANISM & PERFORMANCE IMPACTS.

Page 10: 3D Imaging of Microstructural Evolution in SOFC Anodes

Summary and Conclusions

• SOFCs and other energy storage and conversion devices: ▫ 3D systems of mixed functional materials▫ Require 3D image data for complete analysis

• X-ray nanotomography can provide such data.• Methods are proven for SOFC anodes▫ 3D data provides insight into Ni coarsening and performance

degradation not accessible with 2D data. Coarsening controlled by phase interaction, pinning mechanism. Network breakdown increases active site and conductivity loss.

• Methods are applicable to batteries, solar cells, and other energy storage and conversion devices.

Page 11: 3D Imaging of Microstructural Evolution in SOFC Anodes

Further Applications

Epting et al., Adv. Funct. Mater., 22 555-560, 2012.

Eller et al., J. Electrochem. Soc., 158(8) B963-B970, 2011.

Chen-Wiegart et al., Electrochem. Comm., 21 58-61, 2012. Haibel et al.,J. Electrochem. Soc.,157(4) A387-A391, 2010.

PEM Fuel Cells

Ceramic Foams and Catalysts

Batteries

Petrasch et al., J. Quant. Spectrosc. Radiat. Transfer, 105 180–197, 2007.

Haussener et al., J. Heat Transfer, 132 023305 , 2009.

Page 12: 3D Imaging of Microstructural Evolution in SOFC Anodes

Chemical Composition Mapping

• X-ray absorption near edge structure (XANES)▫ Scanning sample

over a broader spectrum discerns chemical species.

• Technique also applicable to:▫ Battery electrodes▫ Super capacitors▫ Solar cells

G. J. Nelson, W. K. S. Chiu et al., Appl. Phys. Lett., 98 173109 , 2011.

Page 13: 3D Imaging of Microstructural Evolution in SOFC Anodes

Acknowledgements

• Energy Frontier Research Center on Science Based Nano-Structure Design and Synthesis of Heterogeneous Functional Materials for Energy Systems (HeteroFoaM Center) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0001061), Prof. Kenneth L. Reifsnider, Director.

• National Science Foundation Award CBET-1134052• Prof. Wilson K. S. Chiu, University of Connecticut• Prof. Anil Virkar, University of Utah• LENI, École Polytechnique Fédérale de Lausanne• Dr. Kyle Grew, Army Research Laboratory

Page 14: 3D Imaging of Microstructural Evolution in SOFC Anodes
Page 15: 3D Imaging of Microstructural Evolution in SOFC Anodes

Electrochemical Storage & Conversion

• Distinct arrangements of materials, phases, structures

• Functionally designed material systems

• Microstructure is critical to performance and reliability.

Li-Ion Batteries Solid Oxide Fuel Cells Dye-Sensitized Solar CellsJ.R. Wilson, S.B. Barnett et al., J. Power Sources, 196 3443–3447, 2011.

M. Graetzel, Nature, 414 338-344, 2001.G. J. Nelson, W. K. S. Chiu et al., ActaMaterialia, 60 3491–3500, 2012.

Page 16: 3D Imaging of Microstructural Evolution in SOFC Anodes

Basic Fuel Cell Operation

• Conversion of chemical energy to electrical energy.▫ H2 + ½ O2 H2O

• Anode: Oxidation

• Cathode: Reduction

• Electrolyte: Transfer of ions to complete reaction.

IonsFuel

- / +

Oxygen

Anode CathodeElectrolyte

e- e-

Page 17: 3D Imaging of Microstructural Evolution in SOFC Anodes

Major Types of Fuel Cells

• Classified by electrolyte:▫ Solid Oxide Fuel Cell▫ Molten Carbonate Fuel Cell▫ Phosphoric Acid Fuel Cell▫ Polymer Electrolyte Fuel Cell▫ Alkaline Fuel Cell

SOFC: O2-

MCFC: CO32-

PAFC: H+

AFC: OH-

PEMFC: H+

An. Ca.Electrolyte

700 °C – 600 °C

1000 °C – 600 °C

200 °C– 150 °C

200 °C– 50 °C

100 °C– 30 °C3A 3C

3A 3C

2A 2C

1A 1C

4A 4C

Anode Reaction (A) Cathode Reaction (C)

1 H2 + O2- H2O + CO2 + 2e-

CO + O2- CO2 + 2e-½O2 + 2e- O2-

2 H2 + CO32- H2O + 2e-

CO + CO32- 2CO2 + 2e-

½O2 + CO2 + 2e- CO32-

3 H2 2H+ + 2e- ½O2 + 2H+ + 2e-H2O

4 H2 + 2(OH)- H2O + 2e- ½O2 + H2O + 2e- 2(OH)-

Page 18: 3D Imaging of Microstructural Evolution in SOFC Anodes

SOFC Anode Degradation

• Electrode microstructural evolution causes substantial power loss.• Ni coarsening is a widely observed anode degradation mechanism.• 3D imaging captures microstructural morphology (shape and size)

and topology (network connectivity).

Page 19: 3D Imaging of Microstructural Evolution in SOFC Anodes

Dihedral Angle Measurement

• Iterative search of RVE identifies two-phase and three-phase boundaries.

• Spline interpolation between voxels determines local dihedral angle.

• A distribution of dihedral angles is calculated based on the local angles.

θNi

PoreYSZ

Ni

YSZ Pore

#/vol

G. J. Nelson, W. K. S. Chiu et al., Acta Materialia, 60 3491–3500, 2012.