16
3D PRINTING 1 3D Printing: A Curricular Hierarchy of Activities Abbie Brown, PhD East Carolina University I first saw 3D printers in action at the ISTE Conference in 2012 and at the National Technology Leadership Summit later that same year. I watched in fascination as printers that fit easily on a desk or table produced intricate objects (from chess pieces to models of Shinto Shrines) from spools of colored plastic filament. I had a vision of these devices in school settings, with students experimenting with 3D designs of their own, and tinkering with 3D printers to get them to work correctly to their own specifications. The 2014 higher education edition and the 2013 K12 education edition of the Horizon Report both showcase 3D printing as an important development in educational technology (New Media Consortium, 2014; New Media Consortium 2013), and reports of early adopters’ experiments with 3D printing as a classroom activity have been appearing regularly in the popular press and teaching practitioner literature (e.g. Aboufadel, 2014; John, 2014; Schaffhauser, 2013; Kharbach, 2013). Bell, Chiu, Berry, Lipson, and Xie (2014) articulate the possibilities for STEM related education more completely in the most recent edition of the Handbook of Research on Educational Communications and Technology, observing among other things that engineering as a practically applied activity offers students opportunities to gain understanding of scientific and mathematic concepts in context. Engineering

3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

  • Upload
    buiphuc

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      1  

3D  Printing:  A  Curricular  Hierarchy  of  Activities  

Abbie  Brown,  PhD  

East  Carolina  University  

 

I  first  saw  3D  printers  in  action  at  the  ISTE  Conference  in  2012  and  at  the  

National  Technology  Leadership  Summit  later  that  same  year.  I  watched  in  

fascination  as  printers  that  fit  easily  on  a  desk  or  table  produced  intricate  objects  

(from  chess  pieces  to  models  of  Shinto  Shrines)  from  spools  of  colored  plastic  

filament.  I  had  a  vision  of  these  devices  in  school  settings,  with  students  

experimenting  with  3D  designs  of  their  own,  and  tinkering  with  3D  printers  to  get  

them  to  work  correctly  to  their  own  specifications.  

The  2014  higher  education  edition  and  the  2013  K-­‐12  education  edition  of  

the  Horizon  Report  both  showcase  3D  printing  as  an  important  development  in  

educational  technology  (New  Media  Consortium,  2014;  New  Media  Consortium  

2013),  and  reports  of  early  adopters’  experiments  with  3D  printing  as  a  classroom  

activity  have  been  appearing  regularly  in  the  popular  press  and  teaching  

practitioner  literature  (e.g.  Aboufadel,  2014;  John,  2014;  Schaffhauser,  2013;  

Kharbach,  2013).  

Bell,  Chiu,  Berry,  Lipson,  and  Xie  (2014)  articulate  the  possibilities  for  STEM-­‐

related  education  more  completely  in  the  most  recent  edition  of  the  Handbook  of  

Research  on  Educational  Communications  and  Technology,  observing  among  other  

things  that  engineering  as  a  practically  applied  activity  offers  students  opportunities  

to  gain  understanding  of  scientific  and  mathematic  concepts  in  context.  Engineering  

Page 2: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      2  

activities  are  increasingly  used  in  K-­‐12  settings  to  teach  core  science  concepts  in  

context  (Bull  &  Garofalo,  2015).    

Furthermore,  working  with  3D  design  and  production  tools  may  help  

students  develop  their  spatial  ability.  Multiple  research  studies  and  reports  

published  between  2006  and  2015  suggest  that  spatial  ability  (the  capacity  to  

visualize  and  understand  relationships  of  width,  height,  depth,  and  distance  among  

objects),  and  spatial  reasoning  (the  ability  to  position  and  orient  oneself  within  an  

environment)  facilitate  academic  and  professional  participation  in  STEM  fields  

(Mayer,  2014;  Kopcha,  Otumfour  &  Wang,  2015).  A  2013  study  indicates  that  

focusing  on  the  development  of  spatial  ability  in  middle  school  may  increase  an  

individual’s  later  opportunities  for  success  in  creative  and  scholarly  achievements  

(Kell,  Lubinski,  Benbow,  &  Steiger,  2013).    

It  is  also  interesting  to  note  that  job  advertisements  requiring  workers  with  

3D  printing  skills  increased  1,834%  in  four  years  and  103%  between  August  of  

2013  and  August  of  2014  (Columbus,  2014;  Zito  Rowe,  2014).  3D  printing  and  

additive  manufacturing  skills  were  requirements  for  35%  of  the  advertisements  for  

engineering  jobs  posted  in  a  thirty-­‐day  period  in  the  fall  of  2014  (Zito  Rowe,  2014).    

The  attention  3D  printing  currently  draws,  combined  with  the  possibility  of  

its  serving  to  facilitate  STEM  activities  and  potentially  provide  young  people  

opportunities  to  develop  beneficial  spatial  ability,  is  reason  enough  to  explore  the  

technology’s  potential  as  a  learning  tool.  Before  the  technology  can  be  broadly  

disseminated,  applied  to  other  subjects,  or  researched  in  greater  depth,  though,  

practitioners  must  develop  a  greater  understanding  of  3D  printing  generally  and  

Page 3: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      3  

discover  how  best  to  support  skill  acquisition  in  the  processes  related  to  desktop  

fabrication.  

Conceptually,  3D  printing  technology  is  relatively  easy  to  understand.  

However,  to  make  truly  useful  recommendations  on  how  to  apply  this  technology  in  

the  classroom,  one  requires  direct  experience  with  the  hardware  and  software.  I  

conducted  a  year-­‐long  study  in  which  I  engaged  in  3D  printing  activity  in  order  to  

determine  how  to  facilitate  and  support  skill  building,  concept  attainment,  and  

increased  confidence  with  its  use  among  teachers.  As  an  educational  technology  

specialist,  I  sought  to  become  a  member  of  the  3D  printing  community  in  order  to  

serve  as  a  bridge  between  it  and  the  education  community.  A  more  complete  report  

of  this  study  and  its  methodology  is  scheduled  to  appear  in  an  upcoming  issue  of  the  

journal,  TechTrends  (Brown,  in  press).    

  To  gain  a  greater  understanding  of  how  3D  printing  works  and  how  it  might  

be  practically  applied  within  instructional  settings,  I  employed  the  fieldwork  

method  of  research.  As  defined  by  Wolcott  (2005),  fieldwork  is,  “a  form  of  inquiry  in  

which  one  immerses  oneself  personally  in  the  ongoing  social  activities  of  some  

individual  or  group  for  the  purposes  of  research,”  (page  4).  Wolcott  states,  

“fieldwork  is  characterized  by  personal  involvement  to  achieve  a  level  of  

understanding  that  will  be  shared  with  others,”  (2005,  page  58).    

Obtaining  Hardware  and  Software  

  I  became  interested  in  3D  printing  through  exposure  to  the  process  at  

professional  meetings  such  as  the  National  Technology  Leadership  Summit  and  the  

ISTE  conference.  What  I  had  seen  at  these  conferences  and  read  about  in  the  

Page 4: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      4  

popular  press  inspired  me  to  consider  how  these  tools  might  be  used  to  promote  

learning  in  classroom  settings.    It  was  something  I  discussed  at  length  at  university,  

college  and  department  meetings  with  anyone  who  would  listen.  Apparently,  I  could  

not  go  more  than  ten  minutes  in  any  meeting  on  campus  without  mentioning  digital  

printing  and  how  great  it  would  be  for  us  to  have  access  to  a  digital  printer  on  

campus  (Brown,  in-­‐press).  My  college  administration  heard  my  plea  and  was  able  to  

find  one-­‐time  funding  to  purchase  a  small  3D  printer  and  print  media.  I  specified  a  

Cube  2  printer  from  3D  Systems,  Inc.  because  it  received  good  reviews  for  ease-­‐of-­‐

use  and  reasonable  price;  this  was  something  a  school  district  could  afford.  Software  

purchases  were  not  necessary:  a  variety  of  free  CAD  programs  were  available  at  the  

time,  which  seemed  both  suitable  to  the  task  and  most  likely  to  be  adopted  in  school  

settings.  The  two  programs  used  at  the  outset  of  the  study  were  Blender  (Blender  

Foundation,  2013),  and  3DTin  (Lagoa,  2010).    It  should  be  noted  that  software  that  

facilitates  the  process  of  the  creating  3D,  printable  images  has  become  significantly  

easier  to  use  in  the  past  two  years.  I  currently  prefer  123D  apps  developed  by  

Autodesk  and  freely  available  for  tablet  devices,  and  Google’s  SketchUp  software,  

which  can  be  mastered  relatively  quickly  and  are  attractive  to  younger  students  wit  

little  or  no  computer  expertise.    

Print  Trials,  Design  Experiments,  and  Engineering  Tests  

The  research  results  revealed  among  other  things  a  predictable  sequence  of  

events  in  the  3D  printing  experience  that  mirrors  the  sequence  of  events  observed  

during  the  early,  mass  adoption  of  desktop  publishing  software,  including  a  

transition  from  “reproduction”  to  genuinely  unique  expression.  In  3D  printing’s  case  

Page 5: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      5  

the  sequence  starts  with  fabricating  designs  rendered  by  experts  and  gradually  

transitioning  to  the  creation  of  unique  (and  often  less  impressive-­‐looking)  designs.    

However,  the  transition  to  the  creation  of  unique  designs  is  not  guaranteed;  a  series  

of  instructional  scaffolds  are  required  to  ensure  development  of  both  skill  and  

confidence  among  most  learners.  An  example  of  this  type  of  scaffolding  is  the  

importance  of  discussing  the  effort  necessary  in  creating  a  unique  design  and  

recognition  of  the  intellectual  property  rights  applied  to  existing  designs.  

Print  Trials  

  Every  time  an  object  is  fabricated  using  a  3D  printer  it  may  be  considered  a  

“print  trial.”  The  act  of  producing  an  object  using  a  3D  printer  is  at  present  a  

complicated  task  with  a  number  of  potential  pitfalls  that  may  cause  a  failure  in  the  

process.  The  CAD  file  must  be  prepared  for  printing  correctly,  and  the  printer  must  

be  properly  calibrated  and  prepared.  In  the  case  of  the  Cube  2  printer,  this  includes  

preparing  the  print  plate  properly  to  receive  the  print  medium  by  applying  a  thin  

film  of  glue  to  its  surface  and  ensuring  the  print  medium  is  properly  installed.  The  

purpose  of  a  print  trial  is  to  demonstrate  proficiency  with  the  technology  itself:  

preparing  the  digital  file  and  operating  the  printer.  

I  began  print  trials  by  printing  files  that  had  been  made  publicly  available  on  

the  Web.  My  first  print  trial  was  a  Chinese  dragon  (see  Figure  1),  obtained  from  the  

Stanford  3D  Scanning  Repository  (Stanford  University  Computer  Graphics  

Laboratory,  2013).  According  the  website,  “The  purpose  of  this  repository  is  to  

make  some  range  data  and  detailed  reconstructions  available  to  the  public,”  (2013).  

The  dragon  model  is  highly  detailed,  visually  pleasing,  and  iconic  in  that  most  

Page 6: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      6  

people  recognize  it  as  a  popular  artistic  motif,  all  of  which  was  taken  into  

consideration  when  selecting  it  for  the  first  print  trial.  The  dragon  model  was  

printed  numerous  times  during  the  year;  I  experimented  with  printing  different  

sizes  of  the  dragon,  ranging  from  one  inch  to  three  inches  in  height,  in  order  to  see  

how  changing  size  affected  print  fidelity  and  structural  integrity;  it  was  the  object  

printed  at  two  public  demonstrations  of  3D  printing  at  the  university;  and  copies  of  

the  dragon  were  presented  to  my  department  chair  and  college  dean  as  3D  print  

examples  they  keep  on  display  in  their  offices  (Brown,  in  press).    

 

 

Figure  1.  A  print  trail  of  the  Stanford  dragon  

  Print  trials  are  an  important  first  step  in  developing  3D  printing  proficiency.  

They  provide  opportunities  to  gain  skill  and  confidence  with  the  process  of  3D  

printing.  Once  a  reasonable  amount  of  skill  and  confidence  is  achieved,  however,  

print  trials  themselves  become  relatively  simple  exercises  in  putting  the  hardware  

through  it  paces.  Creative  activity  begins  with  design  experiments  (Brown,  in  press).  

Design  Experiments  

Page 7: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      7  

  A  design  experiment  is  a  print  trial  of  a  uniquely  developed  CAD  file.  As  

opposed  to  a  print  trial  that  begins  with  a  CAD  file  created  by  another  person  or  

group,  the  design  experiment  begins  with  the  development  of  a  unique  object  

rendered  using  CAD  software.    The  purpose  of  a  design  experiment  is  to  

demonstrate  proficiency  with  CAD  software  and  three  dimensional  patterning  as  

well  as  operating  the  3D  printer.    

During  the  study  I  encountered  two  possible  methods  of  designing  a  unique  

object:  create  the  object  “from  scratch”  (starting  with  nothing),  or  modify  existing  

objects  to  create  a  unique  object.  An  example  of  a  design  experiment  modifying  

existing  objects  is  the  ring  tool  on  the  cubify.com  website  

(http://www.cubify.com/en/Store/App/GQ63O723UR  ).  The  ring  tool  is  a  Web  

application  that  allows  one  to  create  a  wearable  ring  using  a  variety  of  ready-­‐made  

parts  including  basic  ring  shapes  and  decorative  objects  (symbols  and  letters)  that  

can  be  added  to  a  ring  shape.  One  can  change  the  sizes  of  the  ring  shape  and  each  of  

the  decorative  objects.  I  used  the  ring  tool  to  create  a  signet  ring  with  my  

university’s  initials  and  a  symbol  that  references  our  athletic  team  mascot  on  the  

surface  (Figure  2).  

 

Figure  2.  A  ring  created  using  a  Web  application  

Page 8: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      8  

  Engaging  in  a  design  experiment  in  which  one  creates  the  entire  object  on  

one’s  own,  using  no  pre-­‐existing  objects,  was  for  me  both  satisfying  and  humbling.  It  

was  deeply  satisfying  to  develop  and  print  a  unique  object,  but  it  was  humbling  to  

realize  how  much  effort  and  skill  is  involved  in  creating  something  sophisticated  

and  aesthetically  pleasing.  The  best  I  was  able  to  do  was  create  a  treasure  chest  (see  

Figure  3).  

 

Figure  3.  A  treasure  chest  design  produced  by  the  author  

  Design  experiments  provide  opportunities  for  both  creativity  and  

technological  skill  development.  Creating  unique  structures  using  CAD  software  and  

printing  them  requires  considerable  mental  effort  and  time.  Draft  and  revision  is  an  

important  part  of  the  design  experiment  process.  Once  one  has  sufficient  experience  

with  design  experiments  one  can  apply  one’s  ability  to  create  unique  objects  to  

engineering  challenges  (Brown,  in  press).  

Engineering  Tests  

  An  engineering  test  is  a  design  experiment  applied  to  a  manufacturing  or  

production  challenge.    It  encompasses  the  print  trial  and  design  experiment  activity  

in  that  a  unique  design  is  fabricated  using  a  3D  printer,  and  it  serves  as  the  solution  

Page 9: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      9  

to  an  actual  problem.  During  the  year,  two  university  colleagues  who  served  as  

study  subjects  completed  engineering  tests.    

One  particularly  elaborate  engineering  test  was  completed  toward  the  end  of  

the  study.  A  colleague  decided  to  design  and  produce  a  cover  for  his  Raspberry  Pi  

(an  inexpensive,  small  computer,  designed  to  facilitate  the  exploration  of  computing  

and  programming;  see  http://www.raspberrypi.org  ).  He  used  Google’s  SketchUp  

software  to  render  his  design  (and  in  the  process  showed  me  how  to  export  .stl  files  

from  SketchUp).  The  case  is  two  individually  printed  pieces  and  print  trials  for  each  

piece  were  successful  overall  in  the  first  attempts  (see  Figure  4).  The  Raspberry  Pi  

fits  well  inside  the  case.  However,  the  two  pieces  used  a  post  and  hole  design  to  fit  

together  and  the  posts  and  holes  could  not  be  printed  as  precisely  as  required  (most  

if  not  all  desktop  3D  printers  currently  print  with  limited  precision);  the  holes  had  

to  be  clipped  from  the  print  allowing  the  top  piece  to  rest  on  the  bottom  piece  while  

holding  the  two  pieces  together  requires  something  like  a  rubber  band  wrapped  

around  both.  The  initial  print  trial  works  well  enough  to  house  the  Raspberry  Pi  as  it  

sits  on  a  desk,  but  given  extra  time  my  colleague  expressed  interest  in  trying  to  

modify  the  design  so  that  the  two  pieces  held  to  each  other  (Brown,  in  press).  

 

Figure  4.  A  case  designed  to  house  a  Raspberry  Pi  unit  

Page 10: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      10  

Engineering  tests  take  design  experiments  to  different  level  by  applying  the  

design  and  print  processes  to  an  actual  problem  that  requires  taking  scale  into  

consideration  and  predicting  how  the  printed  object  will  interact  with  other  objects.  

Each  print  activity  may  be  considered  a  problem-­‐based  learning  event.  The  

complexity  of  the  problem  increases  from  print  trial  in  which  the  problem  is  to  

make  the  hardware  and  software  replicate  an  existing  design;  to  design  experiment  

in  which  the  problem  is  to  make  the  hardware  and  software  produce  a  unique  

design;  to  the  engineering  test  in  which  the  problem  is  to  get  the  hardware  and  

software  produce  a  unique  design  that  addresses  a  real  need  (Figure  5).    

 

 

Figure  5:  Hierarchy  of  3D  Printing  Activity

 

Discussion  

  Although  the  activities  are  organized  hierarchically  in  Figure  5,  each  is  an  

important  learning  experience.  The  print  trials  provide  instruction  on  the  

fabrication  process  specifically,  maintaining  focus  on  the  mechanical  aspects  of  

volumetric  printing.    The  design  experiments  provide  instruction  on  the  

Page 11: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      11  

development  process,  splitting  focus  between  volumetric  imaging  and  volumetric  

printing.  The  engineering  tests  provide  instruction  on  the  process  of  manufacturing  

to  address  a  real  need;  distributing  focus  among  analysis,  design,  volumetric  

imaging  and  volumetric  printing.  

  It  was  observed  during  the  study  that  print  trials  serve  a  secondary  function;  

the  use  of  sophisticated  objects  (either  those  designed  by  experts  or  scans  made  of  

sculptural  art)  offered  an  engaging  introduction  to  3D  printing  for  people  unfamiliar  

with  its  processes.  Though  print  trials  lack  the  creative  and  problem-­‐solving  

components  of  design  experiments  and  engineering  tests,  they  serve  as  highly  

motivating  illustrations  of  the  printer’s  capabilities.  For  example,  the  Raspberry  Pi  

case  engineering  test,  though  a  far  more  intricate  and  creative  activity  overall,  did  

not  produce  an  object  as  visually  arresting  and  engaging  as  the  Chinese  dragon  print  

trial.  Print  trials  can  show  off  the  printer’s  abilities  to  students  who  have  not  yet  

engaged  in  volumetric  imaging  and  printing  process,  and  the  prints  themselves  are  

useful  examples  of  what  can  be  achieved  with  the  available  hardware  (Brown,  in  

press).  

  For  instructional  purposes  in  K-­‐12  settings,  print  trials,  design  experiments  

and  engineering  tests  are  probably  the  appropriate  experiences  and  the  hierarchy  is  

based  on  the  complexity  of  each  activity.  In  an  advanced  instructional  setting,  for  

example  a  post-­‐secondary  engineering  program,  a  fourth  3D  printing  activity  might  

be  included:  development  of  3D  printers.  Engineering  students  may  well  be  involved  

in  the  design  and  production  of  the  printing  devices  themselves.  In  this  type  of  

setting,  the  activities  may  form  an  iterative  cycle  of  developing  printer  technology;  

Page 12: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      12  

print  trials;  design  experiments;  and  engineering  tests.  The  results  of  the  trials,  

experiments  and  tests  would  then  lead  to  revision/refinement  of  the  printing  device  

designs  (Brown,  in  press).  

 

Figure  6.  Iterative  model  of  3D  printing  activity  for  engineering  students  

 

Understanding  the  differences  among  each  of  the  3D  printing  activities  

identified  in  this  study  may  help  educators  make  better  use  of  3D  printing  for  

instructional  purposes.  Advocating  and  supporting  the  development  of  makerspaces  

in  schools  and  libraries,  and  encouraging  STEM  activity  through  the  use  of  3D  

printers  is  popular  at  the  present  time.  What  seems  to  be  missing  at  the  moment  is  a  

curriculum  that  organizes  the  3D  printing  activities  in  a  manner  that  helps  teachers  

and  instructors  design  and  facilitate  structured  learning  events.  In  addition  to  more  

elemental  curricular  concerns  such  as  vocabulary  and  concept  attainment  in  which  

critically  important  3D  printing  vocabulary  includes:  additive  manufacturing,  CAD  

(Computer  Aided  Design),  fabrication,  makerspace,  mesh,  Standard  Tessellation  

Page 13: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      13  

Language,  stereolithography,  volumetric  imaging,  and  volumetric  printing,  and  

critically  important  concepts  include  digitally  generating  an  object  mesh  and  

“slicing”  a  design  in  preparation  for  printing,  the  hierarchical  and  iterative  models  of  

3D  printing  activities  may  provide  a  starting  point  for  the  development  of  a  more  

complete  and  advanced  curriculum  (Brown,  in  press).  

Conclusion  

  This  study  is  limited  to  my  trial-­‐and-­‐error  experiments  and  observations  

over  a  limited  amount  of  time.  I  may  hope  that  this  report  of  my  3D-­‐printing  

fieldwork  provides  some  insight  into  volumetric  imaging  and  printing  in  a  specific  

place  and  time,  but  care  must  be  taken  in  generalizing  the  results  to  the  larger  

community  of  educators  and  students.  Technological  advances  are  occurring  rapidly  

in  the  3D-­‐printing  and  additive  manufacturing  world  and  much  has  changed  since  

my  formal  study  was  concluded.  Furthermore,  organizations  focused  on  education  

and  the  public  good  have  recently  developed  and  implemented  3D  imaging  and  

printing  initiatives  that  offer  exciting  opportunities  for  classroom  participation.  For  

example,  see  The  Smithsonian  Institution’s,  X-­‐3D  project  at  http://3d.si.edu  

(Smithsonian  Institution,  20125).  Further  research  is  certainly  recommended.  

  For  updates  on  3D  printing  technology,  please  see  my  Flipboard  magazine:  

Virtual and Real: Digital 3D at http://flip.it/4S6R4 or use the QR code, below:

Page 14: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      14  

References  

Aboufadel,  E.  (2014).  3D  Printing  the  MAA  Logo’s  Icosahedron.  MAA  Focus.  7-­‐8.  

Anderson,  C.  (2012).  Makers:  The  new  industrial  revolution.  New  York:  Crown  

Business  

Blender  Foundation.  (2013).  Blender.  Retrieved  from  http://www.blender.org  

Bull,  G.,  Chiu,  J.,  Berry,  R.,  Lipson,  H.,  &  Xie,  C.  (2014).  Advancing  Children’s  

Engineering  Through  Desktop  Manufacturing.  Handbook  of  research  on  

educational  communications  and  technology.  Spector,  J.M.,  Merrill,  M.D.,  Elen,  

J.  &  Bishop,  M.J.  Eds.  NY:  Springer.  pp  675-­‐688  

Bull,  G.  &  Garofalo,  J.  (2015).  Technologies  to  Support  Engineering  Education.  In,  

Spector,  M.  (Ed.),  The  SAGE  encyclopedia  of  educational  technology.  (Voume  2,  

pp.  739-­‐741).  Thousand  Oaks,  CA:  SAGE  Publications.    

Brown,  A.  (in  press).  3D  Printing  in  Instructional  Settings:  Identifying  A  Curricular  

Hierarchy  of  Activities.  TechTrends.  

Columbus,  L.  (2014).  Demand  for  3D  Printing  Skills  is  Accelerating  Globally.  Forbes.  

Retrieved  from  

http://www.forbes.com/sites/louiscolumbus/2014/09/15/demand-­‐for-­‐3d-­‐

printing-­‐skills-­‐is-­‐accelerating-­‐globally/  

Doctorow,  C.  (2010).  Makers.  Tor  Books.  

Gershenfeld,  N.  (2005).  Fab:  The  coming  revolution  on  your  desktop  –  from  personal  

computers  to  personal  fabrication.  New  York:  Basic  Books.    

Hlubinka,  M.,  Dougherty,  D.,  Thomas,  P.,  Chang,  S.,  Hoefer,  S.,  Alexander,  I.,  &  

McGuire,  D.  (2013).    Makerspace  playbook:  School  edition.  Makerspace.com:  

Page 15: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      15  

Maker  Media.  Retrieved  from:  http://makerspace.com/wp-­‐

content/uploads/2013/02/MakerspacePlaybook-­‐Feb2013.pdf  

John,  M.  (2014).  How  3D  printing  is  changing  the  shape  of  lessons.  BBC  News,  

Business.  Retrieved  from  http://www.bbc.com/news/business-­‐26871084  

Kharbach,  M.  (2013).  Importance  of  3D  Printing  in  Education.  Educational  

technology  and  mobile  learning.  Retrieved  from  

http://www.educatorstechnology.com/2013/03/importance-­‐of-­‐3d-­‐printing-­‐

in-­‐education.html  

Kell,  H.J.,  Lubinski,  D.,  Benbow,  C.P.,  &  Steiger,  J.H.  (2013).  Creativity  and  Technical  

Innovation:  Spatial  Ability’s  Unique  Role.  Psychological  science,  24(9).  1831-­‐

1836.  

Kopcha,  T.J.,  Otumfour,  B.A.  &  Wang,  L.  (2015).  Effects  of  Spatial  Ability,  Gender  

Differences,  and  Pictorial  Training  on  Children  Using  2-­‐D  and  3-­‐D  

Environments  to  Recall  Landmark  Locations  From  Memory.  Journal  of  

research  on  technology  in  education,  47(1).  1-­‐20.  

Lagoa.  (2010).  3DTin.  Retrieved  from  http://www.3dtin.com  

Libow  Martinez,  S.  &  Stager,  G.S.  (2014).  The  Maker  Movement:  A  Learning  

Revolution.  Learning  and  Leading  with  Technology,  May  2014.  Pages  12-­‐17.  

Lincoln,  Y.S.,  &  Guba,  E.G.  (1985).  Naturalistic  inquiry.  Sage  Publications.  

Lipson,  H.  &  Kurman,  M.  (2013).  Fabricated:  The  new  world  of  3D  printing.  Wiley.  

Mayer,  R.E.  (2014).  Computer  games  for  learning:  An  evidence-­‐based  approach.  

Cambridge,  MA:  The  MIT  Press.  

Page 16: 3D printing Brown ISTE 2015 · PDF file3DPRINTING# # 3# discoverhow#best#tosupport#skill#acquisitionintheprocessesrelatedtodesk top fabrication.# Conceptually,#3Dprinting#technology#

3D  PRINTING      16  

New  Media  Consortium.  (2013).  Horizon  report:  2013  K-­‐12  education  edition.  

Austin,  TX:  New  Media  Consortium.  Retrieved  from:  

http://www.nmc.org/pdf/2013-­‐horizon-­‐report-­‐k12.pdf  

New  Media  Consortium.  (2014).  Horizon  report:  2014  higher  education  edition.  

Austin,  TX:  New  Media  Consortium.  Retrieved  from:  

http://www.nmc.org/pdf/2014-­‐nmc-­‐horizon-­‐report-­‐he-­‐EN.pdf  

Plewa,  J.  (2013).  Volumetric  Imaging.  Slideshare  presentation.  Retrieved  from  

http://www.slideshare.net/casereader/volumetric-­‐imaging-­‐20370309  

Schaffhauser,  D.  (2013).  3D  Printing  in  the  Classroom:  5  Tips  for  Bringing  New  

Dimensions  to  Your  Students'  Experiences.  thejournal.com.  Retrieved  from  

http://thejournal.com/Articles/2013/12/11/3D-­‐Printing-­‐in-­‐the-­‐Classroom-­‐

5-­‐Tips-­‐for-­‐Bringing-­‐New-­‐Dimensions-­‐to-­‐Your-­‐Students-­‐

Experiences.aspx?Page=1  

Smithsonian  Institution.  (2015).  Smithsonian  X  3D.    Retrieved  from  http://3d.si.edu  

Stanford  University  Computer  Graphics  Laboratory.  (2013).  Stanford  3D  scanning  

repository.  Retrieved  from  https://graphics.stanford.edu/data/3Dscanrep/  

Stephenson,  N.  (1992).  Snow  crash.  New  York:  Bantam  Books  

Wolcott,  H.F.  (2005).  The  art  of  fieldwork,  2nd  edition.  Lanham,  MD:  Altamira  Press.  

Zito  Rowe,  A.  (2014).  Demand  for  3D  Printing  Skills  Soars.  Wanted  analytics:  Global  

analytics  for  the  talent  marketplaces.  Retrieved  from  

https://www.wantedanalytics.com/analysis/posts/demand-­‐for-­‐3d-­‐printing-­‐

skills-­‐soars