18
1 Integrity Service Excellence 3D Textile PMC Damage Evolution: Effects of Material State & Morphology Variation David Mollenhauer, Rick Hall, Tim Breitzman AFRL/RXCC Mul:Scale Structural Mechanics & Prognosis Overview AFOSR PM: Dr. David Stargel 22 July 2013

3D Textile PMC Damage Evolution - APAN Community · 1 Integrity ! Service ! Excellence 3D Textile PMC Damage Evolution: Effects of Material State & Morphology Variation David&Mollenhauer,&RickHall,&

Embed Size (px)

Citation preview

1

Integrity « Service « Excellence

3D Textile PMC Damage Evolution: Effects of Material State & Morphology Variation

David  Mollenhauer,  Rick  Hall,  Tim  Breitzman  -­‐  AFRL/RXCC  

Mul:-­‐Scale  Structural  Mechanics  &  Prognosis  Overview  

AFOSR  PM:    Dr.  David  Stargel  22  July  2013  

2

•  Project  Timeline  •  Project  Objec:ves  •  PMC  “Scales”    •  Overview  of  Tasks  •  Details  of  Tasks  •  Collabora:ve  Possibili:es  

Outline

3

Three  –  Year  Effort  •  Scheduled  to    begin  in  October  2012  •  Unfortunately,  funding  did  not  arrive  un:l  June  2013  

•  Sequestra*on  related  issues  

•  This  presenta*on  is  an  outline  of  what  was  proposed  

Project Timeline

4

•  Develop  knowledge  of  effects  of  geometric  &  material  state  variability  on  strength  &  damage  in  3D  tex:le  composites  •  Geometric:    fiber  volume  frac*on  &  direc*on,  tow  &  fabric  varia*ons  

•  Material  State:    resin  cure  extent  &  distribu*on    

•  Develop  an  integrated  set  of  advanced  simula:on  tools  to  address  the  varia:ons  of  interest  •  Micro-­‐scale  &  tow-­‐scale  variability  •  Mul*-­‐scale  Damage  evolu*on  •  Advanced  chemo-­‐mechanical  simula*on  method  

Project Objectives

Goal:    predic:ve  tools  to  capture  variability  and  its  effects  in  PMCs  

5

   “Scales”  in  PMCs  

Atomistic/Molecular

Fiber/Matrix “Micro-Scale”

Laminate/Tow

6

•  Task  1:    Tow-­‐Level  Material  Property  Varia:on  •  Experimental  quan*fica*on  of  varia*ons  of  interest  at  the  micro-­‐scale  and  tow-­‐level  (also  at  lamina-­‐level)  

•  Task  2:    Tow-­‐Level  Morphology  Simula:on  •  Enhance  exis*ng  tex*le  morphology  simula*on  tool  to  predict  tow-­‐level  morphology  varia*ons  and  es*mate  micro-­‐scale  varia*ons  

•  Task  3:    Mul:-­‐Scale  Damage  Simula:on  &  Quan:fica:on  •  Develop  simula*on  tools  to  address  micro-­‐scale  and  tow-­‐scale  damage  evolu*on  w/experimental  quan*fica*on  

•  Task  4:    Advanced  Mixture  Theory  Development/Applica:on  •  Development  of  simula*on  technique  for  resin  cure  extent  &  sizing  reac*ons  and  their  effects  on  sta*c  and  fa*gue  

Overview of Tasks

7

•  Purely  Experimental  Task  •  Manufacture/obtain  specimens  (laminates  and  3D  tex*les)  •  Tow-­‐level  cross-­‐sec*onal  shape  varia*ons  •  Fiber-­‐volume  varia*ons  (within  a  lamina  and/or  tows)  •  Resin  cure  extent  and  interphase  property  varia*ons  

Tow-Level Material Property Variations (Task 1)

3D Weaving Machine

8

•  Fiber-­‐Volume  and  Tow-­‐Morphology  Varia:ons  •  X-­‐ray  CT,  Microscopy,  and  LEROY  (3D  Automated  Serial  Sec*oning)  

Tow-Level Material Property Variations (Task 1)

9

•  Resin  Cure  Extent  and  Interphase  Quan:fica:on  •  Raman  Spectroscopy,  FTIR,  Nanoindenta*on,    

Tow-Level Material Property Variations (Task 1)

Nanoindentation

 

A1  

A2  

A3  

Reference  Peak  

FTIR

Raman

10

•  Tow-­‐level  and  es:mates  of  micro-­‐scale  varia:ons  •  Virtual  Tex*le  Morphology  Suite  (VTMS)  

•  VTMS  is  a  tex*le  simula*on  code  that  simulates  the  compac*on  of  fiber  tows  in  a  weave.    It  also  has  the  capability  of  simula*ng  micro-­‐scale  compac*on  

•  We  will  enhance  its  capability  for  hi-­‐fidelity  predic*ons  of  fiber  volume  &  direc*ons  within  a  tow  

•  Valida*on  against  data  from  Task  1  

Tow-Level Morphology Simulation (Task 2)

11

Tow-Level Morphology Simulation (Task 2)

Virtual  Tex:le  Morphology  Suite  

12

Tow-Level Morphology Simulation (Task 2)

Extract and compare Vf, tow shape, fiber direction

(techniques in VTMS yet to be developed)  

13

•  Simula:on  Tool  Development  &  Experimental  Quan:fica:on  •  Tow/Lamina-­‐level  homogenized  proper*es  from  mul*-­‐scale  micro-­‐level  simula*on  

•  Homogenized  proper*es  include  moduli  and  strength/fracture  parameters.    This  builds  on  previous  research  efforts.  

Multi-Scale Damage Sim./Quant. (Task 3)

60%  Vf  

14

Multi-Scale Damage Sim./Quant. (Task 3)

•  Simula:on  Tool  Development  &  Experimental  Quan:fica:on  •  Discrete  matrix  damage  evolu*on  simula*on  

•  AFRL  tool  proven  on  laminates  but  needs  extension  to  tex*le  damage  analysis.  

•  Experimental  determina*on  of  damage  via  X-­‐ray  CT  

15

Advanced Mixture Theory Dev./App. (Task 4)

•  Effects  of  intra-­‐tow/extra-­‐tow  interphase/interface  on  3D  tex:le  processing/residual  stresses,  damage  and  fa:gue  

•  Effects  of  sizing  diffusion/reac:on,  inhomogeneous  cure  

•  Chemical  shrinkage  and  CTE  mismatches  in    cons:tuents  

•  Model  (Hall):  evolving  interphase,  chemothermal  stresses  depend  on  local  fiber  frac:on  

Nanoindentation

 

A1  

A2  

A3  

Reference  Peak  

FTIR

Raman

Interphase/interface  effects  on  individual  filaments  distributed    within  &  near  tows  ρ (x)

Orders  of  magnitude  fa:gue  life  varia:on  vs  interphase  (Subramanian,  Reifsnider,  S*nchcomb  IJF  (1995).  

16

Advanced Mixture Theory Dev./App. (Task 4)

ααα

α

β

αββ

α

αα

ααα

ρ

ρλψψ

ρρµ

ρψ

ρ DIF

FT L ⋅+⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡−+−⎟

⎞⎜⎝

⎛∂∂

= ∑=

AR

NT

ee

M 1)( Stress (on α)

( )[ ] ( )αααα

αααααααα

β

βαβα

αααααα

α

αα

ρρµ

ρθηρρ

ψψρρρψ

ρρρ

λ

NPAP

v

trtr

)(

,,

1 ,

1,

α,gggg

N

g

T

eKi

ejK

eNj

egiNrgr

Rg

nM

unM

FFFFuAI

++−−+

⎥⎦

⎤⎢⎣

⎡−−

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

∂∂

+−= ∑=

Interactive force (on α)

Darcy’s law Elastic strain gradient, stress Gradient of potential energy differences

11 )( ,)( , −− ==⎟⎠

⎞⎜⎝

⎛∂

∂= γγ

γγθγθγγγ

γγ

θψ nne

T

e dnd

dd UUNUUAF

FP

Change of thermal expansion

Stress relative to initial configuration

Change of chemical expansion

Convected reaction rate

Heat flow energy change

Chemical potential

Applicable  across  PMCs,  CMCs,  biomaterials  etc:  processing,  chemical  degrada:on,  diffusion-­‐reac:on  with  deforma:on  and  thermal  effects  

N solids/liquids/gases

17

•  John’s  Hopkins  Center  of  Excellence  on  Integrated  Materials  Modeling  •  Jointly  funded  through  AFOSR  and  RX  •  Especially  relevant  for  micro-­‐scale  damage  evolu*on  •  Nancy  So^os  UIUC  fiber-­‐tow  interface/interphase  property  characteriza*on  

•  Arif  Masud  UIUC,  K  Rajagopal  TAMU  •  Leverages  ongoing  collabora*on,  mul*scale  computa*on  &  damage      

•  RXC  (Structural  Materials  Division)  internal  projects  •  Micro-­‐structure  sta*s*cal  quan*fica*on  (Craig  Przybyla)  •  Mike  Uchic’s  work  with  LEROY  3D  Automated  Serial  Sec*oning  

•  AFOSR  funded  Lab  Tasks  with  RXCC  •  Mul*-­‐scale  Modeling  of  Fracture  Networks  in  Composite  SubComponents  (PM  -­‐  Fariba  Fahroo)  

Potential Collaborations

18

Questions