52
會議報告(會議類別:其他) 3GPP RAN1 #86 會議報告 出國人員:陳仁賢、李建民、顏嘉邦、朱祈欣、簡均哲、 汪海瀚、魏嘉宏、陳志軒、陳瓊璋 派赴國家:瑞典/哥特堡 會議期間:105 8 22 日至 105 8 26 報告日期:105 9 30

3GPP RAN1 #86 - std-share.itri.org.tw

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

會議報告(會議類別:其他)

3GPP RAN1 #86會議報告

出國人員:陳仁賢、李建民、顏嘉邦、朱祈欣、簡均哲、

汪海瀚、魏嘉宏、陳志軒、陳瓊璋

派赴國家:瑞典/哥特堡

會議期間:105年 8月 22日至 105 年 8月 26日

報告日期:105年 9月 30日

2

摘 要

本團隊出席在瑞典哥德堡舉辦的第三代合作夥伴計畫(3GPP) 無線存取網

路第 1工作組(RAN WG1,RAN1)#83會議,本次會議由“3GPP的歐洲友人(The

European Friends of 3GPP)”主辦,成員公司有 Alcatel-Lucent, Apple, BlackBerry,

Deutsche Telekom, Ericsson, Huawei, Intel, KPN, Motorola, Nokia, Orange,

Qualcomm, SIMAlliance, Sony, TeliaSonera, Telefonica, TIM, Telenor, Vodafone

等,共約有 600人參加。本團隊依規劃有 9位成員出席參與 RAN1相關議題之

討論。此行主要任務說明如下:

技術貢獻(Contributions):

此次會議本團隊共提出 8篇技術貢獻。

3GPP 長期演進技術升級版(LTE-Advanced)標準進展:

此次會議有第 14版(Release 14, R14)相關技術的討論。包括:

新無線存取技術(New radio access technology, NR)

即為 5G的新研究項目(Study Item, SI),又分為以下幾個項目

新波形(New Waveform)

多重存取(Multiple access, MA)機制

實體層參數與訊框架構(Numerology and frame structure)

通道編碼(Channel Coding)

調變(Modulation)

多天線機制(Multiple Antenna Scheme)

初始接取及移動管理(Initial Access and Mobility)

多點協調運作再增強 (Further enhancements to coordinated multi-point

operation, FeCoMP)

增強版長程演進通話技術(Enhancements of VoLTE)

增強型授權頻帶輔助之非授權頻帶存取技術(Enhanced Licensed-Assisted

Access to Unlicensed Spectrum, eLAA)

基於邊緣連結技術支援車對車服務(Support for V2V services based on LTE

3

sidelink)

基於長程演進技術之車間普及通訊服務(LTE-based V2X Services, V2X)

全維度多重輸入多重輸出增強(Enhancements on Full-Dimension MIMO for

LTE, eFD-MIMO)

下行多用戶疊加傳輸(Downlink multiuser superposition transmission for LTE,

MUST)

增強型多媒體廣播多播服務增強(eMBMS enhancements for LTE)、探測參考

訊號載波交換(SRS carrier based switching for LTE)

室內定位再增強(Further indoor positioning enhancements for UTRA and

LTE)、上行容量增強(Uplink capacity enhancements for LTE)

LTE機器型態通訊再增強(Further enhanced MTC for LTE)

增強型窄頻段物聯網(Enhancements of NB-IoT)

長程演進技術的更短傳輸時間間隔和運行時間 (Shortened TTI and

processing time for LTE)

高速情境效能增強(Performance enhancements for high speed scenario)

這次會議本團隊主要參與R14的 eLAA以及第五代行動通訊技術之新無線

存取技術(NR)的波形與多存取機制技術等議題進行討論。此外,也參與許多標

準細節未完備的修訂與討論。本團隊的任務除了發表提案之外,同時需要關注

進階升級版長期演進技術(LTE-Advanced Pro, LTE-A Pro)標準制定和 NR的動

向及各家公司提案方向,以利掌握下世代通訊系統的趨勢和系統模擬(System

Level Simulation)平台的建構。

會議解說:

本次會議本團隊主要專注之議題包括 NR、eLAA、eFD-MIMO、以及增強

型窄頻段物聯網。摘要如下:

1. NR相關技術:

新波形

4

此議題主要探討如何設計 NR 的波形達到良好的頻帶抑制(Spectrum

confinement)並保有抗符元間干擾(Inter-symbol interference, ISI)的能力,

此次會期各公司提出了各種波形在不同環境下的模擬數據。

多重存取機制

此議題主要探討如何設計 NR 的多重存取機制,在多重存取實體資源

(Multiple access physical resource)和多重存取機制特性(Multiple access

signature)上,透過隨機或是預先指定的搭配,達到更佳的系統吞吐量。

多天線傳輸機制

此議題主要探討與多天線傳輸相關的技術,除了在 LTE 就已經有的項

目: 通道狀態訊息(Channel State Information,CSI)的量測及回報、傳輸

機制(Transmission Scheme)、參考訊號(Reference Signal,RS)設計之外。

因應 NR 的多波束(Multiple-beams)場景,波束管理(Beam Management)

以及準同位(Quasi-Colocated,QCL)等兩個新議題也正被討論中。

2. eLAA:

本議題原本預定於上次會期結束,但因仍有很多重要議題尚未決議,因此

決議於本次會期再延續討論。並於本會期結束後正式結束了。

3. eFD-MIMO:

eFD-MIMO方面這次主要的討論重點包括 20/24/28/32天線埠的參考訊

號和碼本設計、如何降低波束成形傳輸的開銷、混合式(Hybrid)通道狀態訊

息參考訊號(CSI-RS)的通道狀態指標報告(CSI report)的設計以及基於解調

參考訊號(Demodulation Reference Signal, DMRS)的半開(semi-open)和開迴

路(open-loop)傳輸機制的討論。20/24/28/32天線埠的參考訊號設計方面大致

決定了如何組成不過詳細的天線埠編號和是否採用CDM-8仍需要進一步討

論。針對經波束成形的通道狀態訊息參考訊號(Beamformed CSI-RS)的降低

成本(overhead)方面,這次會期決定了兩種方式,一次性(one shot)和多次性

(multi-shot)的方法都獲得通過。碼本(codebook)的設計方面,因為可能的組

合數太多,每家公司的觀點都不一樣,花費了許多討論時間仍然沒有共識,

5

將透過電子郵件進一步的釐清哪些組合是必須而哪些是可以不必制訂的。

最後 Hybrid CSI-RS CSI report花了相當多的線上討論時間,最後確認了會

採用 Class A混合 Class B K=1的混合方式,至於是否會有其他的混合方式

則留待下次會議決定。

4. 增強型窄頻段物聯網(Enhancements of NB-IoT, eNB-IoT)

本工作項目規劃自 2016 年 8 月開始討論,預計於 2017 年 3 月完成 ASN.1

的審視並且將內容併入 R14的規格。該工作項目涵蓋 3GPP RAN1與 RAN2

的共同研究,RAN1主要針對提供 eNB-IoT用戶設備(User Equipment, UE)

支援單細胞之點對多點傳輸(Single Cell Point to Multi-point, SCPTM)的廣播

(Broadcast)訊息接收以及定位(Positioning)等功能進行設計。

6

目 錄

摘 要 .......................................................................................................... 2

一、會議名稱 ............................................................................................ 7

二、參加會議目的及效益 ........................................................................ 7

三、會議時間 ............................................................................................ 7

四、會議地點 ............................................................................................ 7

五、會議議程 ............................................................................................ 7

六、會議紀要 ............................................................................................ 9

七、心得與建議 ...................................................................................... 50

7

一、會議名稱

3GPP TSG RAN1#86 Meeting

二、參加會議目的及效益

參與在瑞典的哥特堡舉辦的 3GPP RAN1#86會議,本團隊主要關注的焦點

是 eLAA以及 NR。本團隊的任務除了發表提案之外,同時關注 LTE-Advanced

Pro 標準制定的動向及各家公司提案方向,以利掌握下世代通訊系統的趨勢和

系統模擬(System Level Simulation)平台的建構。具體特定關注的議程如下:

7.2 LTE RELEASE 14

7.2.1 Enhanced Licensed-Assisted Access to Unlicensed Spectrum

7.2.1.1 PUSCH design

7.2.1.2 SRS design

7.2.1.3 Channel access framework

7.3.1.4 Others

8.1 STUDY ON NEW RADIO ACCESS TECHNOLOGY

8.1.2 Waveform and frame structure for new radio interface

8.1.2.1 Waveform

8.1.2.2 Multiple access scheme

8.1.5 Multi-antenna scheme for new radio interface

三、會議時間

22 August. – 26 August., 2016

四、會議地點

Gothia Towers (Gothenburg, Sweden)

五、會議議程

RAN1 的會議議程如下(22 August. – 26 August., 2016):

8

9

六、會議紀要

1. 會議摘要

本次會議由“3GPP的歐洲友人(The European Friends of 3GPP)”主辦,成

員公司有 Alcatel-Lucent, Apple, BlackBerry, Deutsche Telekom, Ericsson, Huawei,

Intel, KPN, Motorola, Nokia, Orange, Qualcomm, SIMAlliance, Sony, TeliaSonera,

Telefonica, TIM, Telenor, Vodafone 等,共約有 600人參加。

台灣派員參與此次會議之公司/機構/學校有 CHTTL、ITRI、HTC、III、

MediaTek、ASUS、NTU等 7家 。

本次會議 E-UTRA (LTE/LTE-A)相關技術議題共有 15 個議程,包含 13 個

工作項目(Work Item, WI),2個研究項目(Study Item, SI)分別為:

Agenda Item 7.2.1 (WI): 授權頻帶輔助之非授權頻帶存取增強

(Enhanced Licensed-Assisted Access to Unlicensed Spectrum)

Agenda Item 7.2.2 (WI): 基於 LTE sidelink 之汽車對汽車服務支援

(Support for V2V services based on LTE sidelink)

Agenda Item 7.2.3 (WI): 基於 LTE系統的汽車對所有物體通訊的服務

(LTE-based V2X Services)

Agenda Item 7.2.4 (WI): LTE 系統下的全維度多重輸入多重輸出增強

(Enhancements on Full-Dimension (FD) MIMO for LTE)

Agenda Item 7.2.5 (WI): LTE 系統之下行多用戶疊加傳輸技術

(Downlink Multiuser Superposition Transmission for LTE)

Agenda Item 7.2.6 (WI): LTE 系統之增強型多媒體廣播多播服務增強

(eMBMS enhancements for LTE)

Agenda Item 7.2.7 (WI): LTE 系統下傳送探測參考訊號之載波切換(SRS

Carrier Based Switching for LTE)

Agenda Item 7.2.8(WI): UTRA 和 LTE 系統下的室內定位進一步增強

(Further Indoor Positioning enhancements for UTRA and LTE)

Agenda Item 7.2.9(WI): LTE 系統上行容量增強 (Uplink Capacity

Enhancements for LTE)

10

Agenda Item 7.2.10(WI): 機器型態通訊於 LTE 的進一步增強(Further

Enhanced MTC for LTE)

Agenda Item 7.2.11(WI): 窄頻段物聯網的增強 (Enhancements of

NB-IoT)

Agenda Item 7.2.12(WI):LTE 系統下的傳輸時間區間和處理時間縮短

(Shortened TTI and processing time for LTE)

Agenda Item 7.2.13(WI): 高速情境下的效能增強 (Performance

enhancements for high speed scenario)

Agenda Item 7.2.14(SI): 多點協作傳輸技術進一步增強研究(Study on

Further enhancements to Coordinated Multi-Point Operation)

Agenda Item 7.2.15(SI): VoLTE 的增強研究(Study on Enhancement of

VoLTE)

2. eFD-MIMO工作項目相關發展摘要

非預編碼的通道狀態訊息參考訊號(Non-precoded CSI-RS)的討論內容分為

兩部分,分別是 20/24/28/32天線埠要如何組成以及如降低通道狀態訊息參考訊

號(CSI-RS)的成本(overhead):

在這次的會期討論了 20/24/28/32天線埠(antenna port)要如何組成,主要的

考慮因素包括如何和先前版本的用戶設備(User Equipment, UE)共存以及配置

的彈性(可重複使用數目的多寡)等,對於 24/32埠(port)的 CSI-RS決定了由 8

天線埠的 CSI-RS 組成;20/28-port CSI-RS 方面,在上次會期考慮由 4 或是 8

天線埠的 CSI-RS 組成,這次決定會由 4 天線埠組成,至於 8 天線埠則需要再

討論。因為 20和 28不是 8的倍數,如果全部由 8天線埠組成勢必有資源浪費

或是要有特殊的配置方法;另一個思考方向是由 4和 8天線埠混合組成,如此

一來可以達到全功率傳輸(full power transmission),也有和既有 UE共用天線埠

可能性的好處,只是對 UE的複雜度可能會增加。

在全功率傳輸方面,由於天線埠增加到最多 32,因此 8 階分碼多工(Code

Division Multiplexing 8, CDM-8)也被提出討論,基本上大部分公司都同意支援

11

CDM-8,不過由於天線埠對應細節和 20/28 天線埠細節尚未確定,因此暫列為

工作假設(Working Assumption)。

詳細決議如下:

在降低 CSI-RS overhead方面,由於 R14 CSI-RS天線埠最多會達到 32,因

此如何有效的降低 overhead,同時又不會降低太多通道估測的精準度是一個相

當重要的問題,這次會期中大部分公司都認為在頻域降低 CSI-RS 的密度是一

個可行的方向,只是要固定間隔或是利用量測限制(Measurement Restriction)來

限制 UE量測範圍仍待討論,詳細決議如下:

經波束成形的通道狀態訊息參考訊號(Beamformed CSI-RS)方面主要討論

的內容關於非週期性(aperiodic)的 CSI-RS傳輸,這個機制的主要目的是減少針

Agreements:

• For {24, 32} ports, ∑k Mk ∈ {24, 32}, Mk = 8, where Mk is the same for all k

• For {20, 28} ports, ∑k Mk ∈ {20, 28}, Mk = 4, where, at least for CDM-2, Mk is the same for all k

• FFS whether Mk = 8 is also supported, and if so, whether Mk is the same or different for different k

for CDM-4

• FFS port indexing

• In Rel-14, CDM-2 and CDM-4 is supported.

• For CDM-2, port numbering in Rel-13 is reused in order to share CSI-RS with legacy UEs.

• FFS CDM-4 port numbering

Working Assumption:

• CDM-8 is supported for at least {24,32} port CSI-RS

– FFS CSI-RS aggregation and CDM mapping details

– FFS additional REs other than legacy CSI-RS RE

Agreement:

At least for Class A NZP CSI-RS with more than 16 CSI-RS ports:

• All ports in a CSI-RS resource are transmitted within the same subframe

– i.e. CSI-RS overhead reduction is done in the frequency domain

• CSI-RS density d ∈ {1,1/2, and at least one other value <= 1/3} RE/RB/port

– Other values of d are not precluded (e.g. 2/3, ¾ )

– FFS whether different ports in a CSI-RS resource may have different densities

• FFS PDSCH rate matching in the REs in PRBs with no CSI-RS ports within a group

– Opt-1: comb like transmission

– Opt-2: frequency domain measurement restriction

• FFS the detailed signalling design

12

對 UE個別的 beamformed CSI-RS的 overhead,在上次的會期中有兩種機制

機制一:非週期性的 CSI-RS只傳送一次來給 UE作量測。

機制二:讓 UE 在指定的啟動和釋放的期間做量測,可量測多次的

CSI-RS做平均。

在這次的會期針對兩種機制決議了詳細的步驟:

步驟 1:利用無線電資源控制(Radio Resource Control, RRC)配置 UE K

個 CSI-RS資源(resource)

步驟 2:從配置的 K個 CSI-RS resource 中挑選出 N個來啟動,被啟動

的 CSI-RS resource維持啟動直到被釋放為止。

步驟 3:機制一會從 K個 CSI-RS resource中挑出一個讓 UE做量測並

回報,機制二則是 UE會量測 N個 CSI-RS resource,並且回報其中一

個 CSI-RS resource的量測結果以及其對應的通道狀態訊息參考訊號資

源指標(CSI-RS Resource Index, CRI)。

至於啟動和釋放的告知方法將於下次的會期做決定,詳細決議如下:

13

Agreement:

Aperiodic CSI-RS

• Two-step NZP CSI-RS resource configuration:

– Step 1. RRC configuration with a newly defined Aperiodic CSI-RS-Resource-Config IE

• Without Subframe_config

• Configure a UE with K = {1, 2, .., 8} CSI-RS resources

– Step 2. Activation/release mechanism

• Activate N out of K CSI-RS resources per CSI process

– Note: Activation refers to down selection of N out of K CSI-RS resources

– Once activated, a CSI resource remains activated until released

– FFS: Whether N is always equal to K or the case where K=N is not precluded

» If N is always equal to K, step 2 is bypassed

• Choose at least one of the following alternatives for activation/release mechanism (TBD in

RAN1#86bis)

– Alt1. Using UL grant(s)

» FFS: Support for cross-carrier activation/release

– Alt2. Using MAC CE

– Other alternatives are not precluded

– FFS the values of X and Y, max value of N (or the value of N), how to signal N

• One out of N CSI-RS resources is selected via the UL-related DCI

– A UL grant carries a CSI request and indicates transmission of one CSI-RS resource if N>1 aperiodic

CSI-RS resources are activated for a CSI process for which the CSI is requested

• A CSI request is for one CSI-RS resource per CSI process

• Choose one out of the following alternatives for indicating transmission of 1 out N CSI-RS

resources (TBD in RAN1#86bis)

– Alt1. use code points from an existing DCI field to select 1 out N CSI-RS resources

– Alt2. Introduce additional bit(s) in DCI

– Note: The number DCI fields and number of code points for the combinations of

CSI process, CC, and CSI-RS resource indication are FFS

• Only PUSCH based A-CSI reporting is supported

• Aperiodic CSI-RS transmission is in the same DL subframe as the associated UL-related DCI

– FFS: Whether to CSI reference resource definition needs to change when aperiodic CSI-RS is used or

not

• Whether and, if needed, how to support CSI processing relaxation for aperiodic CSI-RS are TBD

• FFS: Possibility to support aperiodic CSI-RS with K=1 and trigger (using UL-related DCI carrying A-CSI

request) a subset of antenna ports.

14

在新增非週期性的 CSI-RS 傳輸之後,第一個遇到的問題就是要如何告知

UE非週期性 CSI-RS的存在來做速率匹配(rate matching),第二個問題就是非週

期性的 CSI-RS是否可以用來做準同位(Quasi-co-location, QCL)的用途,詳細決

議如下:

“Multi-shot” CSI-RS

• Two-step NZP CSI-RS resource configuration:

– Step 1. RRC configuration with a Rel-13 periodic CSI-RS-Resource-Config IE

• Configure a UE with K = {1, 2, .., 8} CSI-RS resources

– Step 2. Activation/release mechanism

• Activate N out of K CSI-RS resources per CSI process

– Note: Activation refers to transmission of N CSI-RS resources

– Once activated, a CSI resource remains activated until released

• Choose at least one of the following alternatives for activation/release mechanism (TBD in

RAN1#86bis)

– Alt1. Using UL grant(s)

» FFS: Support for cross-carrier activation/release

– Alt2. Using MAC CE

– Other alternatives are not precluded

– FFS the values of X and Y, max value of N (or the value of N), how to signal N

• CSI reporting

– N=1: CQI/PMI/RI is reported

– N>1: CRI (=0,1, …, N – 1) is reported along with CQI/PMI/RI associated with the reported CRI value

Overhead reduction for Class B – both for periodic and aperiodic CSI-RS

• Support CSI-RS frequency-domain density reduction for Class B

– All antenna ports of a single CSI-RS resource configuration can be transmitted every N PRBs

• N = 1 (existing CSI-RS design), 2, and >2

• FFS: Exact mechanism

15

Non-precoded CSI-RS的編碼簿(codebook)設計方面,這次原本的預定是要

決定天線陣列兩個方向的維度 (N1,N2)和過取樣因子 (oversampling factor)

(O1,O2)的配置,不過為了多支援 20/24/28/32天線埠下,光(N1,N2)可能的組合

數目就多達 19 種,如果搭配上兩種的(O1,O2)和 R13 中四種的配置就多達 100

多種 codebook需要設計,部分公司認為有些組合可能根本用不到只是增添設計

的複雜度,比較有爭議的部分包括是否支援一維的天線陣列以及(O1,O2)是否支

援(8,8)組合等。

一維的天線陣列在 R13有支援一種 16天線埠的組合,在 R14最多 32天線

埠的情況下,實際佈建是否真的會使用許多公司抱持存疑的態度。

(O1,O2)=(8,8)的情況根據部分公司的模擬結果,提供的效能增益相較於(8,4)

似乎並不高,因此許多公司認為不必要支援這個組合,只考慮(4,4)和(8,4)即可。

在會議的最後仍然無法做出結論,將藉由電子郵件來進行進一步的討論。

混合式(Hybrid) CSI-RS的通道狀態指標報告(CSI reporting)方面,觀察這次

各公司大部分均支持一個 CSI 程序(process)的作法,並且認為由 Class A 混合

Class B, K=1的機制最為適合,在這個機制下,長期通道訊息由 Class A的 i1

Agreement:

• A solution is to be selected from the following three alternatives for aperiodic ZP CSIRS resource indication

(TBD RAN1#86bis)

– Alternative-1: Aperiodic ZP CSIRS, dynamically indicated by a new common DCI.

• The common DCI is monitored in common search space.

– Alternative-2: Aperiodic ZP CSIRS, aperiodic ZP CSI-RS resource signaling field is introduced in DL

DCIs for all TMs.

– Alternative-3: Use the existing PQI states or increase the number of PQI states for TM10; no PDSCH

RM solution for other TMs

• In this case, aperiodic ZP CSIRS resource is not defined

• Definition of Aperiodic ZP CSIRS:

– For PDSCH rate matching on BF CSIRS due to aperiodic CSI-RS and/or multi-shot CSI-RS, an

aperiodic ZP CSIRS resource is indicated.

• Aperiodic ZP CSIRS resource configuration is defined without Subframe_config

• UE conducts PDSCH rate matching on aperiodic ZP CSIRS at the subframe when the DCI is

signaled.

• Study the impact of collision between EPDCCH RE and aperiodic CSI-RS

16

欄位回報,短期的通道訊息則由 Class B K=1的回報機制得知,藉此降低 CSI-RS

的 overhead 與 UE 的量測複雜度等,其中如果 UE 只支援 2 層(layer)的話,不

需要回報級別指標(Rank Indicator, RI),其餘情況需要回報 1位元(bit)的 RI,這

是因為 Class A 的 i1 欄位只是提供大致的波束群(beam group)訊息,根據

R1-166731的模擬結果發現 1 bit的 RI回報結果和回報實際 RI的效果差不多,

詳細決議如下:

在上次會期除了 Class A混合 Class B, K=1的組合外,另外還有許多種組合

被提出討論,目的或多或少都有著降低 UE 複雜度的想法。愛立信(Ericsson)則

是考慮到不同公司有不同混合方式的需求,於是提出採用 CSI process 對(pair)

Agreement

• Confirm the working assumption of hybrid CSI

• Further details on Mechanism 1

– Reporting content

• For the 1st eMIMO-Type (CLASS A), i1

(1) and x-bit RI

(1) are reported, while CQI

(1) and i2

(1)

are not reported

– If UE supports up to 2 layers, x=0

– If UE supports up to 8 layer, x=1 where RI(1)

={1, 3}

• For the 2nd

eMIMO-Type (CLASS B K=1), CQI(2)

, PMI(2)

, RI(2)

are reported

• Note: Superscript (y) represents the y-th eMIMO-Type, where y=1,2.

• FFS: Option for one eMIMO-Type to inherit RI reporting from another eMIMO-Type

– Working assumption: No inter-dependence between CSI calculations across two eMIMO-Types

– Reuse legacy CSI reporting mechanisms with the following refinement

– For PUCCH-based P-CSI

• Report i1(1)

and RI(1)

in one subframe

– FFS: Using either PUCCH format 2 or 3

• Periodicity of the CSI of 1st eMIMO-Type is an integer multiple of RI

(2) periodicity of the 2

nd

eMIMO-Type.

• Subframe offset of the 1st eMIMO-Type is defined relative to RI

(2) subframe offset of the 2

nd

eMIMO-Type.

– FFS: Whether subframe offset of the 1st eMIMO-Type can be fixed to 0

• Priority rule for collision handling is FFS.

– For PUSCH-based A-CSI

• FFS: what CSI(s) will be reported from UE when aperiodic CSI reporting is triggered

– Option 1: UE reports both CSI of 1st eMIMO-type and CSI of 2

nd eMIMO-type.

– Option 2: UE reports either one of the 2 eMIMO-types.

• CSI encoding/mapping mechanisms is FFS.

17

的概念,CSI process pair所能採用的回報類型不受限制,因此能夠支援所有可

能的混合類型,但是目前已經確定會支援一個 CSI process的 Class A混合 Class

B, K=1的機制,是否要支援其他混合方式仍沒有共識,最後有以下結論:

進階的(Advanced) CSI reporting 和干擾量測(Interference measurement)方面,

這次會期分配的討論時間比較少,因此並沒有各公司的提案討論,直接就聯合

提案進行討論,基本上 Advanced CSI reporting的設計精神就是增加回報的內容,

藉此得到更精確的 CSI 資訊,大致上的作法有增加 W1 的波束數目、codebook

Conclusion:

– Proposal I: For hybrid CSI with one CSI process, support CLASS B with K>1 CSI-RS resources for the

1st eMIMO-Type and CLASS B with K=1 CSI-RS resource for the 2

nd eMIMO-Type

– For the 1st eMIMO-Type, two options

• Option 1: CRI (without CQI/PMI/RI) is reported

• Option 2 (only support K=2): PMI assuming RI=1 for each of the two CSI-RS resources

are reported

– For the 2nd

eMIMO-Type

• CQI/PMI/RI are reported

– Working assumption: No interdependence in CQI calculation between 1st and 2

nd eMIMO-Types

• FFS: for option 1, dynamic CSI-RS resource configuration for the 2nd

eMIMO-Type

based on CRI reporting 1st eMIMO-Type.

– Proposal II:

– Hybrid CSI reporting with eMIMO-Type pairs is supported

• No restriction on the configuration for 1st and 2

nd eMIMO-Types

• UE supports eMIMO-Type pairs

• For TM9, different CSI-RS resources and/or CSI reporting configurations can be used

for PUCCH and PUSCH

• UE calculates one CSI report for only one eMIMO-Type of a pair at a time and one

eMIMO-Type at a time

• FFS: Define the period of CSI-RS associated with the 1st eMIMO-Type as N

times of the period of CSI-RS associated with the 2nd eMIMO-Type, where

N>1

• Configurable or fixed value of N needs to be specified

• Whether new dropping rules need to be specified

• Rel-13 CSI process configurations are supported

• A report for either eMIMO-type contains all Rel-13 CSI parameters

(CQI/PMI/RI/CRI)

– Study whether it is possible to simplify a combination, or to down select, between/within proposals I and

II

18

的線性組合以及 Ericsson 提出的波束的相位和振幅調整等方法,詳細決議如

下:

基於解調參考訊號 (Demodulation Reference Signal, DMRS)的開迴路

(open-loop)傳輸方面,這次決議了採用無線單元(Resource Element, RE)層的操作

來做 open-loop傳輸,但是詳細的傳輸機制仍沒有共識,將在下次會期做決定,

詳細決議如下:

Agreement:

• Specify CSI feedback enhancement with the following advanced CSI feedback framework:

– Reduced space (eigenvectors)/W1 is constructed based on one of the following alternatives (TBD

RAN1#86bis):

• Alt1. Orthogonal basis (e.g. orthogonal DFT matrix)

• Alt2. Non-orthogonal basis (e.g. Rel.13 Class A W1 for rank-1 and/or 2)

– Reduced space representation/W2 is to further combine selected beams

– Granularity of weighting(phase and/or amplitude) can be either wideband only or wideband/subband,

and is constructed based on one of the following alternatives (TBD RAN1#86bis):

• Alt1. Phase and amplitude

• Alt2. Phase-only weighting

– How the enhanced framework can be applicable for Class A and/or Class B eMIMO-Types is FFS

– FFS: How to handle the relationship between advanced CSI feedback and legacy CSI feedback

framework

• Companies are encouraged to provide results comparing the above alternatives, considering a mix of smaller

and larger numbers of ports within the following antenna port configurations

– {4,8,12,16,20,24,28,32} ports

– Focus on rank<=2 scenario MU-MIMO for evaluation

– Feedback overhead needs to be taken into account

– For {4,8,12,16, 20,24,28,32}-port scenario, companies are encouraged to compare their proposals to

dual-stage codebook enhancement with increased number of beams in W1

19

由於已經決定採用 RE層的操作來進行 open-loop傳輸,這時需要考慮的問

題就是要採用透明(transparent)或是非透明 (non-transparent)的作法,如果是

non-transparent,DMRS和資料的預編碼(precoding)可以不一樣,就不需要做任

何更動,相對的,如果採用 transparent,現有 DMRS就無法符合需求,需要有

新的 DMRS設計,因此會中做成以下結論:

3. 新無線存取技術

1-1. 波形

40GHz以下的波形設計

至少在 40 GHz 以下的載波頻率,對於增強型行動寬頻(Enhanced Mobile

Broadband, eMBB)和超高可靠性與低延遲通訊(Ultra-reliable and low-latency

communications, URLLC)這兩項服務,在下行和上行中,新無線存取技術的波

Agreement:

• Support both CLASS A and CLASS B with K≥1 CSI-RS resources for the eMIMO-Type of semi-open-loop

– For dual-stage codebook,

• RI, i1 and CQI reporting is supported for {CLASS A} and {CLASS B with K=1 and

8Tx/alternate 4Tx codebooks}

• FFS: reporting i11 and/or i12 for Class A codebooks

• CRI, RI, i1 and CQI reporting is supported for CLASS B with K>1

• FFS: reporting i1 and subsampled i2

• FFS: Hybrid CSI with semi-open-loop

• FFS: Reporting multiple CRIs for CLASS B K>1

– For single-stage codebook with 2 and 4 ports (CLASS B with K>1), CRI, RI and CQI are reported

– For single-stage codebook with 2 and 4 ports (CLASS B with K=1), RI and CQI are reported

• Support RE level transmitter operation on PDSCH for both CSI reporting and PDSCH transmission

– Down selection from the following transmission schemes in RAN1#86bis, including possible

combination

• Precoder cycling

• Tx diversity

• LD-CDD

• Layer Permutation

Conclusion:

RAN1#86bis: companies need to justify the need for introducing new DMRS pattern(s) to support

open-loop/semi-open-loop transmission scheme. Otherwise the proposal in R1-168048 is agreed.

20

形設計以循環字首正交分頻多工(Cyclic Prefix Orthogonal frequency-division

multiplexing, CP-OFDM)為基礎,並且可能伴隨著附加低峰均功率比

(Peak-to-Average Power Ratio, PAPR)技術,使得頻譜效能 Y大於 LTE系統(假設

LTE系統的百分比 Y為 90)。其它細節如下:

一、 頻譜效能 Y的定義為傳輸頻寬除以通道頻寬乘上 100%。

二、 RAN1 規範將會支持頻譜效能接近 100%。

三、 在新無線存取技術載波中沒有複雜度和延遲的限制下,RAN1 在下

行和上行的頻譜效能模擬可達到 98%。

四、 另外值得注意的是,附加的預處理技術在 CP-OFDM之前並不排除,

舉例來說,正交時間頻率空間調變(Orthogonal Time Frequency Space

Modulation, OTFS)。

對於新無線存取技術的其他服務,舉例來說,大量機器型態通訊(Massive

Machine Type Communication, mMTC), 額外的波形或許可以被使用。

另外當無線存取網路第四工作群組(Radio Access Network Working Group

#4, RAN4)在定義需求時,建議 RAN4 必須以支援基地台、用戶設備(user

equipment, UE)的頻譜效能高於 90%為目標,其中對於頻譜效能的規範必須考慮

到複雜度和延遲的限制。

而在頻帶中關於不同實體層參數(Numerology)的頻多工,在新無線存取技

術的上行和下行中是必須被支援的,至少從網路的觀點來看。其他的細節如下:

一、 希望頻譜抑制是以子頻帶為基礎是被指定的,而考慮到的需求為

甲、 傳送端頻帶內的散射和誤差向量幅度(Error vector magnitude,

EVM)的需求、

乙、 其他子頻帶干擾下的接收效能、

丙、 子頻帶的定義留待後續討論。

上述的頻譜抑制技術,以 RAN1的觀點而言,波形在傳送端和接收端是互

21

通的。

告知 RAN4以上的決議,另外

一、 RAN1 打算在波形技術上做更多的模擬,如果有新的進展將會告知

RAN4。

此次會議的相關決議內容如下:

Agreement:

• At least up to 40 GHz for eMBB and URLLC services, NR supports CP-OFDM based waveform with Y

greater than that of LTE (assuming Y=90% for LTE) for DL and UL, possibly with additional low PAPR/CM

technique(s) (e.g., DFT-S-OFDM, etc.)

– Y (%) = transmission bandwidth configuration / channel bandwidth * 100%

– RAN1 specification will support transmission bandwidth configuration corresponding to Y up to

approximately100%

– Some evaluations in RAN1 show that Y for a NR carrier can be up to 98% of the evaluated channel

bandwidths for both DL and UL without complexity and latency constraints [R1-166093]

– Note: additional pre-processing techniques on top of CP-OFDM are not precluded, e.g., OTFS

• Additional waveforms may be supported by NR for e.g. other services (e.g. mMTC)

• It is recommended that RAN4 should target to support eNB/UE with Y significantly higher than 90% when

defining the RAN4 requirements where the specification of Y should consider complexity and latency

constraints

• In-band frequency multiplexing of different numerologies is supported in NR for both DL and UL, at least

from the network perspective

– It is expected that spectrum confinement on sub-band basis is specified as requirements on

• Transmitter side in-band emission and EVM requirements

• Reception performance in presence of other-subband interferer

• The definition of sub-band is FFS

• From RAN1 perspective, spectral confinement technique(s) (e.g. filtering, windowing, etc.) for a waveform at

the transmitter is transparent to the receiver

• Inform RAN4 the above agreements

– RAN1 plans to perform more evaluations on waveform and will inform RAN4 with future updates, if

any

低 PAPR技術

至少在 40 GHz 的載波頻率以下,對於 eMBB 和 URLLC 這兩項服務的低

22

PAPR技術探討如下:

一、 建議上行傳輸支援 CP-OFDM伴隨著沒有指定的低 PAPR技術。

二、 從 RAN1規範的觀點,對於資料傳輸,附加低 PAPR技術只被考慮

用在上行傳輸,其他討論細節如下:

甲、 附加低 PAPR 技術用在特殊的下行傳輸訊號,譬如同步訊號,

則留待後續討論。

乙、 附加低 PAPR 技術用在其他上行傳輸訊號、通道也留待後續討

論。

三、 附加低 PAPR技術,如果有指定的話,和 CP-OFDM伴隨著沒有指

定的低 PAPR技術,在上行傳輸中被視為彼此互補的。

在此次會議中,相關決議內容如下:

Agreements:

At least up to 40 GHz for eMBB and URLLC services,

o CP-OFDM without specified low-PAPR/CM technique(s) is recommended to be supported for

uplink

o For data transmission, additional low-PAPR/CM technique(s) is only considered for uplink from

RAN1 specification perspective

Additional low-PAPR/CM technique(s) for special downlink signals such as sync signals is

FFS

Additional low-PAPR/CM technique(s) for other uplink signals/channels is FFS

o Additional low PAPR/CM technique(s), if specified, and CP-OFDM without specified

low-PAPR/CM technique(s) for uplink are considered as complementary to each other

新無線存取技術上行傳輸的低 PAPR技術

新無線存取技術上行傳輸在相同使用情境和類似應用配置(譬如相同的載

波頻率)下,至少要以 LTE上行傳輸為目標達到相同的鏈路預算(Link budget)、

也就是相同的最小耦合耗損(Minimum Coupling Loss, MCL),在此次會議中之相

關決議內容如下:

Agreement:

• NR uplink should target at least the same link budget (i.e. MCL) as LTE uplink, under the same usage

scenarios and similar deployment configurations (e.g., same carrier frequency)

• Details FFS

• Techniques can be evaluated for the uplink scenarios

23

• E.g., low PAPR/CM techniques (including DFT-s-OFDM)

保護頻帶(Guard band)

在考慮對規範、效能的影響下,RAN1 應該繼續研究如何在跨子頻帶干擾

的情境下(比如說案例二/三/四)來支援保護頻帶。在此次會議中,相關決議內容

如下:

Agreement:

• RAN1 should continue study whether/how to support guard-band for inter-subband interfering scenarios

(e.g., cases 2/3/4) with considerations of the specification/performance impact

40GHz以上的波形設計

當頻段在 40GHz頻帶以上,在下行和上行波形設計上,RAN1 必須至少考

慮以下問題所造成的影響,

一、 低功率放大器效率;

二、 相位雜訊和多普勒所造成的損傷。

在此次會議中,相關決議內容如下:

Agreements:

• When considering DL and UL waveforms for spectrum band above 40GHz, RAN1 should at least consider

the impact of

– Low PA efficiency

– Phase Noise and Doppler impairments

1-2. 多存取機制

非正交多重存取

除了在正交多重存取之外,至少在大量機器型態通訊情境下,RAN1 應該

要以支援上行非正交多重存取為目標。在次會議中,相關決議內容如下:

Agreements:

• NR should target to support UL non-orthogonal multiple access, in addition to the orthogonal approach,

targeting at least for mMTC

24

大量機器型態通訊免授予(Grant-free)傳輸的澄清之一

至少在大量機器型態通訊,RAN1 應該以支援自發、免授予、競爭型的上

行傳輸為目標。其中“自發、免授予、競爭型”文字太過於冗長,華為希望以“免

授予”來代替“自發、免授予、競爭型”,但因為三星認為自發、免授予、競爭型

這三者其意義並不一樣,無法達成共識。最後妥協結果為當 RAN1在討論多重

存取,免授予被用來代替自發、免授予、競爭型,減少文字上的冗長。在本次

會議中,相關決議內容如下:

Agreement:

• NR should target to support UL “autonomous/grant-free/contention based” at least for mMTC

Conclusion:

In RAN1 discussion for MA, grant-free is used to represent “autonomous/grant-free/contention based”

大量機器型態通訊免授予傳輸的澄清之二

對於自發、免授予、競爭型的上行傳輸至少以下的選項需要再研究

一、 UE執行隨機資源選取,

甲、 細節留待後續討論。

二、 UE的資源由基地台事先配置或是事先決定,

甲、 細節留待後續討論。

三、 其他選項並不排除。

在此次會議中,相關決議內容如下:

Agreement:

• At least the following options for “autonomous/grant-free/contention based” UL transmission should be studied

• Opt. 1: a UE performs random resource selection

• Details FFS

• Opt. 2: a UE’s resource is pre-configured by eNB or pre-determined

• Details FFS

• Other options are not precluded

25

免授予上行傳輸

關於免授予上行傳輸,以下的問題需要再議:

一、 處理多重存取特徵(Signature)潛在的碰撞問題、

二、 重傳,複製和潛在的組合,比如說混合型自動重送請求(Hybrid

Automatic Retransmission Request, HARQ)、

三、 潛在的鏈路調整,比如調變以及編碼方式/特徵的重新指派、

四、 免授予和授予基礎的傳輸關係以及 UE的行為關聯、

五、 先進接收器能力,包含複雜度分析。

在此次會議中,相關決議內容如下:

Agreements:

• Continue study at least the following:

– Handling of potential collisions of MA signatures

– Retransmission/repetition and potential combining, e.g. HARQ

– Potential link adaptation, e.g. MCS/signature re-assigning

– Relationship between grant-free and grant-based transmissions and associated UE behavior

– Advanced receiver capabilities including complexity analysis

多重存取資源的澄清

對於免授予上行傳輸,一個多重存取實體資源為一個時頻區塊所組成,需

要注意的是空間維度並不在此考慮範圍。

而一個多重存取資源包含一個多重存取實體資源和一個多重存取特徵資

源,其中一個多重存取特徵資源至少包含底下的其中一個:

一、 編碼簿(Codebook),碼字(Codeword)、

二、 序列、

三、 交錯(Interleaved)和/或映射(Mapping)樣本、

四、 解調參考訊號、

五、 前置符元、

六、 空間維度、

七、 功率維度、

26

八、 其他選項沒有排除。

關於多重存取實體資源和多重存取特徵資源的細節部分需要再研究,在此

次會議中,相關決議內容如下:

Agreements:

A MA physical resource for “grant-free” UL transmission is comprised of a time-frequency block

o Note: spatial dimension is not considered as a physical resource in this context

A MA resource is comprised of a MA physical resource and a MA signature, where a MA signature includes at

least one of the following:

o Codebook/Codeword

o Sequence

o Interleaver and/or mapping pattern

o Demodulation reference signal

o Preamble

o Spatial-dimension

o Power-dimension

o Others are not precluded

Details on MA physical resource and MA signature resource FFS

非正交多重存取評估

關於非正交多重存取評估,實際的通道估測優先被考量並且以下所列的觀

點需要被考慮:

一、 對於通道估測,如果有提出任何解調參考訊號樣本,

甲、 解調參考訊號成本。舉例來說,LTE 上行解調參考訊號成本可

以當成參考值;

乙、 因為跨細胞干擾造成的解調參考訊號汙染;

丙、 自發、免授予、競爭型的多重存取情況下,造成解調參考訊號

碰撞的影響。

這邊需要注意的是,在鏈路層級模擬/系統層級模擬各家公司要報告解調參

考訊號的設定。此次會議中,相關決議內容如下:

27

Agreement:

For NR non-orthogonal multiple access evaluation, realistic channel estimation is prioritized

and the following aspects are considered

o The proposed DMRS pattern(s), if any, for channel estimation

FFS: DMRS overhead. E.g., LTE UL DMRS overhead can be used as a

reference.

FFS: DMRS contamination due to inter-cell interference

FFS: Impact of DMRS collision in case of “autonomous/grant-free/contention

based” multiple access

Note: companies report the DMRS settings used for the LLS/SLS evaluation.

新無線存取技術多重存取系統層級模擬基線

為了在上行大量機器型態通訊提供絕對的系統層級模擬結果,底下所列只

為了校準目的:

一、 上行波形為 CP-OFDM

甲、 上行解調參考訊號成本為七個 OFDM符元當中的一個符元。

二、 UE 在一群正交的多重存取實體資源中隨機地挑選一個多重存取實

體資源。

甲、 在多重存取實體資源中並不會任何一部分可被多個 UE 同時選

中。

乙、 所有正交多重存取實體資源的大小一樣。

三、 接收端為最小平均平方誤差(minimum mean sequare error, MMSE)

接收器,並經由實際通道估測運作。

甲、 假設沒有盲解碼。

四、 在一次模擬中,所有 UE的調變以及編碼方式為固定,

甲、 各公司需要報告調變以及編碼方式。

五、 開迴路功率控制,

甲、 相關參數設定為 Alpha=1,P0=-90 dBm。

六、 分封大小固定為 20個位元組。

七、 如果需要任何其他參數,則為留待進一步討論再議。

28

這邊需要注意的是,以上的假設只為了應用在校準的目的,也就是說對於

所提出的非正交多重存取機制可以使用其他的假設。在此次會議中,相關決議

內容如下:

Agreements:

• For providing absolute system level evaluation results for UL mMTC, for calibration purpose only

– CP-OFDM as the UL waveform

• UL DMRS overhead, 1 OFDM symbol out of 7 OFDM symbols

– A UE selects a MA physical resource randomly from a pool of orthogonal MA physical resources

• There is no partial overlapping between the MA physical resources selected by more than

one UE

• All orthogonal MA physical resources are of same size

– Rx MMSE receiver, assuming realistic channel estimation

• No blind decoding assumed

– Same MCS for all UEs,

• MCS is reported by each company

– Open loop power control

• Alpha=1, P0= -90 dBm

– Packet size is fixed by 20 bytes

– FFS other parameters, if any

• Email discussion on any other potential parameters until 9/2 – Yi Wang (Huawei)

• Note: The above assumptions only apply to the calibration purpose, i.e. other assumptions can be used for

evaluation of proposed non-orthogonal multiple access scheme(s)

新無線存取技術多重存取工作規劃

此次會議中,關於新無線存取技術多重存取工作規劃的結論為:

一、 在 RAN1#86bis以完成下列項目為目標:

甲、 統整初步的鏈路層級模擬比較;

乙、 統整初步的系統層級模擬比較。

在此次會議中,相關決議內容如下:

Conclusion:

• Target the following in RAN1#86bis:

29

– Summary of preliminary LLS comparisons

– Summary of preliminary SLS comparisons

1-3. 多天線機制

此項目下包含相當多的議題,因此有相當多的推進方案 (Way Forward, WF)。

另一方面來說,也因為目前 NR 尚處於研究項目的階段,而且新波形以及訊框

架構必須盡早決定。因此絕大部分的共同提案都屬於研究方向類的提案,意即

決定接下來有那些技術可以被提出討論。所以還沒有太多關於技術本身的接露

與決議。以下僅就一些屬於 NR新的技術項目相關列出討論。

因為 NR的基站(gNB)預期會配備越來越多的天線,再加上未來朝向高頻率

頻段的使用,所以波束成型將會是未來多天線機制下一個相當基本且重要的技

術。所以因應多波束的場景,波束管理就是最重要的技術項目,而且是 NR 多

天線與目前 LTE多天線最大的不同點。

以下為與波束管理相關的決議:

R1-168468 Definitions supporting beam related procedures Nokia, Qualcomm, CATT, Intel,

NTT DoCoMo, Mediatek, Ericsson, ASB, Samsung, LG

• Beam management = a set of L1/L2 procedures to acquire and maintain a set of TRP(s)

and/or UE beams that can be used for DL and UL transmission/reception, which include

at least following aspects:

Beam determination= for TRP(s) or UE to select of its own Tx/Rx beam(s).

– Beam measurement = for TRP(s) or UE to measure characteristics of received

beamformed signals

– Beam reporting = for UE to report information a property/quality of of

beamformed signal(s) based on beam measurement

– Beam sweeping = operation of covering a spatial area, with beams transmitted

and/or received during a time interval in a predetermined way.

首先先定義何謂波束管理,波束管理指的是一套通訊協定的程序(procedure),

目的是取得並且保持一套收發節點(transmission/reception point, TRP)端波束以

及/或用戶設備(UE)端波束以用來作為上型與下行的傳輸/接收。

30

波束管理包含以下四個面向:

1. 波束的決定(Beam determination):TRP或 UE決定自己傳輸/接收波束的

方向。

2. 波束的量測(Beam measurement):量測波束的一些特性。

3. 波束的回報(Beam reporting):依據波束量測,UE 回報以波束傳送訊號

的屬性與質量。

4. 波束的掃動(Beam sweeping):在一段時間內,用不同方向的窄波束掃動

來覆蓋空間區域的運作。

R1-168278 WF on DL beam management Intel Corporation, Huawei, HiSilicon,

Ericsson, Nokia, Alcatel-Lucent Shanghai Bell, Verizon, MTK, LGE, NTT DoCoMo, Xinwei

Agreements:

The following DL L1/L2 beam management procedures are supported within one or multiple

TRPs:

• P-1: is used to enable UE measurement on different TRP Tx beams to support

selection of TRP Tx beams/UE Rx beam(s)

» For beamforming at TRP, it typically includes a intra/inter-TRP Tx beam

sweep from a set of different beams

» For beamforming at UE, it typically includes a UE Rx beam sweep from a set

of different beams

» FFS: TRP Tx beam and UE Rx beam can be determined jointly or sequentially

• P-2: is used to enable UE measurement on different TRP Tx beams to possibly

change inter/intra-TRP Tx beam(s)

» From a possibly smaller set of beams for beam refinement than in P-1

» Note: P-2 can be a special case of P-1

• P-3: is used to enable UE measurement on the same TRP Tx beam to change UE Rx

beam in the case UE uses beamforming

• Strive for the same procedure design for Intra-TRP and inter-TRP beam management

» Note: UE may not know whether it is intra-TRP or inter TRP beam

• Note: Procedures P-2&P-3 can be performed jointly and/or multiple times to achieve

e.g. TRP Tx/UE Rx beam change simultaneously

• Note: Procedures P-3 may or may not have physical layer procedure spec. impact

• Support managing multiple Tx/Rx beam pairs for a UE

• Note: Assistance information from another carrier can be studied in beam

31

management procedures

• Note that above procedure can be applied to any frequency band

• Note that above procedure can be used in single/multiple beam(s) per TRP

• Note: multi/single beam based initial access and mobility treated within a separate

RAN1 agenda item

TRP必須支援一或多個波束管理程序:

1. P-1: UE量測不同的 TRP的波束並用以支援 TRP傳輸波束以及或 UE接

收波束的選取。

2. P-2: UE量測不同的 TRP的傳輸波束並用以改變同一 TRP內不同的波束

或不同 TRP間的波束。

3. P-3: UE 量測 TRP 的同一傳輸波束並用以改變 UE 的接收波束。前提是

UE支援接收波束成型。而此程序不一定會有 RAN1規範(specification)。

R1-168388 WF on beam management CATT, Samsung, National Instruments, ZTE

Agreements:

• Consider different channel reciprocity assumptions in beam management procedures

– At a TRP or UE, with TX and RX channel reciprocity (full or partial) (e.g., beam

reciprocity), TX beam (or RX beam) can be obtained from RX beam (or TX

beam) to reduce overhead and latency

– Without TX and RX channel reciprocity, beam management procedure may

require TX and RX beam sweeping in both DL and UL links

• RAN1 study different methods of determining Tx and Rx beam(s) for communication on

one link direction (uplink or downlink), e.g.,

– Joint determination: Tx beam and Rx beam are determined jointly

– Separate determination: Tx beam or Rx beam are determined sequentially.

– Multi-stage determination: for instance, coarse Tx-Rx beam determination

followed by fine Tx-Rx beam determination

• Study beam management procedure with and without explicit signaling of beam(s) or

beam group(s) used for transmission

此決議是關於考量通道對稱性(channel reciprocity)的波束管理。通道對稱

性(全對稱或部分對稱),可以用來以傳輸/接收波束而獲得接收/傳輸波束,

以此來降低訊號成本(overhead)或延遲(latency)。

RAN1 要研究不同的傳輸/接收波束決定的方法:

32

1. 共同決定:同時決定傳輸與接收波束。

2. 個別決定:傳輸與接收波束在不同的時間依順序決定。

3. 分階段決定:例如先決定較粗的波束再決定較細的波束。

而波束管理可以依靠特定的訊號(signaling)或不依靠特定的訊號。

33

4. 增強型授權頻帶輔助之非授權頻帶存取技術

2-1. 實體層上行共享通道的設計 (Physical uplink shared channel design)

此部分的討論內容主要在使得下行控制訊息(downlink control information,

DCI)能支援於非授權頻進行上行傳輸(uplink transmission)的細節定義。首先在

資源配置(resource allocation)的部分,由於前次 RAN1#85會議已決議使用交織

(interlace)的方式來進行資源配置,但是對於相對應信號的表示方式仍然尚未確

定,此次會議討論後決議參考類似現行實體層上行共享通道(physical uplink

shared channel, PUSCH)的指示方式,亦即使用資源指示數值(resource indication

value, RIV)的編碼與表示方式,相關決議詳述如下:

Agreement:

RA field in DCI 0A/4A/0B/4B is 6 bits

The 64 code points indicated by the 6 bits include the legacy RIV for contiguous interlace

allocation except the code points for the allocation of 7 contiguous interlaces (70 PRBs)

o This set of code points has 51 values

Additional code points are defined for allocation of interlaces as follows:

o 0,1,5,6

o 2,3,4,7,8,9

o 0, 5

o 1, 6

o 2, 7

o 3, 8

o 4, 9

o 1, 2, 3, 4, 6, 7, 8, 9

o Remaining code points are reserved

由於用戶端收到上行傳送的相關指令後須依據不同優先權類別(priority

class)的參數來進行先聽後說(listen before talk, LBT)的動作,因此基地台需有足

夠的預留時間讓用戶端完成該動作。因此在上一次會期後的電郵(email)討論也

達成了決議,共有四種可能的傳送起始點,細節如下:

Agreement: (after RAN1#85 email discussion)

Transmission on UL is allowed to start at the following times in a UL subframe

o Start of DFTS-OFDM symbol 0

o Start of DFTS-OFDM symbol 1

34

o 25 us after start of DFTS-OFDM symbol 0

o 25 us + TA value after start of DFTS-OFDM symbol 0

相對應的,用戶端將可被基地台使用 DCI來指示傳送的起始點,如下:

Agreement:

One of four starting symbol positions can be signaled for the first subframe in DCI formats

0A/4A/0B/4B

由於上述的第三及第四個傳送起始點會在一個離散傅立葉轉換擴展正交

分頻多工(Discrete Fourier Transform-Spread OFDM, DFTS-OFDM)符元當中,因

此對於該信號的傳送內容與方式有了以下的定義:

Agreement:

For enabling the start times within the first DFTS-OFDM symbol, a longer cyclic prefix for

the next DFTS-OFDM symbol to occupy part of the first DFTS-OFDM symbol is used

而對於傳送時間的排程,不同於傳統的 LTE上行排程使用固定時間的方式,

考慮到非授權頻譜的特性,標準決議採用較具彈性的排程方式:

Agreement:

4 bits for timing offset are included in DCI format 0A/4A

o Note: This is already agreed for DCI format 0B/4B

事實上,上述決議已經於上次會期先行適用於多子訊框排程(即(DCI格式

0B 與 4B)的功能。另一個已於上次會期先行適用於多子訊框排程的決議是

HARQ程序識別(process ID)的定義,這次會期針對單一子訊框的排程有了類似

的決議:

Agreement:

DCI format 0A/4A includes 4 bits indicating HARQ process ID

o Note: This is already agreed for DCI format 0B/4B

另一部分的細節定義是與調變編碼機制(modulation and coding scheme,

MCS)以及冗餘版本(Redundant version, RV):

Agreement:

35

MCS 0-28 indicated to the UE in DCI formats 0A/4A/0B/4B are interpreted according to the

uplink MCS table for modulation and TBS

RV is explicitly signaled for all MCSs.

DCI format 0A includes 2 bits RV indicating RV=0, 1, 2, or 3

DCI format 4A includes 2 bits RV indicating RV=0, 1, 2 or 3 which is common to both TBs

由於非授權頻譜可同時支援上行多天線的傳送以及多子訊框的排程(亦即

使用下行控制訊號 DCI format 4B排程),以下決議考慮了相對應需的細節,其

中包含在多天線傳送以及多子訊框的排程下的預編碼簿(precoder)、參考訊號

(reference signal)以及傳輸區塊(transport block, TB)的啟用與否:

Agreement:

Precoder indicator field in DCI format 4B applies to all the subframes in the DCI

o Mapping to number of layers and TPMI is the same as DCI format 4

A single DMRS and OCC field is signaled for all subframes indicated in DCI formats 0B/4B

The parameter n^(2)_DMRS,Lambda applies to all indicated subframes

TB disabling is indicated if MCS 29 is indicated for the corresponding TB in DCI formats

4A/4B.

o The disabling applies for all scheduled subframes for DCI format 4B

為了使用戶端在進行下行控制訊號盲目偵測(blindly detection)的複雜度能

得到有效的控制,針對 DCI 格式 0A 與 1A 的長度設計需一致,此部分基本上

與 LTE現有系統針對 DCI格式 1A與 0的長度一致是有相同的設計背景,決議

內容如下:

Agreement:

DCI formats 0A and 1A which are transmitted in the same serving cell and that schedule the

same serving cell shall have the same sizes. Bit padding is used to achieve this.

由於特地為 eLAA設計的多子訊框的排程功能將使得用戶端對於非授權頻

譜的服務細胞的DCI盲目偵測數目增加,此次會議針對此問題達成了以下共識,

使用上層訊號來限制用戶端進行 DCI盲目偵測的總複雜度:

Agreement:

If not otherwise indicated by the RRC parameter supportedBlindDecoding-r13, the eNB can

assume the total number of supported blind decodes to be

36

#CCs_supported*32+#CCs_UL_TM2_supported*16 USS BDs

For each DCI format 0B, 4A and 4B the following BD adjustment is applied

o (0, 33, 66, 100)% for 1st and 2nd AL and (0, 50, 100, 150)% for 3rd to 5th AL

在通道狀態訊息(channel status information, CSI)回報的部分,以下決議規範

了用戶端如何判斷該排程的上傳通道是否”只包含 CSI”的部分:

Agreement:

An aperiodic CSI report without UL-SCH is triggered when the UE receives DCI formats

0A/0B with MCS 29 and an aperiodic CSI trigger

An aperiodic CSI report without UL-SCH is triggered when the UE receives DCI formats

4A/4B with MCS 29 for both TBs and an aperiodic CSI trigger

UE is not expected to receive an aperiodic CSI only request if more than one subframe is

scheduled with DCI formats 0B/4B

最後,以下決議也排除了一些可能的特殊排程狀況,以簡化用戶端的複雜

度:

Agreement:

The UE is not expected to start a new transmission subject to LBT earlier than 1

DFTS-OFDM symbol after the end of the previous transmission by the UE

也就是說,對於一個用戶端來說,兩個上行傳送的排程時間需間隔一個

DFTS-OFDM符元以上。

2-2. 探測參考訊號(Sounding reference signal, SRS)的設計

由於 SRS僅支援於非授權頻譜的服務細胞進行非週期性傳送,此部分主要

在定義如何於非授權頻譜的服務細胞傳送非週期性的 SRS。首先對於排程時間

以及 LBT的方式有了以下的決議:

Agreement:

If the triggering for SRS without PUSCH is received in a DL assignment in subframe n, the

UE should send SRS without PUSCH in subframe n+k (not considering the LBT failure).

o The SRS transmission is not limited to DL ending partial subframe

k is indicated by 3 bits in DL grant. "000" represents no triggering for SRS without PUSCH;

"001"~"111" represents SRS without PUSCH is transmitted in subframe n+4~n+10

respectively.

LBT type is not explicitly signaled to the UE for SRS without PUSCH

37

For LBT for SRS not transmitted contiguously with PUSCH, a Cat. 4 LBT with priority class

1 is used.

SRS transmissions do not contribute to the contention window update.

當非週期性的 SRS與多子訊框傳輸一起排程時,由於上次會期已決議使用

上層訊號來告知 SRS需於該多子訊框的哪一子訊框中傳輸。以下定義了相對應

的細節,以避免當上層訊號定義的 SRS傳輸子訊框編號大於子訊框排程時的子

訊框個數時的問題:

Agreement:

For SRS triggered with DCI format 4B, the SRS subframe location is determined relative/as

an offset n to the first subframe of the multi-subframe scheduling burst according to

n = mod (x, N)

where x is the value of the SRS subframe indication in the SRS parameter set configuration

(x{0,1,2,3}) and N is the number of scheduled UL subframes.

2-3. 通道存取的方法

此部分主要考慮用戶端在收到上行傳送的指示時,為了符合非授權頻譜規

範的相對應設計。一般來說,基地台在指示用戶端進行上行信號傳輸之前有可

能就會先行利用 LBT的方式將非授權頻譜資源作預留的動作,因此,此次會議

決議新增一組信號欄位”C-PDCCH”於使用 CC-RNTI 為攪亂碼的 DCI(針對上

一版本之 LAA 所設計之 DCI)中,讓用戶端有較明確的訊息子訊框訊息,以

利後續 LBT行為的調整:

Agreement:

C-PDCCH indicates a pair of values (offset, UL burst duration)

o UL burst duration is the number of consecutive UL subframes belonging to the same

channel occupancy, with the DL subframes in the same channel occupancy signaling

the UL burst duration.

o Offset is the number of subframes to the start of indicated UL burst from the start of

the subframe carrying the C-PDCCH.

o 5 bits to indicate combinations of offset and burst duration.

The code points include {offset, duration} combinations as follows

All combinations of {{1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}}

Reserved

No signaling of burst and offset

38

下圖是一個例子,當基地台使用 LBT得到通道的存取權後,預計使用該通

道 10 個子訊框,其中四個子訊框為下行子訊框;六個子訊框為上行子訊框,

因此上述新增的“(offset,UL burst duration)”訊息可如標註於下圖的每一子訊框

所示:

DL DL DL DL UL UL UL UL UL UL

LAA burst

(4, 6) (3, 6) (2, 6) (1, 6)

由上述所得之結論,會議中進一步定義了當用戶端知道後續子訊框可能會

被用於上行傳輸時,用戶端就不需於這些子訊框進行下行子訊框所需進行之行

為,並且,相對應的 LBT行為亦可進一步簡化。詳細內容如下:

Agreement:

The UE is not required to receive any DL signals/channels in a subframe indicated to be a UL

subframe on the carrier

The LBT procedure for any UL subframe from the subframe in which C-PDCCH was

received upto and including all subframes until the end of the signaled UL burst duration, for

which the eNB had already indicated to perform Category 4 LBT, can be switched to an LBT

based on 25 us CCA.

o The UE shall not switch to 25 us CCA if only part of a set of contiguously scheduled

subframes without gap appears in the UL burst indication

下圖簡述了上述會議結論的第二點,當一用戶端先行被基地台指示了一個

上行傳輸時間與行為(例如使用類別四的 LBT方法),但之後因為基地台有預先

幫助該用戶端佔得了無限資源,用戶端可利用上述的“(offset, UL burst duration)”

判斷是否需將 LBT 行為從較複雜的類別四(category 4)改為較簡單的 25 微秒

(micro second, us)的 LBT。

39

DL DL DL DL UL UL UL UL UL UL

LAA burst

(4, 6) (3, 6) (2, 6) (1, 6)

DL DL

LAA burst

PUSCH schedulingCat. 4 LBT

另外,為了使上行傳輸得排程更具彈性,此次會議通過了支援二階段排程

(two-state scheduling)的方法。詳細決議如下:

Agreement:

DCI 0A/4A/0B/4B includes a single bit to indicate whether the UL grant is a triggered grant

or not.

If it is a triggered grant, the UE may transmit after receiving a 1 bit trigger in the PDCCH

DCI scrambled with CC-RNTI in a subframe received after the subframe carrying the UL

grant

The timing between the 2nd trigger transmitted in subframe N and the earliest UL

transmission is a UE capability, if the earliest UL transmission is before subframe N+4 (UE

capability signaling between transmission in subframe N+1 and N+2 and N+3)

The 4 bit field ‘SF timing’ in DCI format 0A/4A/0B/4B for the triggered grant is reused as

follows:

o When the UE may transmit after reception of the trigger is signaled to the UE 2 bits

are reused to indicate X:

Having received a trigger in subframe N, the UE is allowed to start

transmission in subframe N+X+Y

X={0,1,2,3} indicated reusing two bits in the DCI

Y is given by the UL burst offset in the C-PDCCH DCI scrambled by

CC-RNTI in the same subframe where the trigger is transmitted

o The UE receives signaling in the first DCI 0A/4A/0B/4B grant indicating the number

of subframes after which the grant becomes invalid reusing 2bits. The initial grant

becomes invalid if M ms after the initial grant, no valid trigger has been received.

2 bit: M={8,12,16,20}

UE follows the LBT type indicated by the UL grant

下圖簡單敘述了二階段排程的例子,用戶端會與一下行子訊框先行收到一

40

下行控制訊息該控制訊息指派了一個上行傳輸的指令,其內容至少包含了既有

版本中上行傳輸所需之內容,例如調變編碼機制、冗餘版本、傳輸區塊大小、

以及上行資源區塊等。並且該指令會告知用戶端此控制訊息會於 M 毫秒(mini

second, ms)後失效,若用戶端未於M毫秒前收到確定觸發的指示,則該控制訊

號便告失效。如下圖所示,用戶端之後會收到一確定觸發的指示,該指示會明

確的告知用戶端其排程時間。用戶端便可依此訊息進行上行傳輸的動作。

DL DL DL DL UL UL UL UL

LAA burst

DL DL

LAA burst

UE receives a first PUSCH triggering (e.g., HARQ#1) and this scheduling will become

invalid after Mms, M={8, 12, 16, 20}

(4, 6) (3, 6) (2, 6) (1, 6)

UE receives a second PUSCH triggering (e.g., HARQ#1) and this PUSCH is scheduled to be

transmitted in 1st UL subframe of coming UL burst

UL UL

Possible scheduling point

∆ t={1, 2, 3} is based on UE capability

另外,當一用戶端收到一多服務細胞的排程,而該多服務細胞系配置於非

授權頻譜時,以下決議可簡化用戶端的 LBT複雜度:

Agreement:

A UE that has received UL grants on a set of carriers scheduled with Cat. 4 LBT with the

same starting point in the subframe on all carriers can switch to a 25 us LBT immediately

before transmission on a carrier in the set if Cat. 4 LBT has successfully completed on a

designated carrier in the set.

o The UE must select one carrier uniformly randomly among the carriers which were

scheduled with Cat. 4 LBT as the designated carrier prior to starting the Cat. 4 LBT

procedure on any of the carriers in the set.

Note: if operating in the 5GHz band, refer to the ETSI regulations w.r.t. choosing the set of

carriers.

下圖相對應描述了用戶端的行為。

41

UL UL

UL UL

UL UL

LAA Scell#1

LAA Scell#2

LAA Scell#3

Cat. 4 LBT

Designated carrier (LAA Scell#1): uniformly randomly selected

25us LBT

另外,當基地台使用 LBT獲得了無線資源的使用權限,而基地台並未將此

無限資源用於下行資料的傳輸,僅用於下行控制信號的傳輸與上行資源的排程,

如下圖所示。

Cat. 4 LBT

PD

CC

H

25us LBT

MCOT

UL UL UL UL

在此狀況下,上行傳輸的狀況須用於競爭時窗(contention window)的調整,詳細

內容如下:

Agreement:

If the eNB schedules UL transport blocks with 25 us LBT in a shared channel occupancy

without scheduling any DL transport blocks and if less than 10% of the scheduled UL

transport blocks have been received successfully, the eNB increases its contention window

size, otherwise the eNB resets its contention window.

另外,會議中亦決議在上行傳輸相關的控制訊息中需帶有 LBT相關的訊息,

用戶端對此訊息的解讀方式如下:

Agreement:

The UE may expect an LBT priority class field in a UL grant regardless of the LBT type

indicated to the UE in the UL grant.

o If 25 us LBT is indicated as the LBT type, then the LBT priority class is the one used

by the eNB to obtain access to the channel.

o If Cat. 4 LBT is indicated as the LBT type, then the LBT priority is the one that is to

42

be used by the UE to perform its Cat. 4 LBT.

當用戶端接收到基地台給定的多子訊框上傳准許(multiple subframe UL

grant)時,用戶端會依據基地台指示的方式進行 LBT。若該多個子訊框之間不

會留任何的間隙,則用戶端於 LBT成功後可連續進行與多個被指派的子訊框進

行上行傳輸。倘若用戶端因通道狀態無法順利進行傳送時,用戶端將繼續進行

LBT,並且依據通道狀況判斷後續 LBT形式,使用 category 4 LBT或是僅使用

25微秒 LBT與相關行為,詳細決議內容如下:

Agreement:

For a set of consecutive scheduled subframes without any gaps that are subject to LBT, after

the first successful LBT in that set, the UE continues transmission for all the remaining

subframes in the set.

If the UE starts a contiguous transmission spanning a set of subframes on an LAA SCell, and

the UE suspends transmission prior to the last scheduled subframe in the transmission, then

the UE may resume transmission on the remaining subframes in the transmission

immediately after performing an LBT of duration 25 microseconds if the channel was

observed to be continuously idle since the transmission was suspended. If the channel was

not observed to be continuously idle, then the UE may resume transmission after performing

a successful Cat. 4 LBT with LBT parameters according to the indicated LBT priority class

in the UL grant that scheduled the subframe in the transmission.

在進行 LBT時,用戶端需有一門檻值來判斷非授權頻譜的通道狀態,原則

上,基地台會利用上層信號給定該門檻值,若用戶端未收到該信號,則使用一

預定的方式來取得此門檻值。以下為相關決議內容:

Agreement:

The maximum energy detection threshold requirement for a UE is aligned with the

requirement for an eNB as specified in Rel-13

The eNB can signal a RRC parameter to the UE so that the UE can derive a maximum energy

detection threshold value.

o If no RRC signalling is received, the UE uses a default maximum energy detection

threshold value, X_Thresh_Max, as defined in Rel-13, using Pc_max_H,c for P_TX

in the calculation of X_Thresh_Max

RRC signaling has the ability to indicate to a UE either an absolute maximum energy

detection threshold value or an offset to the default maximum energy detection threshold

value

43

Absolute maximum energy detection threshold values are indicated in the range of -85 dBm

to -52 dBm in steps of 1 dB.

Offset to the default maximum energy detection threshold value are indicated in the range of

-13 dB to +20 dB in steps of 1 dB.

Note: Ability to signal a certain maximum energy detection threshold does not indicate

feasibility of operating at that threshold value.

當用戶端需同時在同一子訊框與多個服務細胞進行上行傳輸時,可能會因

為排程或其他因素造成當下對每個服務細胞的傳輸功率無法依據基地台的指

示,例如傳輸功率控制訊號(transmission power control, TPC)來傳送。在此狀況

之下,用戶端需依據過去與載波聚合系統時所定義的功率調整技術來調整每個

服務細胞的傳送功率,然後再進行傳送。但值得注意的是,當其中一服務細胞

隸屬於非授權頻帶時,在傳送之前必須執行 LBT以判斷該服務細胞當下是否能

進行傳送,以下規範了當用戶端無法於該服務細胞順利傳送時,相對應的功率

調整問題:

Agreement:

The UE is not required to consider LBT success or failure on the set of carriers on which

transmission is attempted in order to apply power scaling rules for that set of carriers

以下為簡單的示意圖:

TX power wP1 for PUSCH#1

TX power wP2 for PUSCH#2 on LAA Scell

P1

P2

PCMAX

subframe

TX power P1 for PUSCH#1

TX power P2 for PUSCH#2 on LAA SCell

P1

P2

PCMAX

TX power wP1 for PUSCH#1P1

PCMAX

subframesubframe

最後是競爭時窗(contention window)的調整問題,經過兩個會期的實質討論,

用戶端會依據一參考 HARQ 識別,在後續的上行資源配置(UL grant)訊息來判

斷是否調整競爭時窗,詳細內容如下:

Agreement:

44

For category 4 LBT for PUSCH transmission on LAA SCell, the CWS is adjusted per UE

and at UE based on the following procedures:

o If the UE fails to transmit all of the scheduled contiguous subframes with a category 4

LBT, UE may keep the contention window size unchanged for all the LBT priority

classes.

o The first subframe with UL-SCH that was transmitted at least 4 ms prior to the UL

grant reception in the most recent transmitted burst of contiguous subframes that is

transmitted after performing a category 4 LBT procedure is defined as the reference

subframe. The HARQ ID of the reference subframe is HARQ_ID_ref.

o Based on the UL grant content

if the NDI bit for at least one of the active HARQ processes (i.e. TB not

disabled) of HARQ_ID_ref in the reference subframe is toggled, the

contention window size at the UE is reset for all the priority classes.

Otherwise (i.e. HARQ_ID_ref not scheduled or NDI of the active HARQ

process(es) of HARQ_ID_ref not toggled) the contention window size of all

priority classes at the UE is increased to the next higher value.

o The CWS is reset to the minimum value if the maximum CWS is used for K

consecutive LBT attempts for transmission only for the priority class for which

maximum CWS is used for K consecutive LBT attempts.

K is selected by UE implementation from the set of values from (1, …,8).

下圖為一簡單的示意圖用來陳述用戶端在收到UL grant訊息時如何調整競

爭時窗的流程圖:

Cat. 4 LBT UL ULUL

Scheduled UL burst

First transmitted PUSCH with HARQ#1 = HRAQ_ID_ref

DL with UL grant… > 4ms

NDI bit for HARQ_ID_ref is

toggled

the contention window size at the UE is reset for all

the priority classes

the contention window size of all priority classes at the UE is increased to

the next higher value

No Yes

45

5. 增強型窄頻物聯網(Enhancements of NB-IoT, eNB-IoT)工作項目

此次會議關於 R14 eNB-IoT支援定位功能的部分,主要討論了各家公司的

初步評估結果(Evaluation Result),以及討論了營運商(Operator)對於 eNB-IoT定

位的應用情境、準確度(accuracy)等的需求(Requirement)。由於此次參與討論的

三家營運商中就有兩家營運商,中國移動(CMCC)和德國電信(Deutsche Telekom

AG),提出應該要支援高速移動達 120km/h,如車輛或貨物追蹤(Tracking)的運

用情境,因此此次討論決議了下次會議所提出的 evaluation result應該使用哪些

模擬假設(Simulation Assumption),其中特別增加了室外(Outdoor)的應用情境,

也決議了其對應使用的通道模型(Channel Model),用以模擬較高移動速度的 UE。

因為此次會議大部分公司都是使用制定R13 NB-IoT時所使用的 channel model,

所以此次會議還沒有高速移動下的UE的定位準確度的 evaluation result。因此,

關於定位準確度的需求此次會議沒有明確的定義,只有決議要儘量達到百分之

67 的 UE 要能有 50 公尺內的水平向準確度(Horizontal Accuracy),移動速度方

面則先以小於 30km/h 的情境作設計,但不排除 120km/h 的情境。較明確的需

求定義需要使用此次決議的 simulation assumption 進行模擬評估後,留待下次

會議決定,以免定出難以達到的需求。

以下為同意的推進方案(way forward),其中包含了要回報至無線存取網路

全會第 73次會議(RAN #73)的內容。

Agreed way forward for reporting to RAN#73

• Report the horizontal accuracy and TOA estimation accuracy at 67%.

• Report the operator requirement to strive towards horizontal accuracy of 50 m for 67% of

NB-IoT UEs

• Report observations on positioning accuracy for stationary (i.e., 0 km/h) and pedestrian

(i.e., 3 km/h) and 30km/h UEs. 120km/h may be evaluated during the design.

• Report observations for outdoor channel models, and outdoor-indoor channel models

where they are available.

• Report observations on time to determine position according to MCL

• This is the time from trigger for positioning to availability of a positioning estimate

• Report observations on impact of having a lower power class UE

• Report observations on network complexity/cost, for example including LMUs (as

46

described in 36.111)

• Other requirements as for Rel-13 NB-IoT, including

• Report changes UE complexity compared to Rel-13 NB-IoT

• Report total impact to UE battery life

• Report scalability to support massive numbers of UEs per cell

• Report dependency of accuracy performance on synchronous (E-SMLC is assumed to

know the absolute timing of each involved eNB ) or asynchronous networks

• Requirements are the same for all three operation modes (i.e. stand-alone/in-band/guard

band) per the WID

• Companies can provide other inputs to RAN#73 on aspects outside the scope of RAN1

such as security, RAN sharing, etc.

根據工作項目描述(Work Item Description, WID)的說明,RAN1需要研究兩

種定位方法,即觀察的到達時間差(Observed Time Difference of Arrival, OTDOA)

以及上行到達時間差(Uplink Time Difference of Arrival, UTDOA),本次會議討論

了使用此兩種方法可達成的定位準確度、需要的 UE 複雜度、UE 功耗等等。

OTDOA為 UE量測下行參考訊號後,回報量測結果給網路端以進行定位運算,

而 UTDOA 為 UE 傳送上行參考訊號給網路端進行量測及定位運算。因為可能

無法直接利用 LTE定位參考訊號(Positioning Reference Signal, PRS)和探測參考

訊號(Sounding Reference Signal, SRS)來將這兩種定位方法運用在 NB-IoT中,

所以各公司模擬所使用的參考訊號有不同的設計,定位準確度可能也會因此不

同。另外,對於 UE複雜度的假設也會影響定位的準確度,例如愛立信(Ericsson)

的 OTDOA 方法使用窄頻主要同步信號(Narrowband Primary Synchronization

Signal, NPSS)以及 UE 的複雜度假設為 R13 NB-IoT UE 的複雜度,所以

evaluation result 的定位準確度較差,超過上百公尺。

OTDOA 可能的好處是將耗費較少能量用於傳送參考訊號、網路端不需要

具有位置量測單元(Location Measurement Unit, LMU)節點、傳送一參考訊號可

支援多個 UE 作定位,即較具擴充性(Scalability)等。UTDOA 可能的好處是有

較低的 UE 複雜度、耗費較少能量在量測參考訊號、不用花費資源回報量測結

果等。

此次會議的結果要呈報至 RAN#73 會議以決議要使用 OTDOA 還是

UTDOA。因此,RAN1此次會議根據各公司的技術貢獻(Contribution)和其中的

47

evaluation results,討論後同意了一些觀察(Observation)結果以呈報至 RAN#73

會議。呈報的內容包含了 UTDOA 的水平準確度、OTDOA 的水平準確度、對

UE複雜度的影響、對 UE功耗的影響、對網路端複雜度及成本的影響、scalability

以支援大量 UE。聯絡說明(Liaison Statement, LS)的內容如下:

1.1 Observations on horizontal accuracy of UTDOA

For NB-IoT UEs with transmit power of 23 dBm, the positioning accuracy of UTDOA

schemes evaluated for RAN1#86 varies from 21 m to 133 m at 67% with EPA1

channel, and from 129 m to 227 m at 67% with ETU1 channel.

o The evaluations are all based on synchronous network (E-SMLC is assumed

to know the absolute timing of each involved eNB)

The accuracy of UTDOA is common for in-band, guard-band, and standalone

operations.

The accuracy of UTDOA may degrade with the new lower power class(es) for

NB-IoT UE

1.2 Observations on horizontal accuracy of OTDOA

For most companies, for in-band, guard-band and standalone operations, the

positioning accuracy of OTDOA schemes evaluated for RAN1#86 varies from 11 m

to 52 m at 67% with EPA1 channel, and 135 m at 67% with ETU1 channel.

o One evaluation found accuracy on the order of a few hundred meters,

re-using NPSS, under assumptions of Rel-13 UE complexity.

o The evaluations are all based on synchronous network (E-SMLC is assumed

to know the absolute timing of each involved eNB)

The accuracy of OTDOA does not depend on UE power class.

1.3 Observations on impact to UE implementation/complexity

For OTDOA, UE needs to support

o LTE Positioning Protocol (LPP) to communicate with E-SMLC via eNB.

o Measurements for positioning to get downlink RSTD of the set of configured

neighboring cells.

For UTDOA, UE needs to support

o Configuration and transmission of UL positioning signal.

48

1.4 Observations on impact to UE power consumption

For OTDOA, the UE power consumption for positioning includes the power

consumed by any DL signaling, signal processing (e.g., measurements) and UL

reporting of the measurements of the set of configured neighboring cells for the

purpose of positioning

For UTDOA, the UE power consumption for positioning includes the power

consumed by any DL signaling, and transmitting UL signal for the purpose of

positioning

1.5 Observations on impact to network complexity/cost

Enhanced Serving Mobile Location Center (E-SMLC) and MME to E-SMLC

signaling links are needed for both UTDOA and OTDOA.

For UTDOA, Location Measurement Unit (LMU), and LMU to E-SMLC signaling

links are needed to implement measurement for positioning.

o Note there are 3 different types of LMU defined in 36.111, including ‘Class 1:

Integrated into basestation’

Both OTDOA and UTDOA can work with both synchronous and asynchronous

network

1.6 Observations on scalability to support massive numbers of UEs per cells

For UTDOA, the uplink time-frequency resources required in the serving cell for

transmitting uplink positioning signal increases with increased cell positioning load.

For UTDOA, the basestation processing load (e.g., uplink measurements)

increases with increased positioning load.

For UTDOA the UL positioning resources are coordinated across a set of cells

For OTDOA, the uplink time-frequency resources required for reporting

measurements increases with increased positioning load.

For OTDOA, the downlink time-frequency resources for transmitting downlink

positioning reference signal depend on system configuration rather than number of

UEs

For OTDOA, the basestation processing load may not increase with increased

positioning load.

eNB-IoT工作項目的另一個目標是要支援 NB-IoT UE接收廣播訊息,利用

LTE R13 的 SC-PTM的方法同時傳送資料給多個 NB-IoT UE,可能的應用為韌

體(Firmware)或軟體(Software)更新等。

LTE 的 SC-PTM 中傳送控制訊息和資料訊息的邏輯通道(Logical Channel)

49

分別為單細胞群播控制通道(Single Cell Multicast Control Channel, SC-MCCH)

和單細胞群播傳輸通道(Single Cell Multicast Transport Channel, SC-MTCH)。這

兩個邏輯通道都是映射 (Mapping)到實體下行共用通道 (Physical Downlink

Shared Channel, PDSCH),而排程都是由實體下行控制通道(Physical Downlink

Control Channel, PDCCH)中傳送的下行控制訊息(Downlink Control Information,

DCI)作動態排程。因為 NB-IoT UE 接收窄頻實體下行控制通道(Narrowband

Physical Downlink Control Channel, NPDCCH)時在同一時間只會對一種搜索空

間(Search Space)作監測(Monitoring),因此在一 search space中只對一種 DCI格

式作盲解碼(Blind Decoding),且只要成功解出一 DCI即會停止對 NPDCCH的

監測直到 DCI 對應排程的資料接收或傳送完成。此一設計是要使 NB-IoT UE

有較低的複雜度。因此,若要支援 NB-IoT UE 在無線電資源控制連結

(RRC_Connected)狀態中接收 SC-PTM 傳輸,會需要克服的問題是如何傳送排

程 SC-MCCH 和 SC-MTCH 的 DCI,例如使用的 DCI 格式可能要與現有 DCI

格式的位元數相同,僅使用不同的循環冗餘校驗(Cyclic Redundancy Check Mask,

CRC)的遮罩(Mask)。另外是否須改變 NB-IoT UE作 NPDCCH監測的行為,使

得排程 SC-PTM 和原有的單點播送(Unicast)資料的 DCI 能傳送在同一 search

space,或是需要不同 search space來傳送,這些皆需進一步探討。

另外,根據 DCI傳送的方法可能需要解決排程 SC-PTM和其他資料的 DCI

碰撞(Collision)的問題,亦即需考慮在時間上重疊的處理原則。另外,是否會有

SC-PTM 和其他資料發生碰撞的情形,例如若發生碰撞時,可將其傳送在不同

carrier 上,此時的行為也需定義。此次會議尚未討論到細部設計,相關決議如

下:

Agreement:

• SC-PTM in NB-IoT is supported at least in RRC_IDLE mode. FFS RRC CONNECTED

mode.

• In RRC IDLE mode, priority between SC-PTM and the following needs to be decided at

least for:

SC-PTM and paging, if there is a collision issue

SC-PTM and a random access procedure (e.g. for unicast BSR), if there is a

collision issue

• If RRC_CONNECTED mode is supported, priority between SC-PTM and the following

50

needs to be decided at least for:

SC-PTM and unicast, if there is a collision issue

關於 NB-IoT 在非錨實體層資源區塊(Non-anchor PRB)上運作機制提升的

設計此次 RAN1 只討論了呼叫(Paging)相關的問題。為了減少錨實體層資源區

塊(Anchor PRB)上的負載,決議可以使用 non-anchor PRB來傳送 paging訊息。

為了降低複雜度,排程 paging的DCI和 paging訊息決議需傳送在同一 PRB上。

Agreements:

• For paging:

o For a Rel-14 NB-IoT UE, both anchor and non-anchor PRB can be selected as the

paging PRB

A Rel-14 UE chooses the PRB based on UE_ID

o Paging message on NPDSCH is scheduled by NPDCCH on the same PRB.

• Send LS to RAN2 with these RAN1 agreements

七、心得與建議

在這次會議之後有下列幾項建議與心得:

新無線存取技術(NR)

NR 技術議題此次為第三次討論,預計在明年三月來完成 NR 研究

項目。在這前幾次會期,探討各種可能的方法,慢慢地加入實際考

量問題,比如說複雜度、延遲、通道估測等,來讓各議題能達漸漸

地達到收斂,但 NR至目前為止尚有許多問題未有明確的結論,可

進一步思考可能的方案。

NR 多天線議題方面,由於現階段的重點是要先決定基本的實體層

設計,例如波形,訊框架構,通道編碼等。另一方面,多天線本身

也涵蓋了相當多的子議題,如通道狀態的回報、波束的管理、傳輸

模式等。所以多天線議題方面雖然有很多的共同提案達成了不少共

識,但多半屬於大方向,例如那些多天線技術可以列入 NR的考量。

目前的重點是在多波束情景下的波束管理。這也是 NR多天線相較

於 LTE多天線所不同的新議題。

在這次會期可以觀察到 5G NR許多項目仍在相當初期的討論階段,

不過由於明年 3 月後將要開始 5G NR 第一階段的工作項目,因此

51

主席宣布一些研究項目像是波型 (waveform)研究和多工存取

(Multiple Access)將不在接下來的幾次會期討論,不過仍然可以繼續

研究討論(將在第二階段研究項目繼續討論),就設計的觀點來看。

只是為了趕在 2018能有第一階段成果,這對於 5G的設計實在不是

一個好現象。

增強型授權頻帶輔助之非授權頻帶存取技術(eLAA)

此次會議為此技術議題的最後一次討論,在此版本的功能完成之後,

LTE 系統已可在非授權頻譜資源上進行雙向(包含上行與下行傳輸)

通訊了。由於時間的限制,實體層上行控制通道(physical uplink

control channel, PUCCH)與實體層隨機存取通道(physical randon

access channel, PRACH)目前仍未支援於非授權頻譜的運行中。後續

可看實際運行時是否有此需制定支援求,再於後續的版本中訂定這

些功能。

eFD-MIMO 的設計概念將會在 5G NR多天線技術設計沿用

在這次的 5G NR多天線研究項目方面,可以觀察到許多在 LTE所

運用的技術以及當初有討論到但是最後被捨棄的技術都被提出來

在 5G NR 討論,在 eFD-MIMO的一些設計或許不會在 LTE被商用

化,不過極有可能將會 5G NR被用上。

eNB-IoT:

本工作項目內容在本次會議中第一次討論,主要的重點放在定位相

關的議題。此次會議大部分的公司所提供的 evaluation results 都是

NB-IoT UE在低速移動的情境下的結果。然而有兩家營運商認為應

該要考慮較高速移動的情境,因此決議了下次會期要提出相關的

evaluation results來作進一步的設計根據。此次會議花了很多時間討

論要在 RAN#73 會議中回報的 observations,預計會根據同意的

observations 在會議上決定接下來 RAN1 會議的討論方向,也就是

會決定用 OTDOA還是 UTDOA作為 eNB-IoT支援的定位方法。其

他議題如支援 SC-PTM 還有提升 Non-anchor PRB 的運作機制在此

次會議因為時間關係討論較少,僅達成了初步的共識。

52

如同先前的建議,本次的會議 RAN1仍同時進行多個會議,最高同時可多

達四個並行的會議討論,而且議題的討論越來越細,要能實質的參與討論及跟

上各家設計的腳步,還是每個議題有專人負責。且有時會在會議室外討論,此

時台上正在進行的議題就無法顧及,所以建議需要至少三、四位的公司代表,

每個人有專門負責之議題,較為適切。

此外,3GPP LTE目前總共有超過 10項技術主題須討論,建議可評估各主

題於未來市場佈建的可能性來決定須進一步關注之主題。另外明年已經確定至

少會加開兩次特別針對 NR 的會議,因此人力的調配也是另一個需要考量的因

素。