1
stable 7 13 mm/y 24 34 mm/y Gabriele Amato * (1), Giandomenico Fubelli (1), Gianluca Piccin (2), Giulia Chinellato (3), Christian Iasio (4), David Mosna (5) and Corrado Morelli (5) (1) Roma Tre University, Department of Sciences, Rome, Italy; (2) Dolomiti Project srl, Feltre (Belluno), Italy; (3) EURAC Research, Remote Sensing Department, Bozen, Italy; (4) Henesis srl- Camlin Group, Parma, Italy; (5) Autonomous Province of Bozen, Geological Service, Kardaun (BZ), Italy * [email protected] The SloMove Project aims to consolidate know-how of the ordinary monitoring applications of surface movements, evaluate their pros and cons and optimize the expected technical procedures of investigation in order to contribute to safeguard installations and to ensure inhabitants and tourists safety, in the Alpine regions. Within this project, an experimental composite monitoring has been carried out in the touristic site of Maso Corto (South Tyrol, Italy) (Fig. 1). The purposes of this experiment are: The investigated area, approx. 3km 2 wide, extends just north of Maso Corto, between 2000 and 2900 m asl. It is located north of the Periadriatic tectonic lineament that separates the Austroalpine Units from the Southalpine ones (Azzaroli & Cita, 1963). In detail, it is within the Oetztal-Stubai Crystalline Complex (OSCC), part of Austroalpine nappe that overlaid on Penninic Units during the Alpine Orogeny (Konzett et al., 2003) (Fig. 2). The OSCC consists of medium-to-high metamorphic grade gneissic rocks, deriving from pelitic-to-psammitic protolytes, interbedded with mica schists, quartzites, orthogneiss, amphibolites, eclogites and rare marbles. Geomorphological assessment of the area shows the most important alpine and periglacial features: landscape is characterized by several U-shaped valleys that, since the LGM, have been engraved by glaciers which different regression phases are documented by till deposits and lateral and frontal moraines. Moreover, several rock glaciers are present and blocky slope deposits, rock avalanche deposits and rocky debris flow deposits are widespread. Structural-Geomorphological survey has been carried out complying a geomorphic object-based approach that allowed to highlight the relationship between structural assessment of the outcropping lithologies and some specific geomorphological markers (i.e. trenches, counterscarps, outcropping sliding surfaces) (Figs. 3, 4). Homogeneous lithological, geomorphological and structural features characterize each geomorphic object identified through the field survey. The whole area is characterized by N350-to-N30 foliated OSCC metamorphic rocks (Fig. 8). Moreover, joints due to frost thaw activity are common in the shallow layer (Fig. 5) and two sets of tectonics fractures (N45, 45°-60° and N360, sub- vertical) have been recognized (Fig. 6). Rock glaciers in the area (Fig. 8) are located at elevations ranking between 2200 and 2700 m asl, above local timberline, and are characterized by well-preserved diagnostic geomorphic features. SAR interferometry data have been processed by TRE® through the SqueeSAR™ analysis using Radarsat and Envisat images acquired between 2003 and 2009. To better handle the amount of SAR data, time series graphs of groups of Point Scatterer corresponding to different geomorphic objects have been represented separately. Diagrams that highlight the displacements of all the PS contained within a same group (Standardized Cumulative Curve) have been built (Fig. 7). GPS surveys were carried out through the technique of Rapid-Static Relative Positioning during the summers of 2012 and 2013; data acquired allowed to detect direction of movements and amplified the spectrum of activity rate detectable by SAR technique (Tab. 1). Data shows that the east flank of the relief north of Maso Corto, where the adjacent re-incised N-S glacial valley rises the maximum deep, is affected by a Deep Seated Gravitational Slide Deformation (DSGSD) that affects the outcropping OSCC rocks throughout most part of the slope. A clearly visible sliding surface, rising further upstream, separates stable bedrock by the deformed layer. On the base of the geomorphic objects identified through the field survey, we discriminated different type of gravity phenomena, from deep-seated to shallower, locally overlapped and we understood boundaries of the DSGSD. Instrumental data show different velocity for different objects so, for each of them, subtracting value due to shallower movements, the velocity component related to the DSGSD activity has been calculated. Velocity of this phenomenon results extremely slow and toward southeast but is not laterally homogenous: it varies from a minimum average speed of 3-5 mm/y in the southern part of the slope to a maximum average speed of 10-15 mm/y in the central part (Fig. 9). GPS measured 34 mm/y as the maximum horizontal velocity value of the rock glaciers in the study area. From the orientation of the displacement vectors, their movements should not be associated to that of the DSGSD (Fig. 9). This displacement rate can be considered generally low for the Alpine rock glaciers (Haeberli, 1985; Barsch, 1996; Roer et al., 2008). This velocity value, correlated with elevation ranges of rock glaciers occurrence and their geomorphological features, allowed us to assume that discontinuous, shallow, hot and thin permafrost may be present in the area. -3 -2 -1 0 1 2 3 D20030318 D20030505 D20030622 D20030809 D20030926 D20031113 D20031231 D20040217 D20040803 D20040920 D20041107 D20041225 D20050307 D20050424 D20050611 D20050822 D20051009 D20051126 D20060326 Standardized displacement Standardized Cumulative Curve - Stable bedrock, west flank (RsatDisc) (55) (50) (45) (40) (35) (30) (25) (20) (15) (10) (5) 0 5 10 15 20 D20030301 D20031101 D20031206 D20040110 D20040214 D20040529 D20040703 D20040807 D20040911 D20041016 D20050305 D20050514 D20050618 D20050723 D20050827 D20051001 D20051105 D20051210 D20060218 D20060429 D20060708 D20060916 D20061125 D20070414 D20070623 D20070901 D20071110 D20080119 D20080329 Displacement (mm) Envisat Asc – Deformed bedrock (40) (35) (30) (25) (20) (15) (10) (5) 0 5 10 15 20 D20030407 D20030525 D20030712 D20030829 D20031016 D20031203 D20040120 D20040401 D20040823 D20041010 D20041127 D20050114 D20050303 D20050420 D20050607 D20050725 D20051029 D20060109 D20060226 Displacement (mm) Radarsat Asc - Rock glacier South (45) (40) (35) (30) (25) (20) (15) (10) (5) 0 5 10 15 D20030407 D20030525 D20030712 D20030829 D20031016 D20031203 D20040120 D20040401 D20040823 D20041010 D20041127 D20050114 D20050303 D20050420 D20050607 D20050725 D20051029 D20060109 D20060226 Displacement (mm) Radarsat Asc - Rock glacier North (55) (50) (45) (40) (35) (30) (25) (20) (15) (10) (5) 0 5 10 15 20 25 D20030407 D20030525 D20030712 D20030829 D20031016 D20031203 D20040120 D20040401 D20040823 D20041010 D20041127 D20050114 D20050303 D20050420 D20050607 D20050725 D20051029 D20060109 D20060226 Displacement (mm) Radarsat Asc – Deformed bedrock -3 -2 -1 0 1 2 3 D20030407 D20030525 D20030712 D20030829 D20031016 D20031203 D20040120 D20040401 D20040823 D20041010 D20041127 D20050114 D20050303 D20050420 D20050607 D20050725 D20051029 D20060109 D20060226 Standardized displacement Standardized Cumulative Curve - Stable bedrock (RsatAsc) -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 D20030301 D20031206 D20040214 D20040703 D20040911 D20050305 D20050618 D20050827 D20051105 D20060218 D20060708 D20061125 D20070623 D20071110 D20080329 D20080816 D20090103 D20090523 Standardized displacement Standardized Cumulative Curve - Deformed bedrock (EnvisatAsc) -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 D20030407 D20030525 D20030712 D20030829 D20031016 D20031203 D20040120 D20040401 D20040823 D20041010 D20041127 D20050114 D20050303 D20050420 D20050607 D20050725 D20051029 D20060109 D20060226 Standardized displacement Standardized Cumulative Curve - Deformed bedrock (RadarsatAsc) Fig.3. (above) View from SSE of the investigated slope. From the peak and downward you can see two main scarps and several trench zones and counterslopes. Fig.8. Geomorphological map of the investigated area with SAR data exposed. Legend below. . Fig.2. Simplified geological map of the OSCC [from Elias (1998)]. Fig.1. Red stars indicate geographic location of the study area. Fig.7. (on the right) SCCs and time series of some geomorphic objects identified during the field survey. SCCs have been extrapolated by calculating for each day the standardized value of the sum of the displacement of all the PSs, belonging to a same geomorphic object, and plotting the resulting serie. Fig.4. (below) View from NW of the most evident counterslope affecting the whole investigated slope and locally covered by incoherent blocks deposits. Fig.5. (below) Outcrop of bedrock in the investigated slope, surrounded by incoherent blocks deposits. Fig.6. (below) Tectonic discontinuitie s in the study area. Fig.9. Map of the deformation zones subdivided in base of their state of activity. Mean annual velocity and direction of movements are reported. Areas involved in DSGSD are represented in red- to-yellow while those involved in permafrost creep are represented in blue scale. Legend below. The DSGSD may have been predisposed by deglaciation, subsequent river incision and presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might have triggered or accelerated the movement. Moreover, a correlation between the occurrence of rock glaciers and DSGSD can be hypothesized: outside of the boundaries of the DSGSD, detrital blocks are relatively more stable favoring creeping related with permafrost active layer seasonal variations; vice versa, above the DSGSD body, blocks can be considered more constantly destabilized by the slow deep movement and they react with faster and paroxysmal processes to restore their equilibrium slope angle. Thus, this phenomenon can be considered as a predisposing factor for those shallow and rapid gravity processes as like rock avalanches, rockfalls and debris flows in glacial deposits. References Azzaroli, A., Cita, M. B. (1963). Geologia stratigrafica (Vol. 2). La Goliardica. Barsch, D. (1996). “Rock glaciers: Indicators for the Present and Former Geoecology in High Mountain Environments. Springer, Berlin. Elias, J. (1998). The thermal history of the Ötztal-Stubai complex (Tyrol, Austria/Italy) in the light of the lateral extrusion model. Institut und Museum für Geologie und Paläontologie der Univ. Tübingen. Haeberli, W. (1985). “Creep of mountain permafrost: internal structure and flow of alpine rock glaciers”. Mitteilungen der Versuchsanstalt f.r Wasserbau, Hydrologie und Glazioogie 77. Z.rich. Eidgen.ssiche Technische Hochsch.le. Konzett, J., Hoinkes, G., Tropper, P. (2003). “5th Workshop of Alpine Geological Studies Field trip guide E4 Alpine metamorphism in the Schneeberg complex and neighbouring units (immediate vicinity of Obergurgl)”. Geol. Palaont. Mitt. Innsbruck, Volume 26, pp. 21-45. Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C., & Kääb, A. (2008). “Observations and considerations on destabilizing active rock glaciers in the European Alps”. Ninth International Conference on Permafrost, Volume. 2, pp. 1505-1510. Tab. 1. Comparison between October 2012 and July 2013 measurements Point ∆E (m) ∆N (m) ∆Q (m) Vector 2D (m) Vector 3D (m) ∆Time (months) Vel (cm/mese) Vel 2D (cm/mese) Vel 2D (mm/y) 1 0,5349 0,0453 1,3046 0,5368 1,4107 9,6 14,6951 5,5918 671,02 13 0,5273 0,0689 1,3039 0,5318 1,4082 9,6 14,6685 5,5394 664,73 3 0,0188 0,0115 -0,0117 0,0220 0,0250 9,6 0,2599 0,2296 27,55 4 0,0178 0,0194 -0,0320 0,0263 0,0414 9,6 0,4317 0,2743 32,91 5 0,0235 0,0148 -0,0109 0,0278 0,0298 9,6 0,3108 0,2893 34,72 7 0,0171 0,0102 -0,0133 0,0199 0,0239 9,6 0,2494 0,2074 24,89 8 0,0083 0,0079 -0,0144 0,0115 0,0184 9,6 0,1917 0,1194 14,32 10 0,5006 -0,0217 1,0390 0,5011 1,1535 9,6 12,0158 5,2195 626,34 14 0,0076 0,0041 -0,0185 0,0086 0,0204 9,6 0,2127 0,0900 10,79 15 0,0091 0,0022 -0,0292 0,0094 0,0307 9,6 0,3194 0,0975 11,70 16 0,0025 0,0075 -0,0191 0,0079 0,0207 9,6 0,2153 0,0824 9,88 17 0,0101 -0,0052 -0,0076 0,0114 0,0137 9,6 0,1424 0,1183 14,20 18 0,0111 0,0007 -0,0090 0,0111 0,0143 9,6 0,1490 0,1159 13,90 19 0,3633 -0,3865 -0,3369 0,5304 0,6284 9,6 6,5457 5,5254 663,05 20 0,0086 0,0031 -0,0132 0,0091 0,0161 9,6 0,1673 0,0952 11,43 21 0,5676 -0,0185 0,9849 0,5679 1,1369 9,6 11,8427 5,9156 709,88 Tab. 1.

4 0,0178 0,0194 -0,0320 0,0263 0,0414 9,6 0,4317 0,2743 32 ... · 7 –13 stable mm/y 24 –34 mm/y Gabriele Amato * (1), Giandomenico Fubelli (1), Gianluca Piccin (2), Giulia Chinellato

Embed Size (px)

Citation preview

Page 1: 4 0,0178 0,0194 -0,0320 0,0263 0,0414 9,6 0,4317 0,2743 32 ... · 7 –13 stable mm/y 24 –34 mm/y Gabriele Amato * (1), Giandomenico Fubelli (1), Gianluca Piccin (2), Giulia Chinellato

stable7 – 13

mm/y

24 – 34

mm/y

Gabriele Amato * (1), Giandomenico Fubelli (1), Gianluca Piccin (2), Giulia Chinellato (3), Christian Iasio (4), David Mosna (5) and Corrado Morelli (5)

(1) Roma Tre University, Department of Sciences, Rome, Italy; (2) Dolomiti Project srl, Feltre (Belluno), Italy; (3) EURAC Research, Remote Sensing Department, Bozen, Italy; (4) Henesis srl- Camlin Group, Parma, Italy; (5) Autonomous Province of Bozen, Geological Service, Kardaun (BZ), Italy

* [email protected]

The SloMove Project aims to consolidate know-how

of the ordinary monitoring applications of surface

movements, evaluate their pros and cons and

optimize the expected technical procedures of

investigation in order to contribute to safeguard

installations and to ensure inhabitants and tourists

safety, in the Alpine regions. Within this project, an

experimental composite monitoring has been carried

out in the touristic site of Maso Corto (South Tyrol,

Italy) (Fig. 1). The purposes of this experiment are:

The investigated area, approx. 3km2 wide, extends just

north of Maso Corto, between 2000 and 2900 m asl. It is

located north of the Periadriatic tectonic lineament that

separates the Austroalpine Units from the Southalpine

ones (Azzaroli & Cita, 1963). In detail, it is within the

Oetztal-Stubai Crystalline Complex (OSCC), part of

Austroalpine nappe that overlaid on Penninic Units during

the Alpine Orogeny (Konzett et al., 2003) (Fig. 2).

The OSCC consists of medium-to-high metamorphic grade

gneissic rocks, deriving from pelitic-to-psammitic

protolytes, interbedded with mica schists, quartzites,

orthogneiss, amphibolites, eclogites and rare marbles.

Geomorphological assessment of the area shows the most

important alpine and periglacial features: landscape is

characterized by several U-shaped valleys that, since the

LGM, have been engraved by glaciers which different

regression phases are documented by till deposits and

lateral and frontal moraines.

Moreover, several rock glaciers are present and blocky

slope deposits, rock avalanche deposits and rocky debris

flow deposits are widespread.

Structural-Geomorphological survey has beencarried out complying a geomorphic object-basedapproach that allowed to highlight the relationshipbetween structural assessment of the outcroppinglithologies and some specific geomorphologicalmarkers (i.e. trenches, counterscarps, outcroppingsliding surfaces) (Figs. 3, 4). Homogeneouslithological, geomorphological and structuralfeatures characterize each geomorphic objectidentified through the field survey.The whole area is characterized by N350-to-N30foliated OSCC metamorphic rocks (Fig. 8).Moreover, joints due to frost thaw activity arecommon in the shallow layer (Fig. 5) and two setsof tectonics fractures (N45, 45°-60° and N360, sub-vertical) have been recognized (Fig. 6). Rock glaciersin the area (Fig. 8) are located at elevations rankingbetween 2200 and 2700 m asl, above localtimberline, and are characterized by well-preserveddiagnostic geomorphic features.SAR interferometry data have been processed byTRE® through the SqueeSAR™ analysis usingRadarsat and Envisat images acquired between2003 and 2009. To better handle the amount ofSAR data, time series graphs of groups of PointScatterer corresponding to different geomorphicobjects have been represented separately.Diagrams that highlight the displacements of all thePS contained within a same group (StandardizedCumulative Curve) have been built (Fig. 7) .GPS surveys were carried out through thetechnique of Rapid-Static Relative Positioningduring the summers of 2012 and 2013; dataacquired allowed to detect direction of movementsand amplified the spectrum of activity ratedetectable by SAR technique (Tab. 1).

Data shows that the east flank of the relief north of Maso Corto, where the adjacent re-incised N-S glacial valley rises the maximum deep, is affected by a Deep Seated Gravitational SlideDeformation (DSGSD) that affects the outcropping OSCC rocks throughout most part of the slope. A clearly visible sliding surface, rising further upstream, separates stable bedrock by thedeformed layer. On the base of the geomorphic objects identified through the field survey, we discriminated different type of gravity phenomena, from deep-seated to shallower, locallyoverlapped and we understood boundaries of the DSGSD. Instrumental data show different velocity for different objects so, for each of them, subtracting value due to shallower movements,the velocity component related to the DSGSD activity has been calculated. Velocity of this phenomenon results extremely slow and toward southeast but is not laterally homogenous: it variesfrom a minimum average speed of 3-5 mm/y in the southern part of the slope to a maximum average speed of 10-15 mm/y in the central part (Fig. 9).

GPS measured 34 mm/y as the maximum horizontal velocity

value of the rock glaciers in the study area. From the orientation

of the displacement vectors, their movements should not be

associated to that of the DSGSD (Fig. 9). This displacement rate

can be considered generally low for the Alpine rock glaciers

(Haeberli, 1985; Barsch, 1996; Roer et al., 2008). This velocity

value, correlated with elevation ranges of rock glaciers

occurrence and their geomorphological features, allowed us to

assume that discontinuous, shallow, hot and thin permafrost

may be present in the area.

-3

-2

-1

0

1

2

3

D20

0303

18

D20

0305

05

D20

0306

22

D20

0308

09

D20

0309

26

D20

0311

13

D20

0312

31

D20

0402

17

D20

0408

03

D20

0409

20

D20

0411

07

D20

0412

25

D20

0503

07

D20

0504

24

D20

0506

11

D20

0508

22

D20

0510

09

D20

0511

26

D20

0603

26

Stan

da

rdiz

edd

isp

lace

men

t

Standardized Cumulative Curve -Stable bedrock, west flank (RsatDisc)

(55)

(50)

(45)

(40)

(35)

(30)

(25)

(20)

(15)

(10)

(5)

0

5

10

15

20

D20

0303

01

D20

0311

01

D20

0312

06

D20

0401

10

D20

0402

14

D20

0405

29

D20

0407

03

D20

0408

07

D20

0409

11

D20

0410

16

D20

0503

05

D20

0505

14

D20

0506

18

D20

0507

23

D20

0508

27

D20

0510

01

D20

0511

05

D20

0512

10

D20

0602

18

D20

0604

29

D20

0607

08

D20

0609

16

D20

0611

25

D20

0704

14

D20

0706

23

D20

0709

01

D20

0711

10

D20

0801

19

D20

0803

29

Dis

pla

cem

en

t(m

m)

Envisat Asc – Deformed bedrock

(40)

(35)

(30)

(25)

(20)

(15)

(10)

(5)

0

5

10

15

20

D20

0304

07

D20

0305

25

D20

0307

12

D20

0308

29

D20

0310

16

D20

0312

03

D20

0401

20

D20

0404

01

D20

0408

23

D20

0410

10

D20

0411

27

D20

0501

14

D20

0503

03

D20

0504

20

D20

0506

07

D20

0507

25

D20

0510

29

D20

0601

09

D20

0602

26

Dis

pla

cem

en

t(m

m)

Radarsat Asc - Rock glacier South

(45)

(40)

(35)

(30)

(25)

(20)

(15)

(10)

(5)

0

5

10

15

D20

0304

07

D20

0305

25

D20

0307

12

D20

0308

29

D20

0310

16

D20

0312

03

D20

0401

20

D20

0404

01

D20

0408

23

D20

0410

10

D20

0411

27

D20

0501

14

D20

0503

03

D20

0504

20

D20

0506

07

D20

0507

25

D20

0510

29

D20

0601

09

D20

0602

26

Dis

pla

cem

en

t(m

m)

Radarsat Asc - Rock glacier North

(55)

(50)

(45)

(40)

(35)

(30)

(25)

(20)

(15)

(10)

(5)

0

5

10

15

20

25

D20

0304

07

D20

0305

25

D20

0307

12

D20

0308

29

D20

0310

16

D20

0312

03

D20

0401

20

D20

0404

01

D20

0408

23

D20

0410

10

D20

0411

27

D20

0501

14

D20

0503

03

D20

0504

20

D20

0506

07

D20

0507

25

D20

0510

29

D20

0601

09

D20

0602

26

Dis

pla

cem

en

t(m

m)

Radarsat Asc – Deformed bedrock

-3

-2

-1

0

1

2

3

D20

0304

07

D20

0305

25

D20

0307

12

D20

0308

29

D20

0310

16

D20

0312

03

D20

0401

20

D20

0404

01

D20

0408

23

D20

0410

10

D20

0411

27

D20

0501

14

D20

0503

03

D20

0504

20

D20

0506

07

D20

0507

25

D20

0510

29

D20

0601

09

D20

0602

26

Stan

dar

diz

edd

isp

lace

men

t

Standardized Cumulative Curve -Stable bedrock (RsatAsc)

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

D20

0303

01

D20

0312

06

D20

0402

14

D20

0407

03

D20

0409

11

D20

0503

05

D20

0506

18

D20

0508

27

D20

0511

05

D20

0602

18

D20

0607

08

D20

0611

25

D20

0706

23

D20

0711

10

D20

0803

29

D20

0808

16

D20

0901

03

D20

0905

23

Stan

dar

diz

ed

dis

pla

cem

ent

Standardized Cumulative Curve -Deformed bedrock (EnvisatAsc)

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

D20

0304

07

D20

0305

25

D20

0307

12

D20

0308

29

D20

0310

16

D20

0312

03

D20

0401

20

D20

0404

01

D20

0408

23

D20

0410

10

D20

0411

27

D20

0501

14

D20

0503

03

D20

0504

20

D20

0506

07

D20

0507

25

D20

0510

29

D20

0601

09

D20

0602

26

Stan

dar

diz

edd

isp

lace

men

t

Standardized Cumulative Curve -Deformed bedrock (RadarsatAsc)

Fig.3. (above) View from SSE of the investigated slope. From the peak anddownward you can see two main scarps and several trench zones and counterslopes.

Fig.8. Geomorphological map of the investigated area withSAR data exposed. Legend below.

.

Fig.2. Simplified geological mapof the OSCC [from Elias (1998)].

Fig.1. Red stars indicate geographic location of

the study area.

Fig.7. (on the right) SCCs and time series of some geomorphic objectsidentified during the field survey. SCCs have been extrapolated by calculatingfor each day the standardized value of the sum of the displacement of all thePSs, belonging to a same geomorphic object, and plotting the resulting serie.

Fig.4. (below) View from NW of themost evident counterslope affecting thewhole investigated slope and locallycovered by incoherent blocks deposits.

Fig.5. (below) Outcrop ofbedrock in the investigatedslope, surrounded byincoherent blocks deposits.

Fig.6. (below)Tectonicdiscontinuities in the studyarea.

Fig.9. Map of the deformation zones subdivided in base of their state of activity. Mean annualvelocity and direction of movements are reported. Areas involved in DSGSD are represented in red-to-yellow while those involved in permafrost creep are represented in blue scale. Legend below.

The DSGSD may have been predisposed by deglaciation, subsequent river incision and

presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum

slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might

have triggered or accelerated the movement. Moreover, a correlation between the occurrence

of rock glaciers and DSGSD can be hypothesized: outside of the boundaries of the DSGSD,

detrital blocks are relatively more stable favoring creeping related with permafrost active

layer seasonal variations; vice versa, above the DSGSD body, blocks can be considered more

constantly destabilized by the slow deep movement and they react with faster and paroxysmal

processes to restore their equilibrium slope angle. Thus, this phenomenon can be considered

as a predisposing factor for those shallow and rapid gravity processes as like rock avalanches,

rockfalls and debris flows in glacial deposits.

References

Azzaroli, A., Cita, M. B. (1963). Geologiastratigrafica (Vol. 2). La Goliardica.

Barsch, D. (1996). “Rock glaciers:Indicators for the Present and FormerGeoecology in High MountainEnvironments. Springer, Berlin.

Elias, J. (1998). The thermal history of theÖtztal-Stubai complex (Tyrol, Austria/Italy)in the light of the lateral extrusion model.Institut und Museum für Geologie undPaläontologie der Univ. Tübingen.

Haeberli, W. (1985). “Creep of mountainpermafrost: internal structure and flow ofalpine rock glaciers”. Mitteilungen derVersuchsanstalt f.r Wasserbau, Hydrologieund Glazioogie 77. Z.rich. Eidgen.ssicheTechnische Hochsch.le.

Konzett, J., Hoinkes, G., Tropper, P. (2003).“5th Workshop of Alpine GeologicalStudies Field trip guide E4 Alpinemetamorphism in the Schneebergcomplex and neighbouring units(immediate vicinity of Obergurgl)”. Geol.Palaont. Mitt. Innsbruck, Volume 26, pp.21-45.

Roer, I., Haeberli, W., Avian, M., Kaufmann,V., Delaloye, R., Lambiel, C., & Kääb, A.(2008). “Observations and considerationson destabilizing active rock glaciers in theEuropean Alps”. Ninth InternationalConference on Permafrost, Volume. 2, pp.1505-1510.

Tab. 1. Comparison between October 2012 and July 2013 measurements

Point ∆E (m) ∆N (m) ∆Q (m) Vector 2D (m) Vector 3D (m) ∆Time (months) Vel (cm/mese) Vel 2D (cm/mese) Vel 2D (mm/y)

1 0,5349 0,0453 1,3046 0,5368 1,4107 9,6 14,6951 5,5918 671,02

13 0,5273 0,0689 1,3039 0,5318 1,4082 9,6 14,6685 5,5394 664,73

3 0,0188 0,0115 -0,0117 0,0220 0,0250 9,6 0,2599 0,2296 27,55

4 0,0178 0,0194 -0,0320 0,0263 0,0414 9,6 0,4317 0,2743 32,91

5 0,0235 0,0148 -0,0109 0,0278 0,0298 9,6 0,3108 0,2893 34,72

7 0,0171 0,0102 -0,0133 0,0199 0,0239 9,6 0,2494 0,2074 24,89

8 0,0083 0,0079 -0,0144 0,0115 0,0184 9,6 0,1917 0,1194 14,32

10 0,5006 -0,0217 1,0390 0,5011 1,1535 9,6 12,0158 5,2195 626,34

14 0,0076 0,0041 -0,0185 0,0086 0,0204 9,6 0,2127 0,0900 10,79

15 0,0091 0,0022 -0,0292 0,0094 0,0307 9,6 0,3194 0,0975 11,70

16 0,0025 0,0075 -0,0191 0,0079 0,0207 9,6 0,2153 0,0824 9,88

17 0,0101 -0,0052 -0,0076 0,0114 0,0137 9,6 0,1424 0,1183 14,20

18 0,0111 0,0007 -0,0090 0,0111 0,0143 9,6 0,1490 0,1159 13,90

19 0,3633 -0,3865 -0,3369 0,5304 0,6284 9,6 6,5457 5,5254 663,05

20 0,0086 0,0031 -0,0132 0,0091 0,0161 9,6 0,1673 0,0952 11,43

21 0,5676 -0,0185 0,9849 0,5679 1,1369 9,6 11,8427 5,9156 709,88

Tab. 1.