31
23 4. 研究結果および考察 4.1 燃料電池のリサイクル法の確立(城石英伸,加藤 格,国松 昌幸担当) 4.1.1 燃料電池中のレアメタルの存在割合 4.1.1 に,Nafion 膜に塗布した場合と,カーボンペーパーに塗布して形成し MEA を分解した場合における,白金触媒の存在割合を示す。これより,作製時 にカーボンペーパー側に触媒を塗布したものは, MEA 分解時に 53%がカーボンペー パー側に 47%Nafion 側に残ることが明らかとなった。また,触媒量を増加させて いくと, Nafion 膜側に残存する量が増加するものと思われる。一方 Nafion 膜側に触 媒を塗布したものは,分解時にほぼ 100%Nafion 膜に付着していることが示された。 このように MEA の作製法によって,レアメタルを含む触媒の分布が異なること から,リサイクルの円滑化のために, MEA 作製法を燃料電池に明示することが望ま れる。 4.1.2 燃料電池の化学的手法によるリサイクル 4.1.2.1 王水,塩酸-過酸化水素混合溶液を用いた Pt 溶解量の経時変化測定 王水および塩酸-過酸化水素混合液を用いた Pt 溶出試験における Pt 溶出量の 経時変化を図 4.1.1 に示す。Pt 溶解速度は王水,11.3MHCl-0.36MH 2 O 2 溶液の順 で速かった。塩酸の濃度が 1 M の場合は過酸化水素の濃度を高くしても前者の ような溶解速度を得ることができなかった。また,王水による Pt の溶解は通常 加熱下において行われるが,このように室温でも高い溶解速度が得られたのは, Pt が微粒子であるために溶解が進行しやすかったためだと考えられる。しかし, 2 時間以上の測定で得られた最終的な Pt 溶解量は 79 %で, 20 %以上の Pt を残す 結果となった。また,塩酸濃度を 1 M となるように調製した塩酸-過酸化水素混 合溶液 では多量 Pt を残す結 果とな った。 表 4.1.1 作製法の違いによる白金触媒の存在割合 作成時触媒塗布部位 分解時存在量 /mg カーボンペーパー Nafion 膜 カーボンペーパー 0.16 0.14 Nafion 膜 0.00 0.30

4. 4.1 4.1 のスルホン酸基は全解離して負に帯電しており,陰イオンを極めて通しにくい ため,(4.2)式のCl-イオンが反応に関与できず,反応が進行しない部位が出てく

Embed Size (px)

Citation preview

  • 23

    4. 4.1 ( )

    4.1.1 4.1.1 Nafion

    MEA

    MEA 53%

    47% Nafion

    Nafion Nafion

    100%Nafion

    MEA

    MEA

    4.1.2 4.1.2.1 - Pt - Pt Pt

    4.1.1 Pt 11.3MHCl-0.36MH2O2

    1 M

    Pt

    Pt

    2 Pt 79 %20 % Pt

    1 M -

    Pt

    4.1.1

    /mg

    Nafion

    0.16 0.14

    Nafion 0.00 0.30

  • 24

    Pt

    HNO3 + 3HCl NOCl + Cl2 + 2H2O (4.1.1)

    Pt + 2NOCl + Cl2 + 2Cl- [PtCl6]2- + 2NO (4.1.2)

    Pt

    . 4.1.2

    Nafion

    Fig. 4.1.1. Time dependence of Pt dissolution with aqua regia ( ), 1MHCl-0.36MH2O2 (), 1MHCl-10.3MH2O2 (), and 11.3MHCl-0.36MH2O2 mixture () at RT.

    0

    20

    40

    60

    80

    100

    0 2000 4000 6000 8000 10000

    Dissolved

    Pt/%

    t/s

    aqua regia

    1 MHCl-0.36 MH O

    1 MHCl-10.3 MH O

    11.3 MHCl-0.36 MH O

    2 2

    2 2

    2 2

    Fig. 4.1.2. Scheme of three-phase interface in PEFCs

    (Nafion)

  • 25

    (4.2) Cl-

    2

    R = R1exp(t /1)+ R2exp(t /2) (4.1.3)

    R R1R2

    1 (s)2 (s)

    R1 R2

    R1+ R2 = 1 (4.1.4)

    4.1.2 R2

    R2 = 1Re / Ryy (4.1.5)

    ReRyy

    26 %4.2104(s) (12

    ) Pt

    94(s) Pt

    (4.1.1)

    Pt Pt

    4.1.2 Result of the analysis based on eq. 3.3.

    R 1 R 2 1 (s) 2 (s) R 2

    0.74 0.26 94 4.2104 0.886

  • 26

    - Pt 2, 3)

    Pt + H2O2 + 4HCl [PtCl4]2- + 2H+ + 2H2O (4.1.6)

    Pt + 2H2O2 + 6HCl [PtCl6]2- + 2H+ + 4H2O (4.1.7)

    H2O2 + 2HCl Cl2 + 2H2O (4.1.8)

    (4.5)(4.6) Pt (4.7)

    11.3MHCl-0.36MH2O2

    4.1.3

    1MHCl-10.3MH2O2

    Pt

    Pt

    4.1.2.2 Pt 1.0 M Pt Pt

    4.1.4 1.0 M Pt

    Pt

    70 1.0 M

    11.3MHCl-0.36MH2O22 Pt

    4.1.3. Picture of a 11.3MHCl-0.36 MH2O2mixture solution prepared immediately.

  • 27

    72 % Pt

    Pt

    4.1.2.3 -

    4.1.4. Time dependence of Pt dissolution with 1.0 M HCl at 25 (),

    40 (), 55 (), and 70 ().

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 2000 4000 6000 8000

    Dissolved

    Pt/%

    t /s

    25

    40

    55

    70

  • 28

    60

    . 4.1.5 25

    2104(s)(6)60

    3

    60

    4.1.6 1 M HCl 11.3MHCl-0.36MH2O2

    4.1.6. Time dependence of equilibrium potential in 1 M HCl ( ) and

    11.3MHCl-0.36MH2O2 mixture () using Ta wire at RT.

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 5000 10000 15000 20000

    E/V

    vs.A

    g|AgCl|KC

    lsat.

    t/s

    11.3 MHCl-0.36 MH O

    1 M HCl

    2 2

    4.1.5. Time dependence of equilibrium potential in aqua regia using Ta wire at

    RT(), and 60 ().

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    0 5000 10000 15000 20000

    E/V

    vs.A

    g|AgCl|KC

    lsat.

    t/s

    RT

    60

  • 29

    1 M HCl

    11.3MHCl-0.36MH2O2

    1

    11.3MHCl-0.36MH2O2

    4.1.2.4

    nobs

    4.1.7 (3.1.5)

    Fitting 4.1.7

    Fitting

    4.1.3 25 60

    40

    4.1.2 Volatization rate constant estimated by

    non-linear least square method.

    T / 107k1 / mol-1cm2s-1

    25 1.0

    60 40

    4.1.7 Time dependence of the amount of evaporated NOCl and Cl2

    0.000

    0.005

    0.010

    0.015

    0 5000 10000 15000

    n obs

    /mol

    t / s

    1212

  • 30

    4.1.3 4.1.3.1 CV Pt Pt/C 1 M H2SO4 1 M HCl

    Cyclic Voltammetry CV 4.1.8

    CV Pt H2SO4

    19.6cm2HCl 18.8cm2 4%

    HCl CV Pt

    HCl

    CV Pt

    . 4.1.2 Nafion Nafion

    pKa 0

    Pt

    1 M HCl 100 mVs-1-0.15 V 1.0 V(vs.

    Ag|AgCl sat. KCl) Cyclic Voltammetry CV

    4.1.9 . 4.1.10 50 mVs-1100 mVs-1 CV

    Pt HCl

    CV Pt

    1 Pt

    Pt CV

    CV -0.15 V

    0.4 V CV Pt

    4.1.8. Cyclic Voltammograms of CP-supported Pt/C catalyst at 3rd cycle on GC

    in 1M H2SO4 () and 1M HCl () underN2. Scanrate is 50mVs-1.

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    i/m

    Acm

    2geom

    E/Vvs.Ag|AgCl

    1MHSO

    1MHCl

    2 4

  • 31

    4.1.11 50 mVs-1-0.15 V 0.4 V CV

    -0.15 V~1.0 V

    Pt CV HCl

    -0.15 V~0.4 V CV Pt -0.15

    V~0.4 V CV 3~5

    4.1.9 Cyclic voltammograms of CP-supported Pt/C catalyst at 3rd cycle on GC in

    1M HCl under N2at RT. Scan rate is 100mV/s.

    40.0

    30.0

    20.0

    10.0

    0.0

    10.0

    20.0

    30.0

    0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    i/m

    Acm

    2geom

    E/Vvs.Ag|AgCl

    cyclenum.6cyclenum.9cyclenum.15cyclenum.21cyclenum.27cyclenum.33cyclenum.45cyclenum.51

    4.1.10 Time dependence of relative surface area during potential cycling by CV.

    0

    20

    40

    60

    80

    100

    120

    0 5 10 15 20 25 30 35

    Relativesurfacearea/%

    Cyclenumber

    CV50mV/s

    CV100mV/s

  • 32

    7

    4.1.3.2 Pt 22, 23)

    4.1.11 Cyclic voltammograms of CP-supported Pt/C catalyst at 7th cycle on GC

    in 1M HCl under N2at RT. Scan rate is 50mV/s.

    30.0

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    5.0

    10.0

    15.0

    0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5

    i/m

    Acm

    2geom

    E/Vvs.Ag|AgCl

    cyclenum.1

    cyclenum.2

    cyclenum.3

    cyclenum.4

    cyclenum.5

    cyclenum.6

    cyclenum.7

    cyclenum.30

    4.1.12 Time dependence of current generated by sawtooth wave (cathode

    scan100 mVs-1anode scanstep).

    0.30

    0.20

    0.10

    0.00

    0.10

    0.20

    0.30

    0.40

    0 10 20 30 40 50 60

    i/A

    t /s

    1MHSO

    1MHClO(+0.1A)

    1MHCl(+0.2A)

    2 4

    4

  • 33

    H2SO4HClO4HCl (100

    mVs-1step)-

    4.1.12

    0.1 V 1.2 V

    11 0.1 V 1.2 V

    4.1.13 1 CV

    Pt CV 1

    CV HCl Pt

    H2SO4

    HClO4

    2~3 CV

    4.1.12 Time dependence of current generated by sawtooth wave (cathode scan

    100 mVs-1anode scanstep).

    0.30

    0.20

    0.10

    0.00

    0.10

    0.20

    0.30

    0.40

    0 10 20 30 40 50 60

    i/A

    t /s

    1MHSO

    1MHClO(+0.1A)

    1MHCl(+0.2A)

    2 4

    4

    4.1.13 Cyclic voltammograms of CP-supported Pt/C catalyst on GC in 1 M

    H2SO4(red line), 1 M HClO4(green line) and 1 M HCl(blue line) under N2at RT.

    Scan rate is 100mV/s. Solid line is before dissolution test. And dotted line is after

    dissolution test with sawtooth wave(cathode scan100 mVs-1anode scanstep)

    30.0

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    i/m

    Acm

    2geom

    E/Vvs.Ag|AgCl

    HSObeforedissolutiontestHSOafterdissolutiontestHClObeforedissolutiontestHClOafterdissolutiontestHClbeforedissolutiontestHClafterdissolutiontest

    2

    2

    4

    4

    4

    4

    4.1.3. Electrolyte dependence of amount of platinum dissolution.

    /%

    H2SO4 17

    HClO4 20

    HCl 94

  • 34

    . 4.1.14 Pt Pt

    H2SO4, HClO4

    Pt Pt Pt

    0

    Pt 50

    Pt

    4.1.3 ICP 20 Pt

    (4.1.9)(4.1.10) Pt

    Pt

    Pt + 4Cl- [PtCl4]2 + 2e E=+0.758 V (4.1.9)

    Pt + 6Cl- [PtCl6]2+ 4e E=+0.744 V (4.1.10)

    4.1.3.3 Pt 0.5 M1.0 M2.0 M HCl (100 mVs-1

    step)-.

    4.1.15

    4.1.14 Time dependence of Pt dissolution with sawtooth wave (cathode scan100

    mVs-1anode scanstep) at RT in 1 M H2SO4 (), 1 M HClO4 () and 1 M HCl

    ().

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400 500 600

    Relativesurfacearea/%

    t/s

    HSO

    HClO

    HCl

    42

    4

  • 35

    4.1.16 HCl 1

    CV Pt Pt

    4.1.16. Cyclic voltammograms of CP-supported Pt/C catalyst on GC in 0.5 M(red

    line), 1.0 M(green line) and 2.0 M HCl(blue line) under N2at RT. Scan rate is

    100mV/s. Solid line is before dissolution test. And dotted line is after dissolution test

    with sawtooth wave(cathode scan100 mVs-1anode scanstep) 1min.

    30.0

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    i/m

    Acm

    2geom

    E/Vvs.Ag|AgCl

    0.5MHClbeforedissolutiontest0.5MHClafterdissolutiontest1.0MHClbeforedissolutiontest1.0MHClafterdissolutiontest2.0MHClbeforedissolutiontest2.0MHClafterdissolutiontest

    4.1.15 Time dependence of current generated by sawtooth wave (cathode scan

    100 mVs-1anode scanstep).

    0.20

    0.15

    0.10

    0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0 10 20 30 40 50 60

    i/A

    t /s

    0.5MHCl

    1.0MHCl(+0.1A)

    2.0MHCl(+0.2A)

  • 36

    4.1.17 0.5 M1 M2 M HCl Pt

    Pt

    Pt

    Pt

    95 %(0.5 M)94 %(1 M)96 %(2 M) Pt

    95 % Pt

    100 % Pt Nafion

    4.1.18 Pt/C

    4.1.17. Time dependence of Pt dissolution with sawtooth wave (cathode scan100

    mVs-1anode scanstep) at RT in 0.5 M (), 1.0 M () and 2.0 M () HCl.

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400 500 600

    Relativesurfacearea/%

    t/s

    0.5MHCl

    1.0MHCl

    2.0MHCl

    4.1.18. Scheme of solid/liquid interface in CP/catalyst assembly.

    (Nafion)

  • 37

    4.1.3.4 Pt (100 mVs-1) 1.0 V ~ 0.1 V

    1.2 V ~ 0.1 V1.4 V ~ 0.3 V (vs. Ag|AgCl sat. KCl)Pt

    - 4.1.19

    Fig. 4.1.19. Time dependence of current generated by sawtooth wave (cathode

    scan100 mVs-1anode scanstep).

    0.30

    0.25

    0.20

    0.15

    0.10

    0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0 10 20 30 40 50 60

    i/A

    t /s

    0.1V1.0V

    0.1V1.2V

    0.3V1.4V

    Fig. 4.1.20. Time dependence of Pt dissolution in 1MHCl with sawtooth wave at

    RT. Scan range is -0.1 V~1.0 V (), 0.1 V~1.2 V () and 0.3V~1.4 V ().

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400 500 600

    Relativesurfacearea/%

    t/s

    0.1V1.0V

    0.1V1.2V

    0.3V1.4V

  • 38

    1.4 V

    Pt 4.1.20 100mVs-1

    4.1.20. Time dependence of current generated by various potential wave of

    (a)~(f).

    10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 10 20 30 40 50 60

    i/m

    A

    t /s

    0.7V(a)

    0.9V(b)

    1.2V(c)

    [A]

    0.30

    0.20

    0.10

    0.00

    0.10

    0.20

    0.30

    0 5 10 15 20

    i/A

    t /s

    (d)

    (e)

    (f)

    [B]

    0.10

    0.00

    0.10

    0 5 10 15 20

    i/A

    t /s

    (g) (h)[C]

  • 39

    Pt

    4.1.3.5 Pt 3.1.7 (a) ~ (h)Pt -

    4.1.20 4.1.20 [A]

    (a)(b)

    (c)

    . 4.1.20 [B][C]

    (e)(h) Pt (f)(g)

    1 M 3.1.7 (0.7 V (a) 0.9 V (b) 1.2 V (c)

    vs. Ag|AgCl)(e)(d) Pt

    Pt 4.1.21

    Pt

    4.1.21. Time dependence of Pt dissolution with fixed electrical potential(0.7 V

    (), 0.9 V (), 1.2 V ()), sawtooth wave (d) () and rectangular waveform (e)

    () in 1 M HCl at RT.

    0

    20

    40

    60

    80

    100

    120

    0 50 100 150 200 250

    Relativesurfacearea/%

    t/s

    0.7V(a)0.9V(b)1.2V(c)Sawtoothwave(d)Rectangularwave(1.2V1s0.1V1s)(e)

  • 40

    0.8 V(vs. RHE) Pt

    Pt

    4.1.22 3.1.7 (e)~(h) Pt

    3.1.7 Pt

    (h)

    (h) Pt 1 97 % Pt

    (e)(f)(d)

    (g) Pt 20 (h)

    Pt ICP-AES 97 % Pt

    4.1.22. Time dependence of Pt dissolution with sawtooth waves (d) (), (f)

    (), (g) (), (h) () and rectangular waveform (e) () in 1 M HCl at RT.

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400 500 600

    Relativesurfacearea/%

    t/s

    SW(100mV/s)(d)

    RW(e)

    SW(1100mV/s)(f)

    SW(1100mV/s)(0.1V1s,1.2V0s)(g)

    SW(1100mV/s)(0.1V0s,1.2V1s)(h)

    4.1.4 Lifetime analysis of Pt dissolution by eq. 4.1.11 using non-linear least

    square method.

    Potential waveform / s R 2

    0.7V (a) 1006 0.95000.9V (b) 337 0.98951.2V (c) 385 0.9988

    Sawtooth wave (d) 86 0.9973Rectangular wave (e) 31 0.9884

    Sawtooth wave (f) 53 0.9946Sawtooth wave (g) 263 0.9897Sawtooth wave (h) 20 0.9495

  • 41

    Pt

    (4.1.11)

    S = S0 exp (t /) (4.1.11)

    S(cm2) t(s) Pt S0(cm2)

    (s)

    ( 4.1.4)

    0.7 V 0.9 V Pt

    1.2 V

    Pt (h)

    15

    4.1.3.6 Pt Pt 4.1.23 46 Pt/C CP CV

    3.1.7 (e) 3 Pt

    46 Pt

    CP Pt

    Pt

    Pt ICP 82 %

    Pt 14 % Pt

    4.1.23. Cyclic voltammograms of CP-supported Pt/C catalyst on GC in 1M HCl

    at RT. The catalyst was dissolved by aqua regia at RT for 46h.

    5.0

    4.0

    3.0

    2.0

    1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    0.2 0.1 0 0.1 0.2 0.3 0.4 0.5

    i/mAcm

    2geom

    E/Vvs.Ag|AgCl

    Afterdissolvedbyaquaregia

    AndafteraddedRW(e)3min

  • 42

    4 % Pt Pt

    Nafion

    Pt

    Pt

    4.1.3.7 Pt 4.1.24 Pt/C CP Pt

    UV Pt 10 ppm H2[PtCl6](H2O)6K2[PtCl4] 3 UV

    Pt H2[PtCl6](H2O)6 260nm

    H2[PtCl6](H2O)6

    260nm [PtCl6]2

    4.1.24. UV spectra of Pt leaching solution with electrochemical method(), 10

    ppm H2[PtCl4](H2O)6 (), K2[PtCl4] () and Pt standard solution ().

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    200 250 300 350 400

    Abs

    Wavelength/nm

    electrochemicalmethod

    H[PtCl](HO)

    K[PtCl]

    Ptstandardsolution

    2 4

    2 6 62

  • 43

    4.1.3.8 PtRu PtRu PtRu 4.1.25

    Pt PtRu

    Pt 83%Ru

    79% 10

    Pt Ru 80%Pt/C

    (0.3 mg/cm2)Pt15%

    PtRu/C 2.9 mg/cm2

    Nafion

    PtRu PtRu/C CP

    4.1.4 LCIA Pt 4.1.5 Pt

    Pt1g

    (3.1.9)4 Pt

    - Pt (3.1.11) 4

    Pt

    4.1.25. Time dependence of Pt() and Ru() dissolution with SW(e)at RT.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 200 400 600 800 1000 1200

    Dissolved

    Ptand

    Ru/%

    t/s

    Pt

    Ru

  • 44

    -

    Pt (3.1.8)(3.1.9) 1 1

    - Pt

    (3.1.10)(3.1.11) 1 1

    1 4.1.26

    -

    (4.1.9)(4.1.10) Pt

    4.1.5. Comparison of environmental burden of Pt dissolution method without electrical

    energy.

    -

    IPCC-100(2001) / 10-3 1.05 1.61 4.74

    () HTP_cancer / 10-7 5.65 7.68 15.3

    () HTP_chronic disease / 10-9 0.842 1.15 2.28

    AETP / 10-6 1.46 1.99 3.96

    TETP / 10-5 3.32 4.52 8.99

    DAP / 10-6 1.19 1.79 21.2

    EPMC / 10-8 0.974 1.40 8.72

    OECF / 10-8 3.62 4.96 22.2

    m3 / 10-8 0.000862 0.00117 150

    1/R(Sb) / 10-7 0.100 0.155 145

    MJ / 10-2 1.35 2.44 7.75

    4.1.26. Relative comparison of environmental burden of Pt dissolution method

    without electrical energy.

  • 45

    (4.1.9)(4.1.6) Pt

    4.1.6

    Pt

    4.1.5

    -

    50%

    4.1.5 XRD . 4.1.27 25

    fcc

    4.1.6. Comparison of environmental burden of Pt dissolution method. -

    IPCC-100(2001) / 10-3 4.17 1.61 8.28

    () HTP_cancer / 10-7 32.76 7.68 46.0

    () HTP_chronic disease / 10-9 4.88 1.15 6.86

    AETP / 10-6 8.5 1.99 11.93

    TETP / 10-5 19.27 4.52 27.06

    DAP / 10-6 2.95 1.79 23.15

    EPMC / 10-8 2.8 1.40 10.79

    OECF / 10-8 11.69 4.96 31.38

    m3 / 10-11 5.0 1.17 150473.00

    1/R(Sb) / 10-8 4.976 1.55 1453.19

    MJ / 10-2 5.42 2.44 12.36

    4.1.27 XRD patterns of (a) reproduced Pt/MWCNT catalyst and (b) Pt (ICDD Card

    No. 89-7382).

    20 40 60 802 Theta / degree

    Inte

    nsity

    / a.

    u.

    (b) Pt (ICDD Card No. 89-7382)

    (a) Reproduced Pt/MWCNT catalyst

  • 46

    Scherrer

    Bcos9.0

    Bt =

    (4.1.10)

    t ()() X (1.54184)B Bragg

    B(rad)(2)

    )22(21

    21 =B (4.1.11)

    1.9nm

    4.1.6 4.1.6.1 0.05M NaOH

    pH 1.46

    0.05M NaOH

    Nafion 1g 1.610-2mol Nafion

    26

    Nafion

    5.910-3mol

    4.1.6.2

    Nafion

  • 47

    4.2 () 4.2.1 pH NiCoFe/C NiCoFe/C XRD Scherrer

    28.6 nm

    NiCoFe/C pH NiCo 4.2.1

    pH5.0 NiCo Ni

    pH9.0 pH7.0

    pH9.0 pH7.0 pH9.0

    NiCoFe/C Ni 15%pH5.07.0 1%

    pH9.0 pH5.07.0 Ni pH9.0

    pH

    pH

    pH

    pH (H+)(1)

    Ni Co (NiO)

    Ksp=10-16 (M2)

    (CoO)

    26)NiCo pH

    Ni Co

    4.2.1 pH NiCo

    0.0

    0.10

    0.20

    0.30

    0.40

    4.0 5.0 6.0 7.0 8.0 9.0 10

    NiCo

    (pp

    m)

    pH

  • 48

    50 27) NiCo 28-29)

    MO + 2H+ M2+ + H2O (4.2.1)

    [M NiCoMO NiOCoO ]

    NiCo

    MINEQL+(ENVIRONMENTAL RESEARCH SOFTWARE)

    MINEQL+ pH NiCo

    pH

    NiCo

    6.00.4 ppm 3.80.1 ppm

    pH

    30-32) pH

    / SPARC(SPARC

    Performs Automated Reasoning in Chemistry, http://sparc.chem.uga.edu/sparc/)

    pH /

    pH SPARC

    pH

    pH

    pH 4.0 20)

  • 49

    4.2.2 NiCo NiCoFe/C

    pH NiCo 4.2.2 4.2.3

    4.2.21.010-71.010-3 (M)ppH6.2pH7.9

    p=0.0088 p>0.05 pH6.2

    7.9 Logistic pH6.2

    7.07.9 Ni pH

    4.2.3 1.010-7 1.010-3 (M)

    pH6.2pH7.0ppH7.0pH7.9ppH7.0

    pH7.9 1.010-3 1.010-7 (M)pH6.2

    pH7.9 1.010-5 1.010-4 (M) p

  • 50

    E

    D

    T

    A

    8.0610-7(M) EDTA

    pH Ni Co

    FIAM BLM pH

    (H+)

    pH NiCo AAP

    WHAM(NATURAL ENVIRONMENT RESEARCH COUNCIL)

    AAP NiCo

    FIAM

    33)WHAM 1.010-3 (M)

    pH6.27.07.9 Ni 9.8810-49.8210-48.7410-4 (M)

    Co 9.8710-49.8210-49.1210-4 (M)

    4.2.3 Co pH6.27.09.0

    *pH6.2-7.0pH7.0-7.9 p0.29 0.39

    **pH6.2-7.0pH7.0-7.9 p0.021 0.42

    ***pH6.2-7.0pH7.0-7.9 p0.860.012

    ****pH6.2-7.9 p=0.21 *****pH6.2-7.0 p=0.51

    -20

    0

    20

    40

    60

    80

    100

    120

    10-8 10-7 10-6 10-5 10-4 10-3 10-2

    pH6.2pH7.0pH7.9

    (%

    )

    (M)

    ***

    ***

    ****

    *****

  • 51

    WHAM pH

    pH H+

    H+ Co pH6.2 H+

    pH7.0

    pH7.9 H+pH7.0 pH7.9

    pH6.27.07.9 1.010-3 (M)

    Co 2.6410-15.2710-16.4610-1 (-)

    pH6.2 pH7.07.9

    Co H+

    pH7.0 7.9

    Ni pH

    H+

    pH6.27.07.9 pH6.27.07.9

    1.010-3 (M) Ni 6.4510-21.0710-11.0910-1 (-)

    pH6.2

    Ni (H. vulgare) pH

    34) Ni

    pH

    Co pH H+

    Ni pH

    H+ pH

    NiCoFe/C pH 5.07.09.0

    4.2.1 pH5.0

    10 %pH7.09.0

    100 %

    pH5.07.09.0 pH7.09.0

    4.2.1 pH

    1.0% (%) 10 % (%) 100% (%)

    pH 5.0 0 14.5 100

    pH 7.0 0 0 0

    pH 9.0 0 0 0

  • 52

    pH5.0 Ni

    Co

    EC50 940 ppm

    EC50 4.25 ppm 50 %

    4.2.3 TU NiCoFe/C TU(Toxicity Unit)

    TU 4.2.4 4.2.4

    NiCo TU

    NiCo Logistic

    TUNiCoFe/CNiCo

    Co

    20%Ni 2.2% 0.075% 11%

    Co Ni 4.2.1

    Co Ni Co

    4.2.4 NiCo TU (

    pH=7.0)

    -20

    0

    20

    40

    60

    80

    100

    120

    10-4 10-3 10-2 10-1 100 101 102 103

    pH 5.0pH 7.0pH 9.0NiCo

    (%)

    TU (-)

    R2=0.77 RMSE=20.4

  • 53

    Ni NiCo

    EC50

    50%

    Ci/Gi 1.59 (-)Ci/Gi 1 (-)

    BLM Biotic Ligand

    35)

    36,37)