10
AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP . . . B-1: Mathematics for Aerodynamics B-2: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis Unit B-4: List of Subjects Lifting Flow over a Cylinder Real Flow over a Spinning Cylinder Flow around an Airfoil Real Flow: Starting Vortex Kutta Condition

4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

AE301 Aerodynamics I

UNIT B: Theory of Aerodynamics

ROAD MAP . . .

B-1: Mathematics for Aerodynamics

B-2: Flow Field Representations

B-3: Potential Flow Analysis

B-4: Applications of Potential Flow Analysis

AE301 Aerodynamics I

Unit B-4: List of Subjects

Lifting Flow over a Cylinder

Real Flow over a Spinning Cylinder

Flow around an Airfoil

Real Flow: Starting Vortex

Kutta Condition

Page 2: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

LIFTING FLOW OVER A CYLINDER

Combining nonlifting flow over a cylinder + vortex

=> lifting flow over a cylinder

(this is a similar flow filed around “spinning” circular cylinder)

In 2-D polar coordinate system:

2

2( sin ) 1 ln

2

R rV r

r R

= − +

, where R is the radius of the cylinder

The velocity field can be found by: 2

2

11 cosr

RV V

r r

= = −

2

21 sin

2

RV V

r r r

= − = − + −

Unit B-4Page 1 of 9

Lifting Flow over a Cylinder (1)

Nonlifting flow

over a cylinder Vortex of strength located

at the center of the cylinder

Page 3: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

STAGNATION POINTS OF THE FLOW FIELD (1)

The stagnation points can be located by setting =V 0 , such that: 2

20 1 cosr

RV V

r

= = −

eqn. 1

2

20 1 sin

2

RV V

r r

= = − + −

eqn. 2

STAGNATION POINTS OF THE FLOW FIELD (2)

The first condition (eqn. 1) provides the following two solutions:

r R= (stagnation points are located on the surface of the cylinder)

or

2

= (stagnation points are located along the vertical axis)

If we combine these two solutions with the second condition (eqn. 2):

For r R= => 2 sin 02

VR

− − = => 1sin

4 V R

= −

For r R => ?

Unit B-4Page 2 of 9

Lifting Flow over a Cylinder (2)

Page 4: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

STAGNATION POINTS OF THE FLOW FIELD (3)

For the case of r R= (stagnation points are on the surface of the cylinder)

=> 1sin4 V R

= −

There are two possible stagnation point solutions for a lifting flow over a circular cylinder. These are

based solely on the strength of the vortex (circulation):

(a) If 4 V R : two stagnation points (both at r R= )

(b) If 4 V R = : two stagnation points become one stagnation point ( r R= , 2 = − )

For the case of r R (stagnation points are NOT on the surface of the cylinder)

(c) If 4 V R : two stagnation points

• One inside: (this is trivial solution) and

• One outside of the cylinder, 2 = − )

From Kutta-Joukowski theorem, the lift force (per unit depth) of a spinning circular cylinder is related

to the circulation, such that:

'L V =

Unit B-4Page 3 of 9

Lifting Flow over a Cylinder (3)

Page 5: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

Unit B-4Page 4 of 9

Class Example Problem B-4-1

Related Subjects . . . “Lifting Flow over a Cylinder”

Consider the lifting flow over a circular cylinder. Based on the potential flow

analysis, derive the relationship between lift coefficient (cl) and circulation ().

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Page 6: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

Unit B-4Page 5 of 9

Real Flow over a Spinning Cylinder

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

Page 7: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

Unit B-4Page 6 of 9

Flow around an Airfoil

'L V = V

C

L’

Circulation result by potential

flow analysis solution

1

Circulation should be “adjusted” based

on an “additional condition”

1 => 2

POTENTIAL FLOW FIELD AROUND AN AIRFOIL

Based on the potential flow analysis of a lifting flow around the circular cylinder. Let us now replace

the circular cylinder with an airfoil. This is the starting point of the potential flow analysis of a flow

over an airfoil.

• As we know from the analysis of a lifting flow around the circular cylinder, there are infinite

numbers of “valid” theoretical solutions, corresponding to infinite choices of circulation

Basically, the location(s) of stagnation points depend solely on the amount of circulation

• Therefore, a potential flow theory based flow field analysis over an airfoil, as we simplify many

“real” flow field characteristics (especially viscosity), will result in totally non-realistic solution . . .

• However, a given airfoil at a given angle of attack should produce a single value of lift that should

be more realistic against “real” flow field. We need an additional condition that fixes the amount

of circulation for a given airfoil at a given angle of attack . . .

Unit B-4Page 6 of 9

Flow around an Airfoil

'L V = V

C

L’

Unit B-4Page 6 of 9

Flow around an Airfoil

'L V = V

C

L’

!

?

Page 8: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

STARTING VORTEX

Let us learn from “the nature” of the real flow field. Experimental observation for the development of

the flow field around an airfoil, which is set into motion from an initial state of rest, provides interesting

insight into the nature of real flow around an airfoil.

What happens, when the flow field is established around an airfoil . . . this is a classical “starting

vortex” formulation due to an “impulse start” of the real flow field.

(a) The flow tries to curl around the sharp trailing edge from the bottom surface to the top surface.

(b) The stagnation point on the upper surface starts moving toward the trailing edge.

(c) The flow is smoothly leaving the top and bottom surfaces of the airfoil at the trailing edge. Then,

the flow field achieves the steady-state condition.

Conclusion: an excess amount of circulation is “removed” from the circulation of the flow field so that

the flow at the trailing edge leaves smoothly. Can we somehow apply this as an additional condition

to the potential flow analysis over an airfoil?

Unit B-4Page 7 of 9

Real Flow: Starting Vortex

(a)

(b)

(c)

Page 9: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

Unit B-4Page 6 of 9

Flow around an Airfoil

'L V = V

C

L’

Unit B-4Page 6 of 9

Flow around an Airfoil

'L V = V

C

L’

Circulation result by potential

flow analysis solution

1

Circulation “adjusted” based on

the “Kutta Condition”

1 => 2 (2 = 1 – shed “starting vortex”)

At the trailing edge, the flow

MUST leave smoothly

STARTING VORTEX AND THE KUTTA CONDITION

Starting vortex is the “nature’s own way” to adjust the flow field around an airfoil.

By shedding appropriate amount of starting vortex, the circulation of the flow field is “adjusted” so that

the flow at the trailing edge can leave smoothly. This is called, the Kutta condition.

For a trailing edge with finite angle:

1 2 0V V= = (thus, a stagnation point is formed at the trailing edge)

For a “cusped” trailing edge:

1 2V V= (but not 1 2 0V V= = )

• Potential flow analysis WITHOUT the Kutta Condition

• Potential flow analysis WITH the Kutta Condition

Unit B-4Page 8 of 9

Kutta Condition

Page 10: 4 s B- 2: ns Unit B - 4: List of Subjectsmercury.pr.erau.edu/~hayasd87/AE301/Notes/AE301_Notes_B-4.pdf · AE301 Aerodynamics I Unit B - 4: List of Subjects 4 Lifting Flow over a Cylinder

Unit B-4Page 9 of 9

Class Example Problem B-4-2

Related Subjects . . . “Flow around an Airfoil”

Consider an airplane with a NACA airfoil (with

chord length of 1 m). The airplane’s airspeed is

50 m/s at the altitude of 4 km. The corresponding

lift coefficient of the airfoil is cl = 0.8.

(a) Determine the lift per unit span.

(b) Calculate the circulation around the airfoil.

+

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________

_________________________________________________________