19
DECEMBER 12, 2014 DISHWASHER TEMPERATURE CONTROL 2013 DATA JAMES LARSON SUBMITTED TO DR. W. ROBERT STEPHENSON

(417898087) larson.james stat495 Project

Embed Size (px)

Citation preview

DECEMBER  12,  2014  

DISHWASHER  TEMPERATURE  CONTROL  2013  DATA  

JAMES  LARSON  SUBMITTED  TO  DR.  W.  ROBERT  STEPHENSON

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON   1  

Executive  Summary   Subject:  Variation  in  Dishwasher  Rinse  Cycle  Temperatures  

The  process  being  analyzed  is  the  temperature  (°F)  for  the  four  rinse  cycles  in  the  main  commercial-­‐grade  dishwasher  being  used  at  an  Iowa  State  Dining  facility.   These  are  classified  as  Prewash  120,  Wash  150,  Rinse  160,  and  Final  Rinse  180.   The  manufacturer  specifications  are  then  assumed  to  be  120°F,  150°F,  160°F,  and  180°F  respectively.   Using  the  raw  data  procured  for  this  study,  there  are  three  readings  per  day  for  each  meal  time  (Breakfast,  6:30-­‐10:30;  Lunch,  10:30-­‐2:30;  Dinner,  4:00-­‐8:00  PM)  and  five  operators  recording  said  temperatures  for  the  main  dishwasher  at  different  times  over  the  course  of  335  days  (January  14-­‐December  15).  The  readings  do  not  account  for  the  times  at  which  they  were  taken.  

Looking  at  all  the  rinse  cycles  using  subgroups  of  one  week  (3*7=21,  seven  days  times  the  three  meals  and  readings  taken),  there  are  several  subgroups  that  fall  outside  the  specification  limits.  The  respective  control  charts  (X-­‐bar  and  R-­‐bar)  are  included  as  Figures  1-­‐4  in  the  appendix.  Some  samples  were  discarded  from  the  analysis  due  to  lack  of  entries  ruling  out  special  causes  (i.e.  federal  holidays,  university  breaks,  cleaning  week).  This  will  be  discussed  later.  Looking  at  the  X-­‐bar  chart  for  Pre  Wash  120,  samples  1  (Jan  14-­‐20),  3  (Jan  28-­‐30),  5  (Feb  11-­‐  17),  8  (Apr  8-­‐14),  13  (April  8-­‐14),  15  (Apr  22-­‐28),  24  (Jun  24-­‐30),  30  (Aug  5-­‐11),  35  (Sept  9-­‐15),  39  (Oct  7-­‐13),  and  41  (Oct  21-­‐27)  fall  outside  of  the  control  limits  in  the  X-­‐Bar  chart  for  the  Prewash  120  cycle.   Samples  1,  4,  25  (Jul  1-­‐7),  33  (Aug  26-­‐Sept  1),  34  (Sept  2-­‐8),  35  (Sept  9-­‐15),  38  (Sept  30-­‐Oct  6),  and  41  (October  21-­‐27)  fall  outside  of  the  control  limits  on  the  R-­‐Bar  chart  (average  of  ranges  per  subgroup).  Other  rinse  cycles  are  depicted  on  the  appendix  in  Figures  1-­‐4.  From  the  process  and  data  given,  it  can  be  said  the  dishwasher  is  not  operating  within  statistical  control  for  all  rinse  cycles.  Further  investigation  in  these  subgroups  may  explain  the  special  cause  in  the  measurement  (machine  breakdown,  higher  than  average  capacity,  lack  of  filter  cleaning,  etc.).  This  study  provides  several  enumerative  methods,  though  can  be  used  for  analytic  purposes  for  possible  future  decisions  with  respect  to  the  methods  and  maintenance  of  the  dishwasher.

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

*The  overall  process  diagram  is  included  in  the  Appendix  under  Figure  11   JAMES  LARSON   2  

Variability of Dishwasher Temperatures

People The  people  involved  in  the  process  are  the  several  dining  facility  staff  and  student  staff,  including  but  not  limited  to  student  workers,  student  supervisors,  and  student  assistant  managers.  Non-­‐student  staff  includes  the  managers,  chefs,  and  non-­‐student  supervisors  within  the  facility.  

Process*

The  washing  of  dishes  begins  with  the  source  of  the  used  dishes  and  what  type  was  used.  Certain  dishes  (bulk  plates/bowls,  metal  serving/prep  pans  and  pan  covers,  silverware,  plastic  trays/containers/lids,  plastic/ceramic  cups)  are  sent  through  the  main  dishwasher  after  being  pre  washed  on  either  the  belt  line  or  the  “Pots  and  Pans”  section  of  the  dish  room.   When  used  dishes  are  sent  via  the  conveyor  belt  (belt  line),  the  dishes  are  first  dumped  of  excess  food  matter  in  compost  bins;  afterwards,  they  are  sent  via  the  belt  to  a  series  of  spray  nozzles  where  they  are  then  further  cleaned  by  either  student  workers  or  supervisors  (depending  on  staffing  that  day)  and  sent  via  another  conveyor  belt  to  the  dishwasher.  These  dishes  are  then  placed  in  their  respective  containers  (bulk  dish  carts)  or  place  of  origin  (Back  of  House,  other  venues)  

Metal  serving/prep  pans  and  plastic  trays/containers  are  taken  to  Pots  and  Pans  where  they  are  first  rid  of  excess  food  matter  and  sprayed  by  a  separate  nozzle  apparatus;  the  pan  is  then  set  to  soak  in  a  large  sink  of  warm,  soapy  water  to  loosen  the  remaining/burned  matter  and  is  cleaned  further  before  being  sent  to  the  main  dishwasher.  When  these  are  put  through  the  dishwasher  cycles,  they  are  shelved  close-­‐by  before  being  placed  in  their  place  of  origin  (Back  of  House  or  other  venue)  

Silverware  is  deposited  through  chutes  above  the  main  conveyor  belt  entering  the  dish  room.  The  silverware  is  soaked  in  a  cleaning  agent  before  being  sent  through  the  dishwasher  for  an  initial  cleaning.  The  silverware  is  then  organized  into  round  containers  for  each  type  of  silverware  (forks,  knives,  spoons)  and  sent  through  the  dishwasher  again.  

Cooking  utensils  (knives,  spatulas,  etc.),  metal  sheet  trays  used  (often  from  another  dining  facility),  and  other  metal  dishes  are  sent  through  a  different  dishwasher  denoted  as  “Pots  and  Pans”.  

Maintenance

The  maintenance  of  the  dishwasher  typically  occurs  once  per  shift  by  one  or  several  student  workers  or  a  supervisor,  though  this  varies  depending  on  new  student  staffing  inflows  and  student/visitor  traffic  and  facility  capacity  at  a  given  time.   Each  rinse  cycle  has  a  filter;  the  water  for  each  is  first  drained  one  at  a  time  before  each  filter  has  its  contents  dumped  and  sprayed  out  to  remove  other  excess  food  matter.  

Measurement

Dishwasher  rinse  cycle  temperatures  are  read  from  gauges  on  the  side  of  the  in  degrees  Fahrenheit  (ºF).  A  measurement  is  logged  during  one  mealtime  per  day  with  three  meals  per  day  (hence  three  readings  a  day).  Five  operators  took  three  readings  per  day  (21  readings  a  week,  the  subgroup  used)  at  several  different  times  (i.e.  370  of  the  1005  readings  are  from  Operator  1,  while  8  are  from  Operator  5).  These  operators  are  typically  the  non-­‐student  supervisors  during  the  respective  meal  times.

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON   3  

Further Quantitative Results

Data Log Issues

As  discussed  earlier  in  this  document,  there  are  several  instances  of  no  entry  during  the  mealtime  specified  from  the  raw  data.  347  temperature  logs  were  not  entered  during  a  given  operator’s  shift.  This  lack  of  data  may  have  led  to  the  exclusion  of  subgroups  in  the  control  charts  in  Figures  1-­‐4  in  the  appendix.  A  Pareto  chart  has  been  constructed  below  depicting  several  of  the  issues  found  within  the  data  logs,  though  the  lack  of  entries  is  most  alarming—roughly  98%  of  the  problems  with  the  data  have  stemmed  from  the  lack  of  entries.  Special  causes  (federal  holidays,  University  breaks,  cleaning  week)  were  diagnosed  and  accordingly  left  out.    

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON   4  

Rinse Cycle Pre Wash 120 Wash 150 Rinse 160 Final Rinse 180

0.1744 0.1245 0.2618

0.2849 0.4004 0.0889

Operator and Dishwasher Variability (%)

A Gauge R&R study was used to differentiate whether the variability in dishwasher cycle temperatures was from the dishwasher itself (repeatability), the operator at the time (reproducibility). The study is attached at the end of this document. The dishwasher often caused most of the variability in dishwasher rinse cycle temperatures from the data and methods used; at times 90-97% of the temperature variability was attributed to the dishwasher. These are shown in Figures 5-8 in the appendix, though these variance measures use a restricted maximum likelihood (REML) rather than a traditional variance (range-based) due to the inconsistent amount of entries per operator.

Potential and Capability of Process

The two metrics presented, Cp-hat and Cpk-hat, represent respectively the potential and capability of a process based on the variability of readings the process has given by readings over time. Specification limits used were 5ºF about a target temperature (manufacturer specification) for each rinse cycle for both the Cp-hat and Cpk-hat calculations with respect to an upper specification limit (USL) and lower specification limit (LSL); for example, 115ºF-125ºF for Pre Wash 120, 145ºF-155ºF for Wash 150, etc. The respective formulas used for the calculations are shown in Figure 9a in the Appendix.

Using the range-based sigma, the Cp-hat and Cpk-hat values are as follows:

Considering the value for Cp-hat (process potential) is a measure (%) of how well a process might be able to perform a process with respect to the variability of the process data, a Cp-hat value greater than 1 would indicate the process may be able to perform the process given; likewise, a Cpk-hat greater than 1 indicates the equipment is not capable of performing the process with respect to process variability.

In summation, the respective Cp-hat and Cpk-hat values calculated in the table above show that each rinse cycle is experiencing too much variability within the process-given mean; alternatively, the specification limits used would have to be several times larger to account for the variability in each rinse cycle. This may imply higher maintenance costs and higher probability of machine breakdowns for the dishwasher over the timeline of the data and the time following the historical data.

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON   5  

Possible Solutions

Future Entry and Special Cause Identification

As stated earlier, most of the issues are not due to the operator; however, if more supervisors present in the dish room this will help alleviate the instance of no entry in the temperature control logs. Since the enumerative study was using subgroups of the overall week average temperatures (n=21), construction of a new entry method with more supervisors should be considered. Using the calculation of gauge R&R reproducibility error as a reference and the lack of operators per day logging the temperature (typically 1-2 operators during the day currently), the error between readings between the current handful of operators (and in turn the repeatability [machine] error) should be decrease and may make it easier to identify special causes. Consider the current entry method:

TIME DATE DISH MACHINE POTS AND PANS INITIALS

PREWASH

120 WASH

150 RINSE

160 FINAL RINSE

180

WASH 150

FINAL RINSE

180

BREAKFAST LUNCH DINNER

The current method for recording temperatures accounts for one entry per mealtime and leaves the time of entry (8:34 AM, 12:34 PM, etc.) ambiguous, making it difficult to identify special causes (above normal capacity, continuous/maintenance hours, time since last cleaned, etc.) in temperature readings, and only leaves room for one operator to enter the rinse cycle temperature data.

Given there are two dish room supervisors at a given time during each shift and one non-student supervisor present in the dish room, let’s say each gives one reading per meal time giving three readings per meal time. Accounting for three meals a day, there will be nine readings per day. Over the course of a typical month’s timespan (seven days per week with roughly four weeks per month), there will be roughly 252 readings/month. If it is also desired to identify and maintain the process such that the dishwasher’s temperature data falls outside of statistical control (i.e. once a month), this gives an average run length (ARL) of the amount of readings before the process has a subgroup outside of statistical control that can possibly be attributed to a special cause. If the overall process distribution is normal or normalized, this would imply a desired failure rate or the probability of a subgroup of measurements falling outside of statistical control to be roughly 0.39%

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON   6  

If it is desired to see how many readings per subgroup it would require for at least one reading was seen one process standard deviation above the average reading for a given rinse cycle, a probability model using a random sampling distribution to calculate the amount of readings in the subgroup results in a subgroup size of 8.9766 or 9 readings. Knowing the ideal daily amount of readings (9) by the three operators per meal (breakfast, lunch, dinner) if the points outside of statistical control are found to be special causes and if the process is brought to be within statistical control. This will also alleviate the issue of data aggregation from this study for future studies. The respective ARL and subgroup calculations used are found in Figure 9b of the appendix in this document.

These daily readings can be much more responsive to special causes than to that of the weekly subgroups; this way, the special causes of unusually high or low dishwasher rinse cycle temperatures can be much more easily identified. A template for the suggested new logging is included in Figure 10 of the appendix.

Methods and Maintenance

Some if not most of the machine wear and unusual temperatures logged over time may be attributed to the lack of filter cleaning during a given shift (new inexperienced staff, large inflow of customers at a given time). Though the filters for each respective rinse cycle are emptied and cleaned roughly three times a day, this is highly variable considering lack of staff and high customer capacity at given times in the dish room and facility respectively.

Some plastic dishes are not dumped or rinsed before being placed through the dishwasher; likewise, though the silverware is placed in a soaking agent to loosen excess food matter, it is not rinsed and said matter will be caught in the filter and over time if not cleaned regularly may cause more wear on the machinery.

A suggested maintenance goal would be to try cleaning the filters twice per mealtime to ensure less wear on the main dishwasher. Other pre washing methods, including using the spray nozzle by the Pots and Pans section on the silverware, may lead to more stable temperatures as less food matter is present when put in the dishwasher. Maintenance methods used during Cleaning Week before opening up for weekend (Saturday, Sunday) may also assist in bringing temperatures within statistical control if possible; otherwise machine temperatures should be monitored and recorded during preparation times before the brunch and dinner shifts to ensure an even amount of data within each subgroup each day to achieve these goals.

Machine

Using the methods suggested above may be able to decrease the variability in temperature data in future studies. For example, a survey similar to the one presented for future dates (possibly a frame of next year, 2015, or this coming semester) should be studied to evaluate the effectiveness of the suggested methods based on the results of future data (i.e. control charts and Cp-hat/Cpk-hat indices). If there is an improvement (i.e. more points within statistical increased process potential and/or capability), continue doing so and improving on other results. If results do not improve after changes to the methods along with continued frequency of extensive machine wear (breakdowns), maintenance, and process then this historical data may give empirical evidence for the possible future petitioning for funding for a new commercial dishwasher to ISU Dining’s upper managers or board of directors.

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LAR  

APPENDIX FIGURE 1

   SON      7

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          8  

FIGURE 2

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          9  

FIGURE 3

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          10  

FIGURE 4

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          11  

FIGURE 5

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          12  

FIGURE 6

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          13  

FIGURE 7

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          14  

FIGURE 8

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          15  

FIGURE 9a

𝐶𝑃𝑈 =𝑈𝑆𝐿 − 𝑋3𝜎  

𝐶𝑃𝐿 =𝑋 − 𝐿𝑆𝐿3𝜎  

𝐶𝑝𝑘 = min 𝐶𝑃𝑈,𝐶𝑃𝐿  

𝐶𝑝 =𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎

FIGURE 9b.

𝑈𝐶𝐿 − (𝜇 − 𝜎)𝜎/ 𝑛

=𝜇 + 3 𝜎

𝑛− (𝜇 − 𝜎)

𝜎/ 𝑛=3 𝜎

𝑛− 𝜎

𝜎/ 𝑛

3 𝜎

𝑛− 𝜎

𝜎/ 𝑛∗

𝑛𝜎𝑛𝜎

= 3− 𝑛

𝐴𝑅𝐿 =1𝑟  

𝑟 =1𝐴𝑅𝐿 =

1252 = 0.0039  

𝑟 = Pr 𝑍 < −3− 𝑛 + Pr 𝑍 > 3− 𝑛  0.0039 = 0+ 3− 𝑛  

0.0039 = 3− 𝑛  2.9961 = 𝑛  𝑛 = 8.9766 ≈ 9  

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014  

JAMES  LARSON          16  

FIGURE 10

MEAL TIME CAPACITY DISHWASHER Pots and Pans Signature

(%) 120 150 160 180 150 180

B

B

B

L

L

L

D

D

D

DISHWASHER  TEMPERATURE  CONTROL  SUMMARY                                                                                                                                                                                                                                  12/12/2014   FIGURE 11

JAMES  LARSON        1