14
PHY4604 Fall 2007 Problem Set 2 Solutions Department of Physics Page 1 of 14 PHY 4604 Problem Set #2 Solutions Problem 1 (10 points): The time-dependent Schrödinger’s equation is ) , ( ) ( ) , ( 2 ) , ( 2 2 2 t x x V x t x m t t x i Ψ + Ψ = Ψ h h , where we take the potential energy, V, to be only a function of x (not of time). We look for solutions of the form ) ( ) ( ) , ( t x t x Φ = Ψ ψ . The time-dependent equation separates into two equations (separation constant E). ) ( ) ( ) ( ) ( 2 2 2 2 x E x x V x d x d m ψ ψ ψ = + h and ) ( ) ( t E dt t d i Φ = Φ h . Thus, h / ) ( iEt e t = Φ . (a) (3 points) For normalizable solutions, show that the separation constant E must be real. Solution: Following Griffith’s problem 2.1 we set Γ + = i E E r , where E r and Γ are real. Thus, h h h / / / ) ( ) ( ) , ( t iE t iEt r e e x e x t x Γ = = Ψ ψ ψ and +∞ Γ +∞ = = Ψ Ψ dx x x e dx t x t x t ) ( ) ( 1 ) , ( ) , ( / 2 ψ ψ h . The second term is independent of time and hence Γ = 0 and E is real. One can prove E is real by noting that if V(x) is real then ( ) +∞ +∞ = dx x x H dx x H x op op ) ( ) ( ) ( ) ( ψ ψ ψ ψ , where ) ( 2 2 ) ( 2 2 2 2 x V x d d m V m p H op op x op + = + = h . The time-independent Schrödinger equation is ) ( ) ( x E x H op ψ ψ = which yields +∞ +∞ = dx x x E dx x H x op ) ( ) ( ) ( ) ( ψ ψ ψ ψ ( ) ( ) +∞ +∞ +∞ = = dx x x E dx x x E dx x x H op ) ( ) ( ) ( ) ( ) ( ) ( ψ ψ ψ ψ ψ ψ Thus, E = E * which means that E is real. (b) (3 points) Show that E corresponds to the total energy and that ) ( ) ( ) , ( t x t x Φ = Ψ ψ corresponds to a state with definite energy (i.e. ΔE = 0). Solution: E dx x x E dx x H x H E op op = = >= >=< < +∞ +∞ ) ( ) ( ) ( ) ( ψ ψ ψ ψ

4604 Solutions Set2 Fa07

Embed Size (px)

Citation preview

Page 1: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 1 of 14

PHY 4604 Problem Set #2 Solutions Problem 1 (10 points): The time-dependent Schrödinger’s equation is

),()(),(2

),(2

22

txxVx

txmt

txi Ψ+∂Ψ∂

−=∂

Ψ∂ hh ,

where we take the potential energy, V, to be only a function of x (not of time). We look for solutions of the form

)()(),( txtx Φ=Ψ ψ . The time-dependent equation separates into two equations (separation constant E).

)()()()(2 2

22

xExxVxdxd

mψψψ

=+−h and )()( tE

dttdi Φ=

Φh .

Thus, h/)( iEtet −=Φ . (a) (3 points) For normalizable solutions, show that the separation constant E must be real. Solution: Following Griffith’s problem 2.1 we set Γ+= iEE r , where Er and Γ are real. Thus,

hhh /// )()(),( tiEtiEt reexextx −Γ− ==Ψ ψψ and

∫∫+∞

∞−

∗Γ+∞

∞−

∗ ==ΨΨ dxxxedxtxtx t )()(1),(),( /2 ψψh .

The second term is independent of time and hence Γ = 0 and E is real. One can prove E is real by noting that if V(x) is real then

( )∫∫+∞

∞−

∗+∞

∞−

∗ = dxxxHdxxHx opop )()()()( ψψψψ ,

where

)(22

)(2

222

xVxd

dm

Vm

pH op

opxop +−=+=

h .

The time-independent Schrödinger equation is )()( xExHop ψψ = which yields

∫∫+∞

∞−

∗+∞

∞−

∗ = dxxxEdxxHx op )()()()( ψψψψ

( ) ( ) ∫∫∫+∞

∞−

∗∗+∞

∞−

∗+∞

∞−

∗ == dxxxEdxxxEdxxxHop )()()()()()( ψψψψψψ

Thus, E = E* which means that E is real. (b) (3 points) Show that E corresponds to the total energy and that )()(),( txtx Φ=Ψ ψ corresponds to a state with definite energy (i.e. ΔE = 0). Solution:

EdxxxEdxxHxHE opop ==>=>=<< ∫∫+∞

∞−

∗+∞

∞−

∗ )()()()( ψψψψ

Page 2: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 2 of 14

22

222

)()(

)())()(()())((

EdxxxE

dxxHHxdxxHxHE opopopop

==

=>=>=<<

∫∫∞+

∞−

+∞

∞−

∗+∞

∞−

ψψ

ψψψψ

Thus, (ΔE)2 = <E2> - <E>2 = 0. Also note that since h/)(),( iEtextx −=Ψ ψ we have

EdxxxEdxtxt

itxdxtxEtxEE opop ==Ψ⎟⎠⎞

⎜⎝⎛

∂∂

Ψ=ΨΨ>=>=<< ∫∫∫+∞

∞−

∗+∞

∞−

∗+∞

∞−

∗ )()(),(),(),(),( ψψh .

(c) (4 points) Show that the time-independent wave function, )(xψ , can always be taken to be a real function. (Hint: take V to be real and see Griffith’s problem 2.1) Solution: If )(xψ satisfies )()( xExHop ψψ = we can take the complex conjugate of both sides

and get )()( xExHop∗∗∗∗ = ψψ , but Hop

* = Hop and E* = E and hence )()( xExHop∗∗ = ψψ . Thus,

( ) ( ))()()()( xxExxHop∗∗ +=+ ψψψψ and we see that ( ))()( xx ∗+ψψ is a solution to the time-

independent equation and ( ))()( xx ∗+ψψ is real. Problem 2 (50 points): Consider an infinite square well defined by V(x) = 0 for 0 < x < a, and V(x) = ∞ otherwise. (a) (4 points) Show that the stationary states are given by

h/)(),( tiEnn

nextx −=Ψ ψ with )/sin(2)( axna

xn πψ =

and 2

222

2manEn

hπ= , and n is a positive integer.

Solution: For the region outside of 0 < x < a 0)( =xψ and inside the region

)()(2 2

22

xExdxd

mψψ

=−h or )()( 2

2

2

xkxdxd ψψ

−= with mkE

2

22h=

The most general solution is of the form )cos()sin()( kxBkxAx +=ψ .

The boundary condition at x = 0 gives 0)0( == Bψ and the boundary condition at x = a gives 0)sin()( == kaAaψ which implies that πnka = with n = 1, 2, 3,… Thus,

)/sin()( axnAxn πψ = with 2

222

2manEn

hπ= . The normalization is arrived at by requiring that

24)2sin(

2)(sin)/(sin1)()(

2

0

2

0

22

0

22 aAyynaAdyy

naAdxaxnAdxxx

nna

nn =⎟⎠⎞

⎜⎝⎛ −==== ∫∫∫

+∞

∞−

∗ππ

πππψψ

Thus, aA /2= . These states are called stationary because the probability density and all the expectation values are independent of time. (b) (2 points) Show that the states, )(xnψ , form an orthonormal set. Namely, show that

mnnm dxxx δψψ =∫+∞

∞−

∗ )()( .

Page 3: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 3 of 14

Solution:

mn

a

nm dymymydxaxnaxma

dxxx δπ

ππψψπ

=== ∫∫∫+∞

∞−

00

)sin()sin(2)/sin()/sin(2)()(

(c) (8 points) Calculate <x>, <x2>, <px>, and <px2> for the nth stationary state.

Answer: 2ax n=>< , ⎟⎟

⎞⎜⎜⎝

⎛−=>< 2

22

)(21

31

πnax n , 0=>< nxp , 2

2222

anp nx

hπ=><

Solution:

28)2cos(

4)2sin(

4)(2

)(sin2)/(sin2)())((

0

2

2

0

22

0

2

ayyyyn

a

dyyyna

adxaxnx

adxxxxx

n

na

nopnn

=⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

⎟⎠⎞

⎜⎝⎛===>< ∫∫∫

+∞

∞−

π

π

π

ππψψ

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛−−=

⎟⎠⎞

⎜⎝⎛===>< ∫∫∫

+∞

∞−

22

3

3

2

0

23

3

2

0

223

0

2222

)(21

31

46)(

)(2

4)2cos()2sin(

81

46)(2

)(sin2)/(sin2)())((

πππ

ππ

ππψψ

π

π

nann

nayyyyy

na

dyyyna

adxaxnx

adxxxxx

n

na

nopnn

There are two ways to calculate <px>n. The easiest is to take the time derivative of <x> as follows:

0=><

=><dtxdmp n

nx .

The more difficult way is to evaluate

02

)(sin2

)cos()sin(2)/cos()/sin(2

)()()())((

0

2

00

=⎟⎟⎠

⎞⎜⎜⎝

⎛−=

−=−=

⎟⎠⎞

⎜⎝⎛

∂∂

−==><

∫∫

∫∫+∞

∞−

∗+∞

∞−

π

π

πππ

ψψψψ

n

na

nnnopxnnx

ya

i

dyyya

idxaxnaxna

na

i

dxxx

ixdxxpxp

h

hh

h

There are also two ways to calculate <px2>n . The easy way is to use the fact that since in this

problem V = 0 we have

mp

H opxop 2

)( 2

= and nnnop EH ψψ = so that nnnopx mEp ψψ 2)( 2 = and hence

2

222

2

22222

22)()(2)())((

an

manmdxxxmEdxxpxp nnnnopxnnx

hh ππψψψψ =⎟⎟⎠

⎞⎜⎜⎝

⎛===>< ∫∫

+∞

∞−

∗+∞

∞−

∗ .

The more difficult way is to evaluate

Page 4: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 4 of 14

2

222

0

2

0

22

0

22

2

2

2222

4)2sin(

22

)(sin2)/(sin2

)()()())((

anyy

an

a

dyya

na

dxaxna

na

dxxx

xdxxpxp

n

na

nnnopxnnx

hh

hh

h

ππ

πππ

ψψψψ

π

π

=⎟⎠⎞

⎜⎝⎛ −⎟⎠⎞

⎜⎝⎛=

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛=

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−==><

∫∫

∫∫+∞

∞−

∗+∞

∞−

(d) (6 points) Compute Δx = σx and Δpx = xpσ for the nth stationary state. Is the product ΔxΔpx

consistent with the uncertainty principle? Which state comes closest to the uncertainty limit?

Answer: 2)(2

31

2)(

πnax n −=Δ ,

anp nxhπ

=Δ )( , 23

)(2

)(2

−=ΔΔπnpx nx

h

Solution: For From (c) we see that

22

2

2222

)(2

31

2)(21

121

4)(21

31)(

πππ na

naa

naxxx nnn −=−=−⎟⎟

⎞⎜⎜⎝

⎛−=><−><=Δ

an

anppp nxnxnx

hh ππ==><−><=Δ 2

22222)(

and

22

3)(

2)(2

31

2)(

2

2hhh

≥−=−=ΔΔπ

ππ n

na

anpx nx .

The smallest ΔxΔpx is the ground state n = 1 where

2)136.1(2

32)(

2

1hh

=−=ΔΔ =π

nxpx

(e) (8 points) Suppose that particle in this infinite square well has an initial wave function which is an even mixture of the first two stationary states:

[ ])()()0,( 21 xxAx ψψ +=Ψ . What is the normalization A? If you measure the energy of this particle, what are the possible values you might get, and what is the probability of getting each of them? What is the expectation value of the energy for this state?

Answer: 2/1=A , E1 with probability ½ and energy E2 with probability ½, 2

22

45

maE hπ>=<

Solution: The normalization is arrived at by requiring that

[ ][ ]

( ) 222122111

2

21212

2)()()()()()()()(

)()()()(1)0,()0,(

AdxxxxxxxxxA

dxxxxxAdxxx

=+++=

++==ΨΨ

∫∫∞+

∞−

∗∗∗∗

+∞

∞−

∗∗+∞

∞−

ψψψψψψψψ

ψψψψ

and 2/1=A . Thus, hh /

22/

1121 )()(),( tiEtiE excexctx −− +=Ψ ψψ ,

Page 5: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 5 of 14

where c1 = c2 = 2/1 which means that you get energy E1 with probability ½ and energy E2 with probability ½. The expectation value of E is

2

22

2

22

2

22

221

121

45

24

221

mamamaEEE hhh πππ

=⎟⎟⎠

⎞⎜⎜⎝

⎛+=+>=<

(f) (10 points) Suppose that particle in this infinite square well has the initial wave function

⎩⎨⎧

−=Ψ

)()0,(

xaAAx

x axa

ax≤≤

≤≤2/

2/0

Sketch )0,(xΨ and determine the normalization A. Find ),( txΨ . What is the probability that a measurement of the energy of this state will yield the ground state energy E1? What is the expectation value of the energy for the state ),( txΨ ?

Answer: 3/32 aA = , ∑∞

=

−−−=ΨL

h

,5,3,1

/2

2/)1(2 )/sin(1)1(264),(

n

tiEn neaxnna

tx ππ

,

the probability of measuring E1 is 9855.09641 ≈=

πP , 2

26ma

E h>=< .

Ψ(x,0)

0

1

2

0.0 0.5 1.0

x/a

Solution: First we normalize the distribution as follows:

232/

0

22

2/

222/

0

22

122

)()0,()0,()(1

AadxxA

dxxaAdxxAdxxxdxx

a

a

a

a

==

−+=ΨΨ==

∫∫∫∫+∞

∞−

∗+∞

∞−

ρ

Thus, 33 /32/12 aaA == . We know that

∑∞

=

−=Ψ1

/)(),(n

tiEnn

nexctx hψ with ∫+∞

∞−

∗ Ψ= dxxxc nn )0,()(ψ .

Thus,

Page 6: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 6 of 14

[ ] [ ]

[ ] ( ))2/cos()2/()2/sin(2)1(1

)sin(2)1(1)/sin(2)1(1

)/sin(2)/sin(2

)/sin()(2)/sin(2

2

2/

0

22/

0

2/

0

2/

0

2/

2/

0

ππππ

ππ

πππ

ππ

π

nnnan

aA

dyyyan

aAdxaxnxa

A

dxaxnnxa

Adxaxnxa

A

dxaxnxaa

Adxaxnxa

Ac

n

nn

an

aa

a

a

a

n

−⎟⎠⎞

⎜⎝⎛−−=

⎟⎠⎞

⎜⎝⎛−−=−−=

=−+=

−+=

∫∫

∫∫

∫∫

For even n cn = 0 and for odd n we have

222/)1(

2

2/32/)1( 64)1(2322)1(

ππ nana

ac nn

n−− −=⎟

⎠⎞

⎜⎝⎛−=

and

∑∞

=

−−−=ΨL

h

,5,3,1

/2

2/)1(2 )/sin(1)1(264),(

n

tiEn neaxnna

tx ππ

where 2

222

2manEn

hπ= .

The probability of measuring E1 is

9855.096644

2

22

1 ≈=⎟⎟⎠

⎞⎜⎜⎝

⎛==

ππncP .

The expectation value of the energy is

2

2

22

2

222222

2

,5,3,1222

2

,5,3,1

2222

221

2

6)2(4871

51

31

1148148

264

mamamanma

mn

nEcE

n

nnnn

hhL

hh

h

L

L

==⎟⎠⎞

⎜⎝⎛ ++++==

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=>=<

∑∑∞

=

=

=

ξπππ

ππ

where I used

871

51

311

2

222π

=++++ L .

(g) (12 points) Suppose a particle of mass m in this infinite square is in the ground state (i.e. n = 1). Now suppose that the well suddenly expands to twice its original size (the right wall moves from a to 2a) leaving the wave function (momentarily) undisturbed. If the energy of the particle is now measured, what is the most probable value and what is the probability of getting this value? What is the next most probable value, and what is its probability?

Answer: Most probable energy is 2

22

2 2maE hπ

= with probability P2 = ½. The next most probable

energy is 2

22

1 8maE hπ

= , with probability 36025.0932

21 ≈=π

P .

Solution: The new allowed energies are

2

222

)2(2 amnEn

hπ=

and the new wave functions are

Page 7: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 7 of 14

⎟⎠⎞

⎜⎝⎛= x

an

axn 2

sin22)( πψ with ⎟

⎠⎞

⎜⎝⎛=Ψ x

aax πsin2)0,(

We know that

∑∞

=

−=Ψ1

/)(),(n

tiEnn

nexctx hψ with ∫+∞

∞−

∗ Ψ= dxxxc nn )0,()(ψ .

For n ≠ 2 we get,

( )( )41sin24

11

111

2sin

22

12

12

sin

12

12

sin

22

12

12

sin

12

12

sin

22

12

cos12

cos2

2sin2

sin2

22

21

21

0

00

−+

=⎥⎦

⎤⎢⎣

⎡+

−−⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛ +

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −

=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛ +

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ −

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −

=

=⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ +−⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −=⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛= ∫∫

nnnn

n

n

n

n

an

axn

an

axn

a

dxaxn

axn

adxx

ax

an

ac

n

a

aa

n

ππ

ππ

π

π

π

π

π

π

π

π

ππππ

For n = 2 we get,

22

4)2sin(

22)(sin2)/(sin2

00

2

0

22 =⎟

⎠⎞

⎜⎝⎛ −=== ∫∫

ππ

πππ yydyydxax

ac

a

.

Thus,

⎪⎩

⎪⎨

==

===

L

L

,8,6,4,5,3,1

2

0222 )4(

3221

2

nn

ncP

nnn π

The most probable energy is 2

22

2 2maE hπ

= (same as before the change) with probability P2 = ½.

The next most probable energy is 2

22

1 8maE hπ

= , with probability

36025.0932

2)4(322

11 222 ≈===− ππ n

cP .

Problem 3 (50 points): Consider the one dimensional harmonic oscillator with potential energy

2

21)( kxxV = . The Hamiltonian is given by

( )222

)(21

2xmp

mV

mp

H xx ω+=+=

where mk /=ω . We express the Hamiltonian in terms of the operators (px)op and (x)op, where

xip opx ∂

∂−= h)( and xx op =)( and 2

222 )()()(

xppp opxopxopx ∂

∂−== h .

Namely,

Page 8: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 8 of 14

( )opopxop xmpm

H )()(21 2222 ω+= ,

and we define the two operators opa )( ± as follows

( )opxopop pixmm

a )(2

1)( mh

ωω

≡± .

(a) (2 points) Prove that the commutator of (px)op and (x)op is given by hixp opopx −=])(,)[( , where [Aop,Bop] = AopBop – BopAop. Solution: The commutator is an operator and to figure out what it is equal to we must operate on a function as follows:

( )ψψψψψψ

ψψ

hhhhhh ix

xix

xixxi

xxix

xi

xpxxpxxp opxopopopxopopx

−=∂∂

+∂∂

−∂∂

−=∂∂

+∂∂

−=

−=

)()(

)()()()()()(])(,)[(.

Thus, hixp opopx −=])(,)[( . (b) (2 points) Prove that [(a-)op,(a+)op] = 1. Solution: We see that

( )

1],)[(

])(,)[(],)[(])(,[],[2

1

])(,)([2

1])(,)[(

22

==

++−=

−+=+−

opopx

opxopxopopxopxopopop

opxopopxopopop

xpi

ppxpimpximxxmm

pixmpixmm

aa

h

h

h

ωωωω

ωωω

(c) (2 points) Prove that ( ) ( )21

21 )()()()( −=+= +−−+ opopopopop aaaaH ωω hh .

Solution: We see that

( )( )

( )

211

21

21

2)(1],)[()(

21

)()(2

1)()(

222

2222

−=

⎟⎟⎠

⎞⎜⎜⎝

⎛−+=−+=

+−=−+

op

opopx

opopxopxop

opxopopxopopop

H

xmm

pxpimpxm

m

pixmpixmm

aa

ω

ωωω

ωωω

ωωω

h

hhh

h

and hence ( )2

1)()( += −+ opopop aaH ωh Also,

( ) ( )( )2

1

21

21

)()(

])(,)[()()()()(

−=

++=+=

+−

−++−−+

opop

opopopopopopop

aa

aaaaaaH

ω

ωω

h

hh

(d) (4 points) Show that opopop aaH )(])(,[ ±± ±= ωh . Solution: We see that

opopopopopopop

opopopopopopopop

aaaaaaa

aaaaaaaH

)()]()(,)[(])(,)[()(

])(,)()[(])(,)()[(])(,[ 21

±−±+±−+

±−+±−+±

±=+=

=+=

ωωω

ωω

hhh

hh

where I used [AB,C]=A[B,C]+[A,C]B.

Page 9: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 9 of 14

(e) (4 points) Show that if the state Eψ satisfies Schrödinger’s equation with energy E (i.e.

EEop EH ψψ = ), then the state Eopa ψψ )( ++ = satisfies Schrödinger’s equation with energy )( ωh+E and the state Eopa ψψ )( −− = satisfies Schrödinger’s equation with energy )( ωh−E .

Solution: From (d) we see that ( )

( ) ±±±

±±±±

±=±

+==

ψωψω

ψψψ

)()()(

])(,[)()(

hh EaHa

aHHaaHH

Eopopop

EopopopopEopopop

(f) (4 points) Show that if the state Eψ satisfies Schrödinger’s equation with energy E (i.e.

EEop EH ψψ = ), then ωh21≥E . (Hint: use the fact that the norm of all allowed stated is positive

definite) Solution: The norm of any state must be positive definite and we know that Eopa ψψ )( −− = is either zero or a stationary state and hence

0)()( ≥∫+∞

∞−−

∗− dxxx ψψ

and

( )

( ) ( ) ( )211

211

211 )()()()(

)()())(()()()()()()(

−=−=−=

==

∫∫

∫∫∫∞+

∞−

∗∞+

∞−

+∞

∞−−+

∗+∞

∞−−

∗−

+∞

∞−−

∗−

EdxxxEdxxHx

dxxaaxdxxaxadxxx

EEEopE

EopopEEopEop

ωωω ψψψψ

ψψψψψψ

hhh

Thus, ( ) 02

11 ≥−Eωh and ωh21≥E .

Note that I used the fact that

( ) ∫∫+∞

∞−−

∗+∞

∞−−

∗± = dxxaxdxxxa opEEop )())(()()()( ψψψψ m

which comes from

( ) ( )( )

( ) ∫∫

∫∫

∫∫

∞+

∞−−

∗∞+

∞−−

∞+

∞−−

∗∞+

∞−−

+∞

∞−−

∗+∞

∞−−

∗±

=±=

⎟⎠⎞

⎜⎝⎛

∂∂

±=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛

∂∂

=

=

dxxaxdxxpixmxm

dxxx

xmxm

dxxxx

xmm

dxxxpixmm

dxxxa

opEopxopE

EE

EopxopEop

)())(()()()(2

1

)()(2

1)()(2

1

)()()(2

1)()()(

ψψψωψω

ψωψω

ψψωω

ψψωω

ψψ

mh

hh

hmh

mh

where I integrated by parts and dropped the I integrated by parts and dropped the boundary term. (g) (4 points) The ground state, 0ψ , is defined to be the stationary state with the lowest energy (i.e. 000 ψψ EHop = ). Show that ωh2

10 =E and

2

24/1

0 )(xm

emx h

h

ω

πωψ

−⎟⎠⎞

⎜⎝⎛=

Solution: We know that 0)( 0 =− ψopa and thus

Page 10: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 10 of 14

( )

ωψψω

ψψωψψ

hh

h

21

00

021

000

)()(2

)()()()()()(

==

+=>=>=<<

∫∫∞+

∞−

+∞

∞−−+

∗+∞

∞−

dxxx

dxxaaxdxxHxHE opopopop

and also

( ) 000 21)(

210)( ψω

ωψω

ωψ ⎟

⎠⎞

⎜⎝⎛

∂∂

+=+==− xxm

mpixm

ma opxopop h

hh

Thus 0)(0 =xψ satisfies the following differential equation,

)()(0

0 xxmx

x ψωψh

=∂

∂ ,

with solution 2

20 )(

xm

Aex h

ω

ψ−

= . The normalization A is determined by requiring that

ωπψψ

ω

mAdxeAdxxx

xmh

h 2200

2

1)()( === ∫∫+∞

∞−

−+∞

∞−

and hence 4/1

⎟⎠⎞

⎜⎝⎛=

hπωmA .

(h) (4 points) Prove that 11)( ++ += nnop na ψψ and 1)( −− = nnop na ψψ , were nψ is the nth

excited state and show that 0)(!

1 ψψ nopn a

n += .

Solution: From (f) we have

( ) ∫∫+∞

∞−

∗+∞

∞−

∗± = dxxaxdxxxa nopmnmop )())(()()()( ψψψψ m

From (g) we know that 1)( ++ = nnnop ca ψψ and 1)( −− = nnnop da ψψ where cn and dn are constants.

In addition we know that ( ) nopopnnnnop aanEH ψωωψψψ 2

121 )()()( +=+== −+hh

and hence nnopop naa ψψ =−+ )()( .

Similarly, ( ) nopopnnnnop aanEH ψωωψψψ 2

121 )()()( −=+== +−hh

and hence nnopop naa ψψ )1()()( +=+− .

Thus,

Page 11: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 11 of 14

( )

)1()()()1()()())((

)()()()()()( 211

2

+=+==

==

∫∫

∫∫∞+

∞−

∗∞+

∞−+−

+∞

∞−+

∗+

+∞

∞−+

∗+

ndxxxndxxaax

cdxxxcdxxaxa

nnnopopn

nnnnnopnop

ψψψψ

ψψψψ

so that 1+= ncn . Similarly,

( )

ndxxxndxxaax

ddxxxddxxaxa

nnnopopn

nnnnnopnop

===

==

∫∫

∫∫∞+

∞−

∗∞+

∞−−+

+∞

∞−−

∗−

+∞

∞−−

∗−

)()()()())((

)()()()()()( 211

2

ψψψψ

ψψψψ

so that ndn = . We see that

01 )( ψψ opa+= , 02

12 )(2

1)(2

1 ψψψ opop aa ++ == , 03

23 )(123

1)(3

1 ψψψ opop aa ++ ⋅⋅==

and 0)(!

1 ψψ nopn a

n += .

(i) (8 points) Find <x>, <x2>, <px>, and <px2> for the nth stationary state.

Answer: 0=>< nx , ωm

nx nh

⎟⎠⎞

⎜⎝⎛ +=><

212 , 0=>< nxp , ωmnp nx h⎟

⎠⎞

⎜⎝⎛ +=><

212

Solution: We see that

( )opopop aam

x )()(2

)( −+ +=ωh ( )opopopx aamwip )()(

2)( −+ −=

h .

Thus,

( )

0)()(2

)()(12

)()()()(2

)())((

11 =++=

+==><

∫∫

∫∫∞+

∞−

∗−

∞+

∞−+

+∞

∞−−+

∗+∞

∞−

dxxxnm

dxxxnm

dxxaaxm

dxxxxx

nnnn

nopopnnopnn

ψψω

ψψω

ψψω

ψψ

hh

h

where I used

11)( ++ += nnop na ψψ and 1)( −− = nnop na ψψ and mnnm dxxx δψψ =∫+∞

∞−

∗ )()( .

We can calculate <px>n from <x>n as follows:

0=><

=><dtxdmp n

nx

or we can calculate it the long way

( )

0)()(2

)()(12

)()()()(2

)())((

11 =−+=

−==><

∫∫

∫∫∞+

∞−

∗−

∞+

∞−+

+∞

∞−−+

∗+∞

∞−

dxxxnmidxxxnmi

dxxaaxmidxxpxp

nnnn

nopopnnopxnnx

ψψωψψω

ψψωψψ

hh

h

Now

Page 12: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 12 of 14

( )

( )

ωψψψψ

ω

ψψω

ψψω

ψψ

mndxxxndxxxn

m

dxxaaaaaaxm

dxxaaxm

dxxxxx

nnnn

nopopopopopopn

nopopnnopnn

hh

h

h

⎟⎠⎞

⎜⎝⎛ +=⎥

⎤⎢⎣

⎡++++=

+++=

+==><

∫∫

∫∫

∞+

∞−

∗∞+

∞−

∞+

∞−−+−−++

+∞

∞−−+

∗+∞

∞−

210)()()1()()(0

2

)()()()()()()()(2

)()()()(2

)())((

22

222

where I used ( ) 21

2 211)()( ++++ ++=+= nnopnop nnnaa ψψψ

( ) nnnopnopop nnnnaaa ψψψψ === −+−+ 1)()()(

( ) nnnopnopop nnnnaaa ψψψψ )1(111)()()( 1 +=++=+= +−+−

( ) 212 1)()( −−−− −== nnopnop nnnaa ψψψ

Also,

( )

( )

ωψψψψω

ψψω

ψψωψψ

mndxxxndxxxnm

dxxaaaaaaxm

dxxaaxmdxxpxp

nnnn

nopopopopopopn

nopopnnopxnnx

hh

h

h

⎟⎠⎞

⎜⎝⎛ +=⎥

⎤⎢⎣

⎡++++=

+−−−

=

−−

==><

∫∫

∫∫

∞+

∞−

∗∞+

∞−

∞+

∞−−+−−++

+∞

∞−−+

∗+∞

∞−

210)()()1()()(0

2

)()()()()()()()(2

)()()()(2

)())((

22

222

.

(j) (4 points) Find Δx = σx and Δpx = xpσ for the nth stationary state and check that the

uncertainty principle is satisfied.

Answer: ωm

nx nh

⎟⎠⎞

⎜⎝⎛ +=Δ

21)( , ωmnp nx h⎟

⎠⎞

⎜⎝⎛ +=Δ

21)( ,

2)12()( h

+=ΔΔ npx nx

Solution: From (h) we see that

ωmnxxx nnn

h⎟⎠⎞

⎜⎝⎛ +=><−><=Δ

21)( 22

ωmnppp nxnxnx h⎟⎠⎞

⎜⎝⎛ +=><−><=Δ

21)( 22

Thus,

22)12(

21

21)( hh

hh

≥+=⎟⎠⎞

⎜⎝⎛ +⎟

⎠⎞

⎜⎝⎛ +=ΔΔ nmn

mnpx nx ω

ω.

(k) (4 point) Compute <T> and <V> for the nth stationary state, where T is the kinetic energy and V is the potential energy. What is sum <T> + <V>?

Answer: ωh⎟⎠⎞

⎜⎝⎛ +=><

21

21 nT n , ωh⎟

⎠⎞

⎜⎝⎛ +=><

21

21 nV n , nn EnVT =⎟

⎠⎞

⎜⎝⎛ +=><+>< ωh

21)(

Page 13: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 13 of 14

Solution: From (h) we see that

ωh⎟⎠⎞

⎜⎝⎛ +=

><=><

21

21

2

2

nm

pT nxn

ωω h⎟⎠⎞

⎜⎝⎛ +=><=><

21

21

21 22 nxmV nn

Note that <T>n = <V> n and that nnn EnVT =⎟⎠⎞

⎜⎝⎛ +=><+>< ωh

21 .

(l) (8 points) Suppose that a particle in the harmonic oscillator potential starts out in the state [ ])(4)(3)0,( 10 xxAx ψψ +=Ψ .

What is <x> and <px> for this state? If you measure the energy of this particle, what are the possible values you might get, and what is the probability of getting each of them? What is the expectation value of the energy for this state?

Answer: E0 with probability 9/25 and E1 with probability 16/25,

)cos(225

24 tm

x ωωh

>=< , )sin(225

24 tmpx ωωh−>=< , and ωh50

57>=< E .

Solution: The normalization A is determined by requiring that

[ ][ ]

( ) 211011000

2

10102

25)()(16)()(12)()(12)()(9

)(4)(3)(4)(31)0,()0,(

AdxxxxxxxxxA

dxxxxxAdxxx

=+++=

++==ΨΨ

∫∫∞+

∞−

∗∗∗∗

+∞

∞−

∗∗+∞

∞−

ψψψψψψψψ

ψψψψ

Thus, A = 1/5 and

2/315

42/05

3

/15

4/05

3/11

/00

)()(

)()()()(),( 1010

titi

tiEtiEtiEtiE

exex

exexexcexctxωω ψψ

ψψψψ−−

−−−−

+=

+=+=Ψ hhhh

.

which means that you get energy E0 with probability 9/25 and energy E1 with probability 16/25. The expectation value of E is

ωωω hhh 5057

23

2516

21

259

12516

0259 =+=+>=< EEE .

The expectation value of x at time t is

[ ]( )[ ]

[ ] [ ] [ ] [ ]

( ) )cos(225

24225

12

)()()(2

)()()(2

)()()()()()(2

),())(,(

2/05

32/315

42/315

42/05

3

2/315

42/05

32/315

42/05

3

tm

eem

dxexaexm

dxexaexm

dxexexaaexexm

dxtxxtxx

titi

tiop

titiop

ti

titiopop

titi

op

ωωω

ψψω

ψψω

ψψψψω

ωω

ωωωω

ωωωω

hh

hh

h

=+=

+=

+++=

ΨΨ>=<

+−

∞+

∞−

−+

+∗∞+

∞−

−−

+∗

∞+

∞−

−−−+

+∗+∗

+∞

∞−

∫∫

The expectation value of px at time t is

Page 14: 4604 Solutions Set2 Fa07

PHY4604 Fall 2007 Problem Set 2 Solutions

Department of Physics Page 14 of 14

[ ]( )[ ]

[ ] [ ] [ ] [ ]

( ) )sin(225

24225

12

)()()(2

)()()(2

)()()()()()(2

),())(,(

2/05

32/315

42315

42/05

3

2/315

42/05

32/315

42/05

3

tmeemi

dxexaexm

dxexaexmi

dxexexaaexexmi

dxtxptxp

titi

tiop

titiop

ti

titiopop

titi

opxx

ωωω

ψψω

ψψω

ψψψψω

ωω

ωωωω

ωωωω

hh

hh

h

−=−−=

−−=

+−+=

ΨΨ>=<

+−

∞+

∞−

−+

+∗∞+

∞−

−−

+∗

∞+

∞−

−−−+

+∗+∗

+∞

∞−

∫∫

Note that

>=<−=−==><

xptmtm

mtdtd

mm

dtxdm )sin(

22524)sin(

22524)cos(

22524 ωωω

ωωω

ωhhh .