54
2009 – 2010. UTTAR PRADESH TECHNICAL UNIVERSITY DEPARTMENT OF ELECTRONICS AND COMMUNICATION MR. ROHIT TRIPATHI Gaurav Bajaj 4G Technology 2009 Page 1 A SEMINAR REPORT ON 4G TECHNOLOGY Given By Under The Guidance Of Submitted To

4G technology

  • Upload
    gaurav

  • View
    31

  • Download
    1

Embed Size (px)

DESCRIPTION

4g seminar reporrt

Citation preview

Page 1: 4G technology

2009 – 2010. UTTAR PRADESH TECHNICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

MR. ROHIT TRIPATHI

Gaurav Bajaj

4G Technology 2009

Page 1

A SEMINAR REPORT

ON

4G TECHNOLOGY

Given By

Under The Guidance Of

Submitted To

Page 2: 4G technology

(LECTURE, EC DEPTT)

MR. ROHIT TRIPATHI

2009-2010.

Final Year of Electronics & Communication

Gaurav Bajaj

CERTIFICATECERTIFICATECERTIFICATECERTIFICATE

This is to certify that

as a partial fulfillment of

(Dr. Mrs. Geeta S. Lathkar)

4G Technology

CERTIFICATECERTIFICATECERTIFICATECERTIFICATE

This is to certify that have delivered a seminar on the topic,

“4G Technology”

as a partial fulfillment of

4G Technology 2009

Page 2

have delivered a seminar on the topic,

for the year

Page 3: 4G technology

Gaurav Bajaj

wards my seminar guide and Lecture

crete step in study of this seminar of EC Department Mr. ROHIT TRIPATHI who at very dis

4G Technology 2009

Page 3

ACKNOWLEDGMENT

I feel great pleasure in submitting this seminar report on “4444G Technology” .

I wish to express true sense of gratitude to

contributed his valuable guidance and help to solve every problem that arose and opening

the doors of the department towards the realization of the seminar report.

Most likely I would like to express my sincere gratitude towards my family for

always being there when I needed them the most. With all respect and gratitude, I would

like to thank all the people, who have helped us directly or indirectly, I owe my all success

to them.

Page 4: 4G technology

4G Technology 2009

Page 4

ABSTRACT

The fourth generation of mobile networks will truly turn the current mobile phone

networks, in to end to end IP based networks, couple this with the arrival of IPv6, every device

in the world will have a unique IP address, which will allow full IP based communications from

a mobile device, right to the core of the internet, and back out again. If 4G is implemented

correctly, it will truly harmonize global roaming, super high speed connectivity, and transparent

end user performance on every mobile communications device in the world. 4G is set to deliver

100mbps to a roaming mobile device globally, and up to 1gbps to a stationary device. With this

in mind, it allows for video conferencing, streaming picture perfect video and much more. It

won’t be just the phone networks that need to evolve, the increased traffic load on the internet as

a whole (imagine having 1 billion 100mb nodes attached to a network over night) will need to

expand, with faster backbones and oceanic links requiring major upgrade. 4G won’t happen

overnight, it is estimated that it will be implemented by 2012, and if done correctly, should take

off rather quickly. 4G networks i.e. Next Generation Networks (NGNs) are becoming fast and

very cost-effective solutions for those wanting an IP built high-speed data capacities in the

mobile network. Some possible standards for the 4G system are 802.20, WiMAX (802.16),

HSDPA, TDD UMTS, UMTS and future versions of UMTS. The design is that 4G will be based

on OFDM (Orthogonal Frequency Division Multiplexing), which is the key enabler of 4G

technology. Other technological aspects of 4G are adaptive processing and smart antennas, both

of which will be used in 3G networks and enhance rates when used in with OFDM. Currently 3G

networks still send their data digitally over a single channel; OFDM is designed to send data over

hundreds of parallel streams, thus increasing the amount of information that can be sent at a time

over traditional CDMA networks.

Page 5: 4G technology

10.7 Adaptive Modulation and Power Control...........………………………….

Mobile Management...........................…………………………………………... 47Issues....................................................………………………………………….. 44

48 13. Quality of service…………......…………………………………………………

17. References………………………………………………………………………...54

16. Conclusion……………………………………………………………………….. 53 51

14. Security…………………………………………………………………………...50

43 42

..38 41

.. 37

.. 34 .. 33

31

Wireless Technologies Used in 4G......…………………………………………...30

8. Basic model for 4G……………………………………………………………

Transmission........................................…………………………………………...28

….26

4 7.4 Overlay network….……………………..………...……………….……..... 2

...21

20

... 21

Architecture in prospects………………………………………………………...20

17

15

Features of 4G…...……………………………………………………………....14

What is 4G……………………………………………………………………....10

History of 4G…………………………………………………………………... 08

Introduction to 4G……………………………………………………………... 07

15. Applications……………………………………………………………………...

12.11.

4.

5.

Error Correcting..........................................................................10.1.1

6. Implementation Using 4G..................................

What is needed to build 4G network?................

7.3 Relay network architecture………………………….……………………

7.2 Middleware architecture………………..………………………………..

7.1 End to end architecture………………….………………………………….

7.

9.

10.6 Scheduling Among User......................................………………………….10.5 Long term Power Prediction................................………………………….10.4 Smart Antenna..............………………..………………………………..10.3 Millimeter wireless......………………..………………………………..10.2 Ultra Wide Band..........………………..………………………………..

10.1 Orthogonal Frequency Division Multiplexing....………………………….

10.

...................................................

4G Technology 2009

Page 5

CONTENT

Chapter Page No.

1.

2.

3.

...................................................

Page 6: 4G technology

MIMO......................………………………………………………………….....40 9.

OFDM Multiplexing.…………………………………………………………....32 8.

7. OFDM Modulation...…………………………………………………………....29

Basic model of 4G……………………………………………………………....27 6.

Overlay networks………………………………………………………………..25

Multihop architecture…………………………………………………………....23

5.

4.

Implementatian daigram of 4G… ……………………………………………...193.

4G Technology 2009

Page 6

FIGURE INDEX

Figure Page No.

1. History of mobile networks……………………………………………………..9

2. 4G mobile communication……………………………………………………...13

Page 7: 4G technology

4G Technology 2009

Page 7

1. INTRODUCTION

4G (also known as Beyond 3G), an abbreviation for Fourth-Generation, is a term used to

describe the next complete evolution in wireless communications. A 4G system will be able to

provide a comprehensive IP solution where voice, data and streamed multimedia can be given to

users on an "Anytime, Anywhere" basis, and at higher data rates than previous generations.

The approaching 4G (fourth generation) mobile communication systems are projected to

solve still-remaining problems of 3G (third generation) systems and to provide a wide variety of

new services, from high-quality voice to high-definition video to high-data-rate wireless

channels. The term 4G is used broadly to include several types of broadband wireless access

communication systems, not only cellular telephone systems. One of the terms used to describe

4G is MAGIC-Mobile multimedia, anytime anywhere, Global mobility support, integrated

wireless solution, and customized personal service. As a promise for the future, 4G systems, that

is, cellular broadband wireless access systems have been attracting much interest in the mobile

communication arena. The 4G systems not only will support the next generation of mobile

service, but also will support the fixed wireless networks.

Researchers and vendors are expressing a growing interest in 4G wireless networks that

support global roaming across multiple wireless and mobile networks—for example, from a

cellular network to a satellite-based network to a high-bandwidth wireless LAN. With this

feature, users will have access to different services, increased coverage, the convenience of a

single device, one bill with reduced total access cost, and more reliable wireless access even with

the failure or loss of one or more networks. 4G networks will also feature IP interoperability for

seamless mobile Internet access and bit rates of 50 Mbps or more.

Page 8: 4G technology

4G Technology 2009

Page 8

3G, or Third Generation 3G systems promise faster communications services, entailing voice, fax and Internet data

transfer capabilities, the aim of 3G are to provide these services anytime, anywhere throughout

the globe, with seamless roaming between standards. ITU’s IMT-2000 is a global standard for

3G and has opened new doors to enabling innovative services and application for instance,

multimedia entertainment, and location-based services, as well as a whole lot more. In 2001,

Japan saw the first 3G network launched. 3G technology supports around 144 Kbps, with high

speed movement, i.e. in a vehicle. 384Kbps locally, and upto 2Mbps for fixed stations, i.e. in a

building.

2. HISTORYAt the end of the 1940’s, the first radio telephone service was introduced, and was designed to

users in cars to the public land-line based telephone network. Then, in the sixties, a system

launched by Bell Systems, called IMTS, or, “Improved Mobile Telephone Service", brought

quite a few improvements such as direct dialing and more bandwidth. The very first analog

systems were based upon IMTS and were created in the late 60s and early 70s. The systems were

called "cellular" because large coverage areas were split into smaller areas or "cells", each cell is

served by a low power transmitter and receiver. The 1G or First Generation was an analog

system, and was developed in the seventies, 1G had two major improvements, this was the

invention of the microprocessor, and the digital transform of the control link between the phone

and the cell site. Advance mobile phone system (AMPS) was first launched by the US and is a

1G mobile system. Based on FDMA, it allows users to make voice calls in 1 country.

2G, or Second Generation 2G first appeared around the end of the 1980’s, the 2G system digitized the voice signal, as well as the control link. This new digital system gave a lot better quality and much more capacity (i.e. more people could use their phones at the same time), all at a lower cost to the end consumer. Based on TDMA, the first commercial network for use by the public was the Global system for mobile communication (GSM).

Page 9: 4G technology

Fig 1: - History of Mobile Networks

4G Technology 2009

Page 9

Page 10: 4G technology

4G Technology 2009

Page 10

3. What is 4G?

Fourth generation (4G) wireless was originally conceived by the Defense Advanced

Research Projects Agency (DARPA), the same organization that developed the wired Internet. It

is not surprising, then, that DARPA chose the same distributed architecture for the wireless

Internet that had proven so successful in the wired Internet. Although experts and policymakers

have yet to agree on all the aspects of 4G wireless, two characteristics have emerged as all but

certain components of 4G: end-to-end Internet Protocol (IP), and peer-to-peer networking. An all

IP network makes sense because consumers will want to use the same data applications they are

used to in wired networks. A peer-to-peer network, where every device is both a transceiver and

a router/repeater for other devices in the network, eliminates this spoke-and-hub weakness of

cellular architectures, because the elimination of a single node does not disable the network. The

final definition of “4G” will have to include something as simple as this: if a consumer can do it

at home or in the office while wired to the Internet, that consumer must be able to do it

wirelessly in a fully mobile environment.

Let’s define “4G” as “wireless ad hoc peer-to-peer networking.” 4G technology is

significant because users joining the network add mobile routers to the network infrastructure.

Because users carry much of the network with them, network capacity and coverage is

dynamically shifted to accommodate changing user patterns. As people congregate and create

pockets of high demand, they also create additional routes for each other, thus enabling

additional access to network capacity. Users will automatically hop away from congested routes

to less congested routes. This permits the network to dynamically and automatically self-balance

capacity, and increase network utilization. What may not be obvious is that when user devices

act as routers, these devices are actually part of the network infrastructure. So instead of carriers

subsidizing the cost of user devices (e.g., handsets, PDAs, of laptop computers), consumers

actually subsidize and help deploy the network for the carrier. With a cellular infrastructure,

users contribute nothing to the network. They are just consumers competing for resources. But in

wireless ad hoc peer-to-peer networks, users cooperate – rather than compete – for network

resources.

Page 11: 4G technology

4G Technology 2009

Page 11

Thus, as the service gains popularity and the number of user increases, service likewise

improves for all users. And there is also the 80/20 rule. With traditional wireless networks, about

80% of the cost is for site acquisition and installation, and just 20% is for the technology. Rising

land and labor costs means installation costs tend to rise over time, subjecting the service

providers’ business models to some challenging issues in the out years. With wireless peer-to-

peer networking, however, about 80% of the cost is the technology and only 20% is the

installation. Because technology costs tend to decline over time, a current viable business model

should only become more profitable over time. The devices will get cheaper, and service

providers will reach economies of scale sooner because they will be able to pass on the

infrastructure savings to consumers, which will further increase the rate of penetration.

This new generation of wireless is intended to complement and replace the 3G systems,

perhaps in 5 to 10 years. Accessing information anywhere, anytime, with a seamless connection

to a wide range of information and services, and receiving a large volume of information, data,

pictures, video, and so on, are the keys of the 4G infrastructures. The future 4G infrastructures

will consist of a set of various networks using IP (Internet protocol) as a common protocol so

that users are in control because they will be able to choose every application and environment.

Based on the developing trends of mobile communication, 4G will have broader bandwidth,

higher data rate, and smoother and quicker handoff and will focus on ensuring seamless service

across a multitude of wireless systems and networks. The key concept is integrating the 4G

capabilities with all of the existing mobile technologies through advanced technologies.

Application adaptability and being highly dynamic are the main features of 4G services of

interest to users.

These features mean services can be delivered and be available to the personal preference

of different users and support the users' traffic, air interfaces, radio environment, and quality of

service. Connection with the network applications can be transferred into various forms and

levels correctly and efficiently. The dominant methods of access to this pool of information will

be the mobile telephone, PDA, and laptop to seamlessly access the voice communication, high-

speed information services, and entertainment broadcast services. Figure 1 illustrates elements

and techniques to support the adaptability of the 4G domain. The fourth generation will

encompass all systems from various networks, public to private; operator-driven broadband

networks to personal areas; and ad hoc networks. The 4G systems will interoperate with 2G and

Page 12: 4G technology

4G Technology 2009

Page 12

3G systems, as well as with digital (broadband) broadcasting systems. In addition, 4G systems

will be fully IP-based wireless Internet. This all-encompassing integrated perspective shows

the broad range of systems that the fourth generation intends to integrate, from satellite

broadband to high altitude platform to cellular 3G and 3G systems to WLL (wireless local loop)

and FWA (fixed wireless access) to WLAN (wireless local area network) and PAN (personal

area network), all with IP as the integrating mechanism. With 4G, a range of new services and

models will be available. These services and models need to be further examined for their

interface with the design of 4G systems.

Page 13: 4G technology

4G Technology 2009

Page 13

Fig 2: - 4G Mobile Communication

Page 14: 4G technology

4. FEATURES

Page 14

4G Technology 2009

• Support for interactive multimedia, voice, streaming video, Internet, and 

other broadband services 

• IP based mobile system 

• High speed, high capacity, and low cost‐per‐bit 

• Global access, service portability, and scalable mobile services 

• Seamless switching, and a variety of Quality of Service‐driven services 

• Better scheduling and call‐admission‐control techniques 

• Ad‐hoc and multi‐hop networks (the strict delay requirements of voice make 

multi‐hop network service a difficult problem) • Better spectral efficiency 

• Seamless network of multiple protocols and air interfaces (since 4G will be 

all‐IP, look for 4G systems to be compatible with all common network 

technologies, including 802.11, WCDMA, Bluetooth, and Hyper LAN).  

• An infrastructure to handle pre‐existing 3G systems along with other wireless 

technologies, some of which are currently under development. 

Page 15: 4G technology

Page 15

5. What is needed to Build 4G Networks of Future?

4G Technology 2009

A number of spectrum allocation decisions, spectrum standardization decisions, spectrum

availability decisions, technology innovations, component development, signal processing and

switching enhancements and inter-vendor cooperation have to take place before the vision of 4G

will materialize. We think that 3G experiences - good or bad, technological or business - will be

useful in guiding the industry in this effort. We are bringing to the attention of professionals in

telecommunications industry following issues and problems that must be analyzed and resolved:

* Lower Price Points Only Slightly Higher than Alternatives - The business visionaries

should do some economic modeling before they start 4G hype on the same lines as 3G hype.

They should understand that 4G data applications like streaming video must compete with very

low cost wireline applications. The users would pay only a delta premium (not a multiple) for

most wireless applications.

* More Coordination Among Spectrum Regulators Around the World - Spectrum

regulation bodies must get involved in guiding the researchers by indicating which frequency

band might be used for 4G. FCC in USA must cooperate more actively with International bodies

like ITU and perhaps modify its hands-off policy in guiding the industry. When public interest,

national security interest and economic interest (inter-industry a la TV versus

Telecommunications) are at stake, leadership must come from regulators. At appropriate time,

industry builds its own self-regulation mechanisms.

* More Academic Research: Universities must spend more effort in solving fundamental

problems in radio communications (especially multiband and wideband radios, intelligent

antennas and signal processing.

* Standardization of wireless networks in terms of modulation techniques, switching

schemes and roaming is an absolute necessity for 4G.

* A Voice-independent Business Justification Thinking: Business development and

technology executives should not bias their business models by using voice channels as

economic determinant for data applications. Voice has a built-in demand limit - data applications

do not.

Page 16: 4G technology

Page 16

4G Technology 2009

* Integration Across Different Network Topologies: Network architects must base their

architecture on hybrid network concepts that integrates wireless wide area networks, wireless

LANS (IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.15 and IEEE 802.16, Bluetooth

with fiber-based Internet backbone. Broadband wireless networks must be a part of this

integrated network architecture.

* Non-disruptive Implementation: 4G must allow us to move from 3G to 4G.

Page 17: 4G technology

6.IMPLEMENTATION USING 4G

Page 17

The

4G Technology 2009

                        goal  of  4G  is  to  replace  the  current  proliferation  of  core 

mobile networks with a  single worldwide  core network  standard, based on  IP 

for control, video, packet data, and voice. This will provide uniform video, voice, 

and data services to the mobile host, based entirely on IP.  

                    The  objective  is  to  offer  seamless multimedia  services  to  users 

accessing  an  all  IP‐based  infrastructure  through  heterogeneous  access 

technologies.  IP  is  assumed  to  act  as  an  adhesive  for  providing  global 

connectivity and mobility among networks.  

                      An  all  IP‐based  4G wireless  network  has  inherent  advantages 

over  its predecessors. It  is compatible with, and  independent of the underlying 

radio  access  technology.  An  IP  wireless  network  replaces  the  old  Signaling 

System  7  (SS7)  telecommunications  protocol,  which  is  considered  massively 

redundant.  This  is  because  SS7  signal  transmission  consumes  a  larger  part  of 

network bandwidth even when there is no signaling traffic for the simple reason 

Page 18: 4G technology

Page 18

4G Technology 2009

that it uses a call setup mechanism to reserve bandwidth, rather time/frequency 

slots in the radio waves. IP networks, on the other hand, are connectionless and 

use the slots only when they have data to send. Hence there is optimum usage of 

the  available  bandwidth.  Today, wireless  communications  are  heavily  biased 

toward voice, even though studies indicate that growth in wireless data traffic is 

rising exponentially  relative  to demand  for voice  traffic. Because an all  IP core 

layer  is easily  scalable,  it  is  ideally  suited  to meet  this challenge. The goal  is a 

merged data/voice/multimedia network.  

Page 19: 4G technology

Page 19

4G Technology 2009

 IMPLEMENTATION DIAGRAM OF 4G

Page 20: 4G technology

Page 20

7.1 End-to-end Service Architectures for 4G Mobile

7. Architectures in Prospects

• Trust management. Mechanisms for managing trust r

4G Technology 2009

Systems:-

A characteristic of the transition towards 3G systems and beyond is that highly integrated

telecommunications service suppliers fail to provide effective economies of scale. This is

primarily due to deterioration of vertical integration scalability with innovation speed up. Thus,

the new rule for success in 4G telecommunications markets will be to provide one part of the

puzzle and to cooperate with other suppliers to create the complete solutions that end customers

require.

A direct consequence of these facts is that a radically new end-to-end service architecture

will emerge during the deployment of 3G mobile networks and will became prominent as the

operating model of choice for the Fourth Generation (4G) Mobile Telecommunications

Networks. This novel end-to-end service architecture is inseparable from an equally radical

transformation of the role of the telecommunications network operator role in the new value

chain of end service provision. In fact, 4G systems will be organized not as monolithic structures

deployed by a single business entity, but rather as a dynamic confederation of multiple—

sometimes cooperating and sometimes competing—service providers.

End-to-end service architectures should have the following desirable properties:

• Open service and resource allocation model.

• Open capability negotiation and pricing model.

elationships among clients

and service providers, and between service providers, based on trusted third

party monitors.

• Collaborative service constellations.

• Service fault tolerance.

Page 21: 4G technology

Page 21

7.3

7.2

4G Technology 2009

Middleware Architecture:-

The service middleware is decomposed into three layers; i.e. user support layer, service

support layer and network support layer. The criterion for using a layered approach is to reuse

the existing subsystems in the traditional middleware. The user support layer has autonomous

agent aspects that traditional service middleware lacks. It consists of 4 sub-systems:

‘Personalization’, ‘Adaptation’, ‘Community’ and ‘Coordination’, to provide mechanisms for

context awareness and support for communities and coordination. Introduction of this functional

layer enables

the reduction of unnecessary user interaction with the system and the provision of user-centric

services realized by applying agent concepts, to support analysis of the current context,

personalization depending on the user’s situation, and negotiation for service usage.

The middle layer, the service support layer, contains most functionality of traditional

middleware. The bottom layer, the network layer supports connectivity for all-IP networks. The

dynamic service delivery pattern defines a powerful interaction model to negotiate the conditions

of service delivery by using three subsystems: ‘Discovery & Advertisement’, ‘Contract Notary’

and ‘Authentication & Authorization’.

Cellular Multihop Communications: Infrastructure-Ba sed Relay

Network Architecture:-

It is clear that more fundamental enhancements are necessary for the very ambitious

throughput and coverage requirements of future networks. Towards that end, in addition to

advanced transmission techniques and antenna technologies, some major modifications in the

wireless network architecture itself, which will enable effective distribution and collection of

signals to and from wireless users, are sought. The integration of “multihop” capability into the

conventional wireless networks is perhaps the most promising architectural upgrade.

In a Multihop network, a signal from a source may reach its destination in multiple hops

(whenever necessary) through the use of “relays”. Since we are here concerned with

infrastructure-based networks, either the source or destination is a common point in the network

Page 22: 4G technology

Page 22

4G Technology 2009

- base station (or, access point, in the context of WLANs). The potential advantage of relaying is

that it allows substituting a poor-quality (due to high path loss) single-hop wireless link with a

composite, two- or more hop, better-quality link whenever possible. Relaying is not only

efficient in eliminating black spots throughout the coverage region, but more importantly, it may

extend the high data rate coverage range of a single BS; therefore cost-effective high data rate

coverage may be possible through the augmentation of the relaying capability in conventional

cellular networks.

Advantages:-

• Property owners can install their own access points.

– Spreads infrastructure cost.

• Reduced network access operational cost.

– Backbone access through wireless.

– Wired access through DSL at aggregation points.

• Ad hoc-like characteristics:

– Access points configure into access network.

– Some access points may be moving (bus, train).

• Multihop also could reduce costs in heterogeneous 3G networks.

– 802.11 to GPRS for example.

Page 23: 4G technology

Page 23

4G Technology 2009

Fig.3: - Example of Heterogeneous Network Multihop Architecture

Page 24: 4G technology

Page 24

4G Technology 2009

5.4 Overlay network:-

In this architecture, a user accesses an overlay network consisting of several universal

access points. These UAPs in turn select a wireless network based on availability, QoS

specifications, and user defined choices. A UAP performs protocol and frequency translation,

content adaptation, and QoS negotiation-renegotiation on behalf of users. The overlay network,

rather than the user or device, performs handoffs as the user moves from one UAP to another. A

UAP stores user, network, and device information, capabilities, and preferences. Because UAPs

can keep track of the various resources a caller uses, this architecture supports single billing and

subscription.

Figure1. Possible 4G wireless network architectures. (a) A multimode device lets the

user, device, or network initiate handoff between networks without the need for network

modification or interworking devices. (b) An overlay network—consisting of several universal

access points (UAPs) that store user, network, and device information—performs a handoff as

the user moves from one UAP to another. (c) A device capable of automatically switching

between networks is possible if wireless networks can support a common protocol to access a

satellite-based network and another protocol for terrestrial networks.

Page 25: 4G technology

4G Technology 2009

Viral N. Patel Page 21

Fig 4: -Overlay Networks

Page 26: 4G technology

Page 26

8. A Basic Model for 4G Networks

4G Technology 2009

QoS, security and mobility can be viewed as three different, indispensable aspects in 4G

networks; however all are related to network nodes involving the controlling or the processing of

IP packets for end-to-end flows between an MN and the CN. I show in this section how we view

the 4G network infrastructure.

Two Planes: Functional Decomposition

Noting that an IP network element (such as a router) comprises of numerous functional

components that cooperate to provide such desired service (such as, mobility, QoS and/or AAA –

Authentication, Authorization and Accounting), we identify these components in the SeaSoS

architecture into two planes, namely the control plane and the data plane.

Fig. 5 illustrates this method of flexible functional composition in 4G networks. As we

are mainly concerned with network elements effectively at the network layer, we do not show a

whole end-to-end communication picture through a whole OSI or TCP/IP stack. The control

plane performs control related actions such as AAA, MIP registration, QoS signaling,

installation/maintenance of traffic selectors and security associations, etc., while the data plane is

responsible for data traffic behaviors (such as classification, scheduling and forwarding) for end-

to-end traffic flows. Some components located in the control plane interact, through installing

and maintaining certain control states for data plane, with data plane components in some

network elements, such as access routers (ARs), IntServ nodes or DiffServ edge routers.

However, not all control plane components need to exist in all network elements, and also not all

network elements (e.g., AAA server) are involved with data plane functionalities.

I refer these cases as path-decoupled control and other cases as path coupled control. We

argue the separation and coordination of control plane and data plane is critical for seamless

mobility with QoS and security support in 4G networks, with the reasons as follows. Per-flow or

per-user level actions occur much less frequent than per-packet actions, while per-packet actions

are part of critical forwarding behavior, which involves very few control actions (which are

typically simply to read and enforce according the install state during forwarding data). Actually,

Page 27: 4G technology

Page 27

4G Technology 2009

this separation concept is not new – routing protocols have the similar abstraction together used

with the traditional IP packet delivery, this abstraction is recently being investigated in the IETF

ForCES working group. However, we emphasize the three critical dimensions of future 4G

networks: mobility, QoS and security, as well as other new emerging or replacement components

might appear, integrated into a unified framework and allowing more extensibility for 4G

networks design.

Fig.5: - The decomposition of control plane and data plane

functionalities

Page 28: 4G technology

Page 28

9.TRANSMISSION

4G Technology 2009

    An  OFDM  transmitter  accepts  data  from  an  IP  network, 

converting  and  encoding  the  data  prior  to  modulation.  An  IFFT  (inverse  fast 

Fourier  transform)  transforms  the OFDM signal  into an  IF analog signal, which  is 

sent  to  the RF  transceiver. The  receiver  circuit  reconstructs  the data by  reversing 

this process. With  orthogonal  sub‐carriers,  the  receiver  can  separate  and process 

each sub‐carrier without  interference  from other sub‐carriers. More  impervious  to 

fading and multi‐path delays  than other wireless  transmission  techniques, ODFM 

provides better link and communication quality. 

Page 29: 4G technology

Page 29

4G Technology 2009

                                                 

IP NETWORK

OFDM TRANSMITTER

MODULATION

IFFT making IF analog

RF TRANSMITTER

OFDM MODULATION

Page 30: 4G technology

Page 30

10.

4G Technology 2009

Wireless Technologies Used In 4G

1. OFDM 

2. UWB 

3. MILLIMETER  WIRELESS 

4. SMART ANTENNAS 

5. LONG TERM POWER PREDICTION 

6. SHEDULING AMONG USERS 

7. ADAPTIVE MODULATION AND POWER CONTROL 

Page 31: 4G technology

Page 31

10.1 Orthogonal Frequency Division Multiplexing:

4G Technology 2009

               OFDM,  a  form  of multi‐carrier modulation, works  by  dividing  the 

data stream  for  transmission at a bandwidth B  into N multiple and parallel bit 

streams, spaced B/N apart (Figure  ). Each of the parallel bit streams has a much 

lower bit rate than the original bit stream, but their summation can provide very 

high  data  rates. N  orthogonal  sub‐carriers modulate  the  parallel  bit  streams, 

which are then summed prior to transmission.

               An OFDM  transmitter accepts data  from an  IP network, converting 

and  encoding  the  data  prior  to  modulation.  An  IFFT  (inverse  fast  Fourier 

transform) transforms the OFDM signal into an IF analog signal, which is sent to 

the RF  transceiver. The  receiver  circuit  reconstructs  the data by  reversing  this 

process. With orthogonal sub‐carriers, the receiver can separate and process each 

sub‐carrier  without  interference  from  other  sub‐carriers. More  impervious  to 

fading  and  multi‐path  delays  than  other  wireless  transmission  techniques, 

ODFM provides better link and communication quality. 

8

Page 32: 4G technology

Page 32

Fig 8: :Orthogonal Frequency Division Multiplexing:

4G Technology 2009

  

Page 33: 4G technology

Page 33

10.1.1Error Correcting:

4G Technology 2009

               4Gʹs error‐correction will most likely use some type of concatenated 

coding  and will  provide multiple  Quality  of  Service  (QoS)  levels.  Forward 

error‐correction  (FEC)  coding  adds  redundancy  to  a  transmitted  message through  encoding  prior  to  transmission.  The  advantages  of  concatenated 

coding  (Viterbi/Reed‐Solomon)  over  convolutional  coding  (Viterbi)  are 

enhanced  system  performance  through  the  combining  of  two  or  more 

constituent codes (such as a Reed‐Solomon and a convolutional code) into one 

concatenated code. The combination can  improve error correction or combine 

error correction with error detection (useful, for example, for implementing an 

Automatic  Repeat  Request  if  an  error  is  found).  FEC  using  concatenated 

coding  allows  a  communications  system  to  send  larger  block  sizes  while 

reducing bit‐error rates. 

Page 34: 4G technology

Page 34

10.2 Ultra Wide Band :

4G Technology 2009

               A UWB  transmitter spreads  its signal over a wide portion of  the RF 

spectrum, generally 1 GHz wide or more, above 3.1GHz. The FCC has chosen 

UWB frequencies to minimize interference to other commonly used equipment, 

such as televisions and radios. This frequency range also puts UWB equipment 

above the 2.4 GHz range of microwave ovens and modern cordless phones, but 

below 802.11a wireless Ethernet, which operates at 5 GHz. 

               UWB equipment  transmits very narrow RF pulses—low power and 

short pulse period means  the  signal, although of wide bandwidth,  falls below 

the threshold detection of most RF receivers. Traditional RF equipment uses an 

RF carrier to transmit a modulated signal in the frequency domain, moving the 

signal  from a base band  to  the  carrier  frequency  the  transmitter uses. UWB  is 

ʺcarrier‐freeʺ, since the technology works by modulating a pulse, on the order of tens of microwatts,  resulting  in a waveform occupying a very wide  frequency 

domain. The wide bandwidth of a UWB signal is a two‐edged sword. The signal 

is relatively secure against  interference and has  the potential  for very high‐rate 

wireless broadband access and speed. On the other hand, the signal also has the 

potential  to  interfere with  other wireless  transmissions.  In  addition,  the  low‐

 constraints   on UWB    the FCC, due  to  its    interference potentialplaced

   

bypower

Page 35: 4G technology

Page 35

4G Technology 2009

with other RF signals, significantly limits the range of UWB equipment (but still 

makes it a viable LAN technology). 

               One  distinct  advantage  of  UWB  is  its  immunity  to  multi‐path 

distortion and  interference. Multi‐path propagation occurs when a  transmitted 

signal  takes different paths when propagating  from  source  to destination. The 

various  paths  are  caused  by  the  signal  bouncing  off  objects  between  the 

transmitter and  receiver—for example,  furniture and walls  in a house, or  trees 

and buildings in an outdoor environment. One part of the signal may go directly  

the  receiver  will  make  mistakes  when  demodulating  the  information  in  the 

signal.  For  long‐enough  delays,  bit  errors  in  the  packet  will  occur  since  the 

receiver canʹt distinguish the symbols and correctly interpret the corresponding 

bits. 

to the receiver while another; deflected part will encounter delay and take longer 

to  reach  the  receiver. Multi‐path delay  causes  the  information  symbols  in  the 

signal  to  overlap,  confusing  the  receiver—this  is  known  as  inter‐symbol 

interference  (ISI). Because  the  signalʹs  shape  conveys  transmitted  information, 

               The  short  time‐span  of  UWB  waveforms—typically  hundreds  of 

picoseconds to a few nanoseconds—means that delays caused by the transmitted 

signal bouncing off objects are much longer than the width of the original UWB 

Page 36: 4G technology

Page 36

4G Technology 2009

pulse,  virtually  eliminating  ISI  from  overlapping  signals.  This  makes  UWB 

technology  particularly  useful  for  intra‐structure  and mobile  communications 

applications, minimizing S/N reduction and bit errors. 

Page 37: 4G technology

Page 37

10.3 Millimeter Wireless:

4G Technology 2009

               Using the millimeter‐wave band (above 20 GHz) for wireless service 

is  particularly  interesting,  due  to  the  availability  in  this  region  of  bandwidth 

resources  committed  by  the  governments  of  some  countries  to  unlicensed 

cellular and other wireless applications.  If deployed  in a 4G system, millimeter 

wireless would constitute only one of several frequency bands, with the 5 GHz 

band most likely dominant.

Page 38: 4G technology

Page 38

10.4 Smart Antennas:

4G Technology 2009

          A  smart  antenna  system  comprises  multiple  antenna  elements  with 

signal processing to automatically optimize the antennasʹ radiation (transmitter) 

and/or reception (receiver) patterns  in response to the signal environment. One 

smart‐antenna  variation  in  particular, MIMO,  shows  promise  in  4G  systems, 

particularly  since  the  antenna  systems  at  both  transmitter  and  receiver  are 

usually a limiting factor when attempting to support increased data rates.      

                   MIMO  (Multi‐Input Multi‐Output)  is  a  smart  antenna  system 

where  ʹsmartnessʹ  is considered at both  transmitter and  the  receiver. MIMO 

represents  space‐division  multiplexing  (SDM)—information  signals  are 

multiplexed on  spatially  separated N multiple antennas and  received on M 

antennas. Figure   shows a general block diagram of a MIMO system. Some 

systems may not employ the signal‐processing block on the transmitter side. 

                                 

Multiple  antennas  at  both  the  transmitter  and  the  receiver  provide essentially multiple parallel  channels  that operate  simultaneously on  the  same 

frequency band and at the same time. This results in high spectral efficiencies in 

9

Page 39: 4G technology

Page 39

4G Technology 2009

                                 

a rich scattering environment (high multi‐path), since you can transmit multiple 

data  streams or  signals over  the channel  simultaneously. Field experiments by 

several organizations have shown that a MIMO system, combined with adaptive coding  and  modulation,  interference  cancellation,  and  beam‐forming 

technologies,  can  boost  useful  channel  capacity  by  at  least  an  order  of 

magnitude.

Page 40: 4G technology

Page 40

Fig 8 : Multiple Input Multiple Output

4G Technology 2009

             

                   

Page 41: 4G technology

Page 41

10.5 Long Term Power Prediction:

4G Technology 2009

             

                   

               Channels  to different mobile users will  fade  independently.  If  the 

channel  properties  of  all  users  in  a  cell  can  be  predicted  a  number  of 

milliseconds ahead, then it would be possible to distribute the transmission load 

among the users in an optimal way while fulfilling certain specified constraints 

on  throughput and delays. The channel  time‐frequency pattern will depend on 

the scattering environment and on the velocity of the moving terminal. 

               In order to take the advantage the channel variability, we use OFDM 

system with  spacing  between  subcarrires  such  that  no  interchannel  interface 

occurs for the worst case channel scenario 

(Low coherence bandwidth).A time‐frequency grid constituting of regions of 

one  time  slot  and  several  subcarriers  is  used  such  that  the  channel  is  fairly 

constant over each region. These time‐frequency regions are then allocated to the 

different users by a scheduling algorithm according to some criterion.

Page 42: 4G technology

Page 42

6.2

6.1

10.6 Scheduling among Users:

4G Technology 2009

             

                     

               To  optimize  the  system  throughput,  under  specified  QoS 

requirements and delay constraints, scheduling will be used on different levels:  

 

          Among sectors:‐In order  to  cope with  co‐channel    interference 

among neighboring sectors in adjacent cells, time slots are allocated according to 

the  traffic  load  in  each  sector  .Information  on  the  traffic  load  is  exchanged 

infrequently  via  an  inquiry  procedure.  In  this  way  the  interference  can  be 

minimized and higher capacity be obtained. 

               After  an  inquiry  to  adjacent  cells,  the  involved  base  stations 

determine  the allocation of slots  to be used by each base station  in each sector. 

The    inquiry process can also  include synchronization  information  to align  the 

transmission  of  packets  at  different  base  stations  to  further  enhance 

performance. 

                   Among users:‐Based  on  the  time  slot  allocation  obtained 

from  inquiry process,  the user scheduler will distribute  time‐frequency regions 

among the users of each sector based on their current channel predictions. Here 

different degrees of sophistication can be used to achieve different transmission 

goals.  

Page 43: 4G technology

10.7 Adaptive modulation and power control:

Page 43

4G Technology 2009

             

                     

               In a fading environment and for a highly loaded system there will

 almost exist users with good channel conditions. Regardless of the choice of 

criterion, which could be either maximization of system throughput or 

equalization to user satisfaction, the modulation format for the scheduled 

user is selected according to the predicted signal to noise and   interference ratio. 

               By using sufficiently small time‐frequency bins the channel can be 

made approximately constant within bins. We can thus use a flat fading AWGN 

channel assumption. Furthermore since we have already determined the time 

slot allocation, via the inquiry process among adjacent cells described above we 

may use an aggressive power control scheme, while keeping the interference on 

an acceptable level. 

               For  every  timeslot,  the  time‐frequency  bins  in  the  grid  represent 

separate channels. For such channels the optimum rate and power allocation for 

maximizing  the  throughput  can  be  calculated  under  a  total  average  power 

constraint. The optimum  strategy  is  to  let one user,  the one with best channel, 

transmit in each of the parallel channels. 

Page 44: 4G technology

Page 44

ISSUES:

               The first issue deals with optimal choice of access technology, or how 

to be best connected. Given  that a user may be offered connectivity  from more 

than one technology at any one time, one has to consider how the terminal and 

an overlay network choose the radio access technology suitable for services the 

user is accessing.  

               There are several network technologies available today, which can be 

viewed as complementary. For example, WLAN is best suited for high data 

rate  indoor  coverage. GPRS  or UMTS,  on  the  other  hand,  are  best  suited  for 

nation wide coverage and can be regarded as wide area networks, providing a 

4G Technology 2009

                     

higher degree  of mobility. Thus  a user  of  the mobile  terminal  or  the network 

needs  to make  the  optimal  choice  of  radio  access  technology  among  all  those 

available.  A  handover  algorithm  should  both  determine  which  network  to 

connect  to  as  well  as  when  to  perform  a  handover  between  the  different 

networks.  Ideally,  the  handover  algorithm would  assure  that  the  best  overall 

wireless  link  is  chosen.  The  network  selection  strategy  should  take  into 

consideration  the  type  of  application  being  run  by  the  user  at  the  time  of 

handover. This ensures stability as well as optimal bandwidth for interactive and 

background services.  

Page 45: 4G technology

Page 45

4G Technology 2009

             

                     

               The  second  issue  regards  the  design  of  a  mobility  enabled  IP 

networking architecture, which contains  the  functionality  to deal with mobility 

between  access  technologies.  This  includes  fast,  seamless  vertical  (between 

heterogeneous  technologies)  handovers  (IP micro‐mobility),  quality  of  service 

(QoS), security and accounting. Real‐time applications in the future will require 

fast/seamless handovers for smooth operation.  

               Mobility  in  IPv6  is  not  optimized  to  take  advantage  of  specific 

mechanisms that may be deployed in different administrative domains. Instead, 

IPv6 provides mobility  in a manner  that  resembles only  simple portability. To 

enhance Mobility in IPv6, ‘micro‐mobility’ protocols (such as Hawaii[5], Cellular 

IP[6] and Hierarchical Mobile IPv6[7]) have been developed  

for  seamless  handovers  i.e.  handovers  that  result  in minimal  handover delay, 

minimal packet loss, and minimal loss of communication state.    

               The  third  issue  concerns  the  adaptation  of  multimedia  transmission 

across  4G  networks.  Indeed multimedia will  be  a main  service  feature  of  4G 

networks, and changing radio access networks may in particular result in drastic 

changes  in  the  network  condition.  Thus  the  framework  for  multimedia 

transmission  must  be  adaptive.  In  cellular  networks  such  as  UMTS,  users 

compete for scarce and expensive bandwidth.  

Page 46: 4G technology

Page 46

4G Technology 2009

             

                     

               Variable  bit  rate  services  provide  a  way  to  ensure  service 

provisioning at lower costs. In addition the radio environment has dynamics that 

renders  it difficult  to provide a guaranteed network  service. This  requires  that 

the services are adaptive and robust against varying radio conditions.  

               High variations in the network Quality of Service (QoS) leads to 

significant variations of the multimedia quality. The result could sometimes be 

unacceptable to the users. Avoiding this requires choosing an adaptive encoding 

framework for multimedia transmission. The network should signal QoS 

variations to allow the application to be aware in real time of the network 

conditions. User interactions will help to ensure personalized adaptation of the 

multimedia presentation.  

Page 47: 4G technology

Page 47

11.MOBILITY MANAGEMENT

4G Technology 2009

             

                     

Features of mobility management in Ipv6:  

128‐bit address space provides a sufficiently large number of addresses  

 High  quality  support  for  real‐time  audio  and  video  transmission,

short/bursty       connections of web applications, peer‐to‐peer applications, 

etc.  

 Faster packet delivery, decreased cost of processing – no header checksum 

at each relay, fragmentation only at endpoints.  

 Smooth handoff when the mobile host travels from one subnet to another, 

causing a change in its Care‐of Address.  

 

Page 48: 4G technology

Page 48

13. Quality of Service (QoS):-

4G Technology 2009

The Internet provides users with diverse and essential quality of service (QoS),

particularly given the increasing demand for a wide spectrum of network services.

Many services, previously only provided by traditional circuit-switched networks, can now be

provided on the Internet. These services, depending on their inherent characteristics, require

certain degrees of QoS guarantees. Many technologies are therefore being developed to enhance

the QoS capability of IP networks. Among these technologies, differentiated services (DiffServ)

and MPLS are paving the way for tomorrow’s QoS services portfolio.

DiffServ is based on a simple model where traffic entering a network is classified,

policed, and possibly conditioned at the edges of the network, and assigned to different behavior

aggregates. Each behavior aggregate is identified by a single DS code point (DSCP). At the core

of the network, packets are fast forwarded according to the per-hop behavior (PHB) associated

with the DSCP. By assigning traffic of different classes to different DSCPs, the DiffServ

network provides different forwarding treatments and thus different levels of QoS.

MPLS integrates the label swapping forwarding paradigm with network layer routing.

First, an explicit path, called a label switched path (LSP), is determined, and established using a

signaling protocol. A label in the packet header, rather than the IP destination address, is then

used for making forwarding decisions in the network. Routers that support MPLS are called label

switched routers (LSRs). The labels can be assigned to represent routes of various granularities,

ranging from as coarse as the destination network down to the level of each single flow.

Moreover, numerous traffic engineering functions have been effectively achieved by MPLS.

When MPLS is combined with DiffServ and constraint-based routing, they become powerful and

complementary abstractions for QoS provisioning in IP backbone networks.

Supporting QoS in 4G networks will be a major challenge due to varying bit

rates, channel characteristics, bandwidth allocation, fault-tolerance levels, and handoff support

among heterogeneous wireless networks. QoS support can occur at the packet, transaction,

circuit, user, and network levels.

• Packet-level QoS applies to jitter, throughput, and error rate. Network resources such as

buffer space and access protocol are likely influences.

Page 49: 4G technology

Page 49

4G Technology 2009

• Transaction-level QoS describes both the time it takes to complete a transaction and the

packet loss rate. Certain transactions may be time sensitive, while others cannot tolerate any

packet loss.

• Circuit-level QoS includes call blocking for new as well as existing calls. It depends

primarily on a network’s ability to establish and maintain the end-to-end circuit. Call routing and

location management are two important circuit-level attributes.

• User-level QoS depends on user mobility and application type. The new location may

not support the minimum QoS needed, even with adaptive applications. In a complete wireless

solution, the end-to-end communication between two users will likely involve multiple wireless

networks. Because QoS will vary across different networks, the QoS for such users will likely be

the minimum level these networks support.

Page 50: 4G technology

Page 50

14. Security

4G Technology 2009

Security in 4G networks mainly involves authentication, confidentiality, ntegrity, and

authorization for the access of network connectivity and QoS resources for the MN’s flows.

Firstly, the MN needs to prove authorization and authenticate itself while roaming to a new

provider’s network. AAA protocols (such as Radius, COPS or Diameter [10]) provide a

framework for such support especially for control plane functions (including key establishment

between the MN and AR, authenticating the MN with AAA server(s), and installing security

policies in the MN or ARs’ data plane such as encryption, encryption, and filtering), but they are

not well suited for mobility scenarios.

There needs to an efficient, scalable approach to address this. The Extensible

Authentication Protocol (EAP) [6], a recently developed IETF protocol, provides a flexible

framework for extensible network access authentication and potentially could be useful.

Secondly, when QoS is concerned, QoS requests needs to be integrity-protected, and moreover,

before allocating QoS resources for an MN’s flow, authorization needs to be performed to avoid

denial of service attacks. This requires a hop-by-hop way of dynamic key establishment between

QoS-aware entities to be signaled on. Finally, most security concerns in this paper lie in network

layer functions: although security can also be provided by higher layers above the network layer.

Page 51: 4G technology

Page 51

15. Applications

4G Technology 2009

1) Application to Admission Control in Cellular Packet Networks:-

Based on the developing trends of mobile communication, 4G will have broader

bandwidth, higher data rate, and smoother and quicker handoff and will focus on ensuring

seamless service across a multitude of wireless systems and networks. The key concept is

integrating the 4G capabilities with all of the existing mobile technologies through advanced

technologies. Application adaptability and being highly dynamic are the main features of 4G

services of interest to users.

Emerging wireless technologies such as 4G tend to be packet-switched rather than

circuit-switched because the packet-based architecture allows for better sharing of limited

wireless resources. In a packet network, connections (packet flows) do not require dedicated

circuits for the entire duration of the connection. Unfortunately, this enhanced flexibility makes

it more difficult to effectively control the admission of connections into the network.

2) 4G in normal life:-

2.1 Traffic Control:-

Beijing is a challenging city for drivers, with or without an Olympics going on. The

growing middle class, and their new-found ability to purchase automobiles, is increasing the

number of passenger vehicles on the road at a staggering annual rate of 30%. 4G networks can

connect traffic control boxes to intelligent transportation management systems wirelessly. This

would create a traffic grid that could change light cycle times on demand, e.g., keeping some

lights green longer temporarily to improve traffic flow. It also could make vehicle-based on-

demand “all green” routes for emergency vehicles responding to traffic accidents, reducing the

likelihood that those vehicles will themselves be involved in an accident en route.

Using fiber to backhaul cameras means that the intelligence collected flows one way:

from the camera to the command center. Using a 4G network, those images can also be sent from

the command center back out to the streets. Ambulances and fire trucks facing congestion can

query various cameras to choose an alternate route. Police, stuck in traffic on major

Page 52: 4G technology

Page 52

4G Technology 2009

thoroughfares, can look ahead and make a decision as to whether it would be faster to stay on the

main roads or exit to the side roads.

2.2 Sensors on Public Vehicles:-

Putting a chemical-biological-nuclear (CBN) warning sensor on every government-

owned vehicle instantly creates a mobile fleet that is the equivalent of an army of highly trained

dogs. As these vehicles go about their daily duties of law enforcement, garbage collection,

sewage and water maintenance, etc., municipalities get the added benefit of early detection of

CBN agents. The sensors on the vehicles can talk to fixed devices mounted on light poles

throughout the area, so positive detection can be reported in real time. And since 4G networks

can include inherent geo-location without GPS, first responders will know where the vehicle is

when it detects a CBN agent.

3) Security:-

Beijing has already deployed cameras throughout the city and sends those images back to

a central command center for the OLYMPIC games2008. This is generally done using fiber,

which limits where the cameras can be hung, i.e., no fiber, no camera. 4G networks allow

Beijing to deploy cameras and backhaul them wirelessly. And instead of having to backhaul

every camera, cities can backhaul every third or fifth or tenth camera, using the other cameras as

router/repeaters.

Page 53: 4G technology

Page 53

16. Conclusion

4G Technology 2009

As the history of mobile communications shows, attempts have been made to reduce a

number of technologies to a single global standard. Projected 4G systems offer this promise of a

standard that can be embraced worldwide through its key concept of integration. Future wireless

networks will need to support diverse IP multimedia applications to allow sharing of resources

among multiple users. There must be a low complexity of implementation and an efficient means

of negotiation between the end users and the wireless infrastructure. The fourth generation

promises to fulfill the goal of PCC (personal computing and communication)—a vision that

affordably provides high data rates everywhere over a wireless network.

Although 4G wireless technology offers higher bit rates and the ability to roam across

multiple heterogeneous wireless networks, several issues require further research and

development. It is not clear if existing 1G and 2G providers would upgrade to 3G or wait for it to

evolve into 4G, completely bypassing 3G. The answer probably lies in the perceived demand for

3G and the ongoing improvement in 2G networks to meet user demands until 4G arrives.

Page 54: 4G technology

Page 54

17. References

4G Technology 2009

1.” eMobility Technology Platform Whitepaper” edited by Didier Bourse (Motorola Labs) and

Rahim Tafazolli (University of Surrey, CCSR)

2.”Intuitive Guide to Principle of Communications” copyright 2004 Charan Langton

3.”Paper on 4g evolution” By Abhijit Hota

4. www.wikipedia.com

5. www.4g.co.uk

6. www.wiley.com

7. www.mobilecomms-technology.com