10
Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033) 5.1.3. Creating a Channel for Current Flow threshold voltage (V t ) – is the minimum value of v GS required to form a conducting channel between drain and source typically between 0.3 and 0.6V dc fieldeffect – when positive v GS is applied, an electric field develops between the gate electrode and induced nchannel – the conductivity of this channel is affected by the strength of field SiO 2 layer acts as dielectric effective / overdrive voltage – is the difference between v GS applied and V t . oxide capacitance (C ox ) – is the capacitance of the parallel plate capacitor per unit gate area (F/m 2 ) (eq5.1) OV GS t v v V 2 2 is permittivity of SiO 3.45 11 / is thickness of SiO layer 2 (eq5.3) in / ox ox ox ox ox F m t C t F m E V tn is used for ntype MOSFET, V tp is used for pchannel

5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.3. Creating a Channel forCurrent Flow

threshold voltage (Vt) – is the minimum value of vGS required to form a conducting channel between drain and source typically between 0.3 and 0.6Vdc

field‐effect – when positive vGS is applied, an electric field develops between the gate electrode and induced n‐channel – the conductivity of this channel is affected by the strength of field SiO2 layer acts as dielectric

effective / overdrive voltage – is the difference between vGS applied and Vt.

oxide capacitance (Cox) – is the capacitance of the parallel plate capacitor per unit gate area (F/m2)

(eq5.1)   OV GS tv v V

22

 is permittivity of SiO 3.45 11 / is thickness of SiO  layer

2(eq5  .3) in   /

oxox

oxox

ox

F mt

Ct

F m

E

Vtn is used for n‐type MOSFET, Vtp is used for 

p‐channel

Page 2: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.3. Creating a Channel forCurrent Flow

Q:What is main requirement for n‐channel to form? A: The voltage across the 

“oxide” layer must exceed Vt. For example, when vDS = 0…

the voltage at every point along channel is zero

the voltage across the oxide layer is uniform and equal to vGS

Q: How can one express the magnitude of electron chargecontained in the channel? A: See below…

Q:What is effect of vOV on n‐channel? A: As vOV grows, so does the 

depth of the n‐channel as well as its conductivity.

 and   represent width and length of channel respectively

(eq5.2)    in ox O

W L

VQ C WL v C

Page 3: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying aSmall vDS

Q: For small values of vDS, how does one calculate iDS(aka. iD)?  A: Equation (5.7)…

Q:What is the origin of this equation? A: Current is defined in terms of charge per unit length of n‐channel as well as electron drift velocity.

2

2

 represents mobility of electrons at surface of then‐channel in  /

charge per unitlength of electron‐channel drift velocity

in  / in  /

(eq5 ) i .7   n 

nm Vs

nC m m Vs

n DSD ox OV

vi C W

LAv

Page 4: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applyinga Small vDS

Q: How does one calculate charge per unit length of n‐channel (Q/uL)? A: For small values of vDS, one can still assume that voltage between gate and n‐channel is constant(along its length) – and equal to vGS. A: Therefore, effective voltage between gate and n‐channel remains equal to vOV. A: Therefore, (5.2) from two slides back applies.

Page 5: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying aSmall vDS

Q: How does one calculate charge per unit length of n‐channel (Q/uL)? A: Use (5.2) to calculate charge per unit L of channel.

Q: How does one calculate electron drift velocity? A: Note that vDS establishes an electric field E across length of n‐channel, this may calculate e‐drift velocity.

 divide both side

2

s by L

(eq5.2)   in 

(eq5.4)    in 

e

/

(eq5.5)    in  /

(eq5.6)  ‐drift velocit  y

            in 

ox OV

ox OV

DS

n

C

C m

V m

V m m

Q C WL v

m

QC Wv

L

vE

L

EVs s

action:

Page 6: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying aSmall vDS

Q: How does one calculate charge per unit length of n‐channel (Q/uL)? A: Use (5.2) to calculate charge per unit L of channel.

Q: How does one calculate electron drift velocity? A: Note that vDS establishes an electric field E across length of n‐channel, this may calculate e‐drift velocity.

 divide both side

2

s by L

(eq5.2)   in 

(eq5.4)    in 

e

/

(eq5.5)    in  /

(eq5.6)  ‐drift velocit  y

            in 

ox OV

ox OV

DS

n

C

C m

V m

V m m

Q C WL v

m

QC Wv

L

vE

L

EVs s

action:

Note that these two values may be employed to define current in amperes (aka. C/s).

Page 7: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying aSmall vDS

Q:What is observed from equation (5.7)? A: For small values of vDS, the n‐channel acts like a variable resistance whose value is controlled by vOV.

processaspecttransconductanceratioparameter

(eq5.7)   in 

(eq5.8a)1

i

 

    n 

D n ox OV DS

DSDS

Dn ox OV

Wi C v v

Lv

rWi C vL

A

Page 8: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying aSmall vDS

Q:What do we note from equation (5.7)? A: For small values of vDS, the n‐channel acts like a variable resistance whose value is controlled by vOV.

processaspecttransconductanceratioparameter

(eq5.7)   in 

(eq5.8a)1

i

 

    n 

D n ox OV DS

DSDS

Dn ox OV

Wi C v v

Lv

rWi C vL

A

Note that this vOV represents the depth of the n‐channel ‐what if it is not assumed to be constant?  How does this equation change?

Note that this is one VERY IMPORTANT equation in Chapter 5.

Page 9: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

5.1.4. Applying a Small vDS

Q:What three factors is rDS dependent on? A: process transconductance parameter for NMOS(nCox) – which is determined by the manufacturing process A: aspect ratio (W/L) – which is dependent on size requirements / allocations A: overdrive voltage (vOV) – which is applied by the user

Page 10: 5.1.3. Creating a V Channel MOSFET, V Current Flozyang/Teaching/20142015SpringECE340/...2015/04/17  · Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth

Oxford University PublishingMicroelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)

1/rDS

Figure 5.4: The iD‐vDS characteristics of the MOSFET in Figure 5.3. when the voltage applied between drain and source VDS is kept small.

high resistance, low vOV

low resistance, high vOV

kn is known as NMOS‐FET transconductance parameterand is defined as nCoxW/L