13
SECONDARY MATH III // MODULE 5 MODELING WITH GEOMETRY – 5.7 Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 5.7 Justifying the Laws A Solidify Understanding Task The Pythagorean theorem makes a claim about the relationship between the areas of the three squares drawn on the sides of a right triangle: the sum of the area of the squares on the two legs is equal to the area of the square on the hypotenuse. We generally state this relationship algebraically as ! " +$ " =& " , where it is understood that a and b represent the length of the two legs of the right triangle, and c represents the length of the hypotenuse. What about non-right triangles? Is there a relationship between the areas of the squares drawn on the sides of a non-right triangle? (Note: The following proof is based on The Illustrated Law of Cosines, by Don McConnell http://www.cut-the-knot.org/pythagoras/DonMcConnell.shtml) The diagram on the next page shows an acute triangle with squares drawn on each of the three sides. The three altitudes of the triangle have been drawn and extended through the squares on the sides of the triangle. The altitudes divide each square into two smaller rectangles. 1. Find an expression for the areas of each of the six small rectangles formed by the altitudes. Write these expressions inside each rectangle on the diagram. (Hint: The area of each rectangle can be expressed as the product of the side length of the square and the length of a segment that is a leg of a right triangle. You can use right triangle trigonometry to express the length of this segment.) 2. Although none of the six rectangles are congruent, there are three pairs of rectangles where each rectangle in the pair has the same area. Using three different colors—red, blue and green—shade pairs of rectangles that have the same area with the same color. 3. The area of each square is composed of two smaller, rectangular areas of two different colors. Write three different “equations” to represent the areas of each of the squares. For example, you might write ! " = $'() + *)+ if those are the colors you chose for the areas of the rectangles formed in the square drawn on side a. CC BY Rumble Press https://flic.kr/p/iASeZ8 35

5.7 Justifying the Laws - Utah Education Network · MODELING WITH GEOMETRY – 5.7 Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

  • Upload
    others

  • View
    84

  • Download
    0

Embed Size (px)

Citation preview

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

5.7 Justifying the Laws

A Solidify Understanding Task

ThePythagoreantheoremmakesaclaimabout

therelationshipbetweentheareasofthethree

squaresdrawnonthesidesofarighttriangle:thesumoftheareaofthesquaresonthetwolegsis

equaltotheareaofthesquareonthehypotenuse.Wegenerallystatethisrelationship

algebraicallyas!" + $" = &" ,whereitisunderstoodthataandbrepresentthelengthofthetwolegsoftherighttriangle,andcrepresentsthelengthofthehypotenuse.

Whataboutnon-righttriangles?Istherearelationshipbetweentheareasofthesquares

drawnonthesidesofanon-righttriangle?(Note:ThefollowingproofisbasedonTheIllustratedLaw

ofCosines,byDonMcConnellhttp://www.cut-the-knot.org/pythagoras/DonMcConnell.shtml)

Thediagramonthenextpageshowsanacutetrianglewithsquaresdrawnoneachofthethree

sides.Thethreealtitudesofthetrianglehavebeendrawnandextendedthroughthesquaresonthe

sidesofthetriangle.Thealtitudesdivideeachsquareintotwosmallerrectangles.

1. Findanexpressionfortheareasofeachofthesixsmallrectanglesformedbythealtitudes.Writetheseexpressionsinsideeachrectangleonthediagram.(Hint:Theareaofeachrectanglecanbeexpressedastheproductofthesidelengthofthesquareandthelengthofasegmentthatisalegofarighttriangle.Youcanuserighttriangletrigonometrytoexpressthelengthofthissegment.)

2. Althoughnoneofthesixrectanglesarecongruent,therearethreepairsofrectangleswhereeachrectangleinthepairhasthesamearea.Usingthreedifferentcolors—red,blueandgreen—shadepairsofrectanglesthathavethesameareawiththesamecolor.

3. Theareaofeachsquareiscomposedoftwosmaller,rectangularareasoftwodifferentcolors.Writethreedifferent“equations”torepresenttheareasofeachofthesquares.Forexample,youmightwrite!" = $'() + *)+ifthosearethecolorsyouchosefortheareasoftherectanglesformedinthesquaredrawnonsidea.

CC

BY

Rum

ble

Pres

s

http

s://f

lic.k

r/p/

iASe

Z8

35

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

4. Selectoneofyourequationsfromstep3,suchas ,andusetheothertwosquarestosubstituteadifferentexpressioninforeachcolor.Forexample,ifinyourdiagram

a2 = blue + red

36

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

and ,wecanwritethisequation:

or .

Writeyourselectedequationinitsmodifiedformhere:

5. Sinceeachcolorisactuallyavariablerepresentinganareaofarectangle,replacetheremainingcolorinyourlastequationwiththeexpressionthatgivestheareaoftherectanglesofthatcolor.

Writeyourfinalequationhere:

6. Repeatsteps4and5fortheothertwoequationsyouwroteinstep3.YoushouldendupwiththreedifferentversionsoftheLawofCosines,eachrelatingtheareaofoneofthesquaresdrawnonasideofthetriangletotheareasofthesquaresontheothertwosides.

7. WhathappenstothisdiagramifangleCisarightangle?(Hint:Thinkaboutthealtitudesinarighttriangle.)

8. Whydowehavetosubtractsomeareafrom toget whenangleCislessthanright?

blue = b2 − green

red = c 2 − green

a2 = b2 − green + c 2 − green

a2 = b2 + c 2 − 2 ⋅ green

a2 =

b2 =

c 2 =

a2 + b2

c 2

37

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

TheLawofCosinescanalsobederivedforanobtusetrianglebyusingthealtitudeofthe

triangledrawnfromthevertexoftheobtuseangle,asinthefollowingdiagram,whereweassumethat

angleAisobtuse.

9. UsethisdiagramtoderiveoneoftheformsoftheLawofCosinesyouwroteabove.(Hint:Asintheprevioustask,MoreThanRight,thelengthofthealtitudecanberepresentedintwodifferentways,bothusingthePythagoreantheoremandtheportionsofsideathatformthelegsoftwodifferentrighttriangles.)

10. UsethesamediagramabovetoderivetheLawofSines.(Hint:Howcanyourepresentthelengthofthealtitudeintwodifferentwaysusingsidesa,b,orcandrighttriangletrigonometryinsteadofthePythagoreantheorem?)

38

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

5.7 Justifying the Laws – Teacher Notes A Solidify Understanding Task

Purpose:InthistaskstudentsexamineproofsoftheLawofCosinesandtheLawofSinesusingthe

geometricandalgebraicstrategiesdevelopedintheprevioustask.Generictrianglesinthistaskare

labeledusingtheconventionthatthesideoppositeÐAislabeledassidea,thesideoppositeÐBis

labeledassideb,andthesideoppositeÐCislabeledassidec.Studentsexaminehowtheycan

representthelengthofalegofarighttriangleABCwithatrigexpressionintermsofalabeledangle

andalabeledside(e.g.,“bcos(A)”).SuchexpressionsareusedinthealgebraicderivationoftheLawof

CosinesandLawofSines.Thenexttaskwillprovidestudentswithopportunitiestopracticetheselaws

inapplications,suchasfindingtheareaofatriangle.

Notetoteachers:Sincestudentshaveonlyworkedwithrighttriangletrigonometry,findingthesine

orcosineofananglemeasuringgreaterthan90hasnomeaning,sincesuchanglesdonotexistinrighttriangles.Thistask,andtheRSGhomeworkthataccompaniesthistask,takesthisrestrictioninto

account.

CoreStandardsFocus:

G.SRT.10(+)ProvetheLawsofSinesandCosinesandusethemtosolveproblems.

G.SRT.11(+)UnderstandandapplytheLawofSinesandtheLawofCosinestofindunknown

measurementsinrightandnon-righttriangles(e.g.,surveyingproblems,resultantforces).

StandardsforMathematicalPractice:

SMP7–Lookforandmakeuseofstructure

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

TheTeachingCycle:

Launch(WholeClass):

Studentswillneedtounderstandhowthediagramreferredtoinquestions1-6wasconstructedso

theycanmakesenseofthealgebraicworkofthesequestions.IfyouhaveGeometer’sSketchpador

similardynamicgeometrysoftware,youmaywanttohavestudentsconstructthisdiagramusingthe

software,orprovideapre-constructedversionofthediagramforthestudentstouse.Ifstudentsare

constructingthisdiagramforthemselves,itwillhelptofirstcreateacustom“square”toolsothethree

squaresonthesidesofthetriangleareeasytocreate.Whetherornotyouareusingdynamic

geometrysoftwareorthestaticdiagramonthesecondpageofthetask,helpstudentsunderstandhow

thediagramwascreated:first,anacutetriangleABCwasconstructedusingthreearbitrarypointsas

vertices;second,asquarewasconstructedoneachsideofthetriangle;third,thelinescontainingthe

threealtitudesofthetrianglewereconstructed—theselinesdividingeachsquareintotwosmaller

rectangles.

Noteforstudents:WhenwerefertoÐA,ÐBorÐCwearereferringtotheanglesoftheoriginal

triangle,eventhoughthealtitudesformadditionalanglesateachvertex.Also,thetrianglehasbeen

labeledinthestandardway,withthesideoppositeÐAlabeledassidea,etc.

Modelthealgebraicworkofquestion1byfindinganexpressionforoneofthesixsmallrectangles.

Forexample,ifthesegmenthighlightedinthefollowingdiagramhasunknownlengthx,then

,so ,andtheareaoftheshadedrectangleis .Askstudentstofind

similarwaystolabelallsixrectangles,andthenhavethemcontinuewithquestions2-6.

cosC =xa

x = acosC

b ⋅ acosC

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

Explore(SmallGroup):

Forquestion2studentsshouldendupwithacoloreddiagram,similartothefollowing.(Note:

Becausestudentsarechoosingwhichcolortouseforeachareaexpression,theirdiagramsmaybe

coloreddifferentlyfromwhatisshownbelow;however,thesamepairsofrectanglesshouldsharethe

samecolors.)

Basedonthecolor-codingofthediagrambelow,forquestion3studentswouldwrite:

a2 = blue + redb2 = blue + greenc 2 = green + red

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

Usingthediagramandthesuggestionsgivenin4and5,studentsshouldbeabletoderivethethree

formsoftheLawofCosines:

Question7isintendedtohelpstudentsnoticethatthePythagoreantheoremisaspecialcaseofthe

LawofCosineswithrighttriangles.IfÐCisarightangle,thenthelegsarethealtitudes,sothesquares

onthetwolegsdonotgetdividedintosmallerrectangles.Onlythesquareonthehypotenusewillbe

a2 = b2 + c 2 − 2bc cosAb2 = a2 + c 2 − 2ac cosBc 2 = a2 + b2 − 2abcosC

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

dividedintotwosmallerrectanglesbythealtitudedrawnfromC.Thesetworectanglesformedonthe

hypotenusewillbethesamecolorsasthetwosquaresontheothertwosides.Thisisbestillustrated

byusingadynamicsketchofthediagramanddraggingpointCuntilitformsarightangle.

Thisderivationfallsapartifoneoftheanglesisobtuse.Therefore,question9asksstudentstoderive

theLawofCosinesintermsofadiagramthatdoesworkforobtusetriangles.Thissamediagramis

usedinquestion10toderivetheLawofSines.

FortheLawofCosines,studentswillneedtousethedecompositionofsideaintotwosmaller

segmentsoflengthxanda–x.Theyshouldignorethelabelsonthesetwosmallersegmentswhen

derivingtheLawofSines.(Thiswillfocustheirattentiononusingthesineratioratherthanthe

cosineratio.Ifstudentsareusingthecosineratioforquestion10,pointoutthatintheLawofCosines

weusedthecosineratio,buttheintentoftheLawofSinesistofindarelationshipbetweenthesinesof

theangles.ThisderivationoftheLawofSineswillinvolvetheratiossinBandsinC.)

Discuss(WholeClass):

Ifneeded,haveastudentpresenthowtheyderivedtheLawofCosinesusingthecolor-coded

rectangles.

FocustheremainderofthediscussiononderivingtheLawofCosinesandtheLawofSinesusingthe

diagramgivenpriortoquestion9.Pointoutthatthisdiagramworksequallywellforobtuseandacute

triangles.Ifavailable,usestudentworktooutlinethisproof.Ifnecessary,prompttheworkofthe

derivationbyaskingquestionssuchas,“Howcouldwedeterminethelengthofsegmenthintwo

differentways?

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY – 5.7

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

DerivationoftheLawofCosinesbasedonthisdiagram:

IfyouhadtodoalotofpromptingonthederivationoftheLawofCosines,givestudentsafewextra

minutestoworkonderivingtheLawofSinesforthemselves,sinceitinvolvessimilarreasoning.

DerivationoftheLawofSinesbasedonthisdiagram:

Thislaststatementisequivalentto ,themoreconventionalformforwritingtheLawof

Sines.

PointouttostudentsthatifDABCisacutewecoulduseanaltitudedrawnfromangleBorangleCto

showthattheratio isalsoequivalentto or ,leadingtothemoreextendedversionof

theLawofSines, .(Thiscanalsobeshowntobetrueforobtusetriangles,butit

requiresthatstudentsworkwithanaltitudethatliesoutsideofthetriangle,andtheuseofatrig

identity,sinA=sin(180°–A),whichstudentsdonotyethaveaccessto.Seeteachernoteabove.)

AlignedReady,Set,Go:ModelingwithGeometry5.7

x 2 + h2 = c 2 ⇒ h2 = c 2 − x 2

(a − x)2 + h2 = b2 ⇒ h2 = b2 − (a − x)2 = b2 − (a2 − 2ax + x 2) = b2 − a2 + 2ax − x 2

b2 − a2 + 2ax − x 2 = c 2 − x 2

b2 = a2 + c 2 − 2ax

cos B =xc

⇒ x = c cosB

b2 = a2 + c 2 − 2ac cosB

sinB =hc

⇒ h = c sinB

sinC =hb

⇒ h = bsinC

c sinB = bsinC

sinBb

=sinCc

sinAa

sinBb

sinCc

sinAa

=sinBb

=sinCc

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY - 5.7

5.7

Needhelp?Visitwww.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

READY Topic:RecallingcircumferenceandareaofacircleUsethegiveninformationtofindtheindicatedvalue.Leaveπinyouranswer.Includethecorrectunit.

1.radius=3ft

circumference:

area:

2.diameter=14cm

circumference:

area:

3.circumference=38πkm

radius:

area:

4.area=49πin2

diameter:

circumference:

5.circumference=15πmi

radius:

area:

6.area=121πm2

radius:

circumference:

Solveforthemissingangle.Roundyouranswerstothenearestdegree.

(Hint:Inproblems10,11,and12,getthetrigfunctionalone.Thensolvefor!. )

7.cos ! = )*

8.tan ! = ./ 9.sin ! = 1

2

10.5 sin ! − 2 = 0

11.7 cos ! − 6 = 0 12.4 tan ! − 1 = 0

SET Topic:UsingtheLawsofsineandcosinetosolvetriangles

LawofSines:IfABCisatrianglewithsidesa,

b,andc,then ;<=>?

= @<=>A

= B<=>C

oritcanbewrittenas:

sinDE

= sinFG

=sin HI

LawofCosines:IfABCisatrianglewithsidesa,b,andc,then

E. = G. +I. − 2GI cos DG. = E. +I. − 2EI cos FI. = E. +G. − 2EG cos H

READY, SET, GO! Name PeriodDate

39

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY - 5.7

5.7

Needhelp?Visitwww.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

UsetheLawofsinestosolveeachtriangle.

13.

14.

15.

16.

17.WhatinformationdoyouneedinordertousetheLawofsines?

18.UsetheLawofcosinestofindtheremaininganglesandsideofthetriangle.

19.UsetheLawofcosinestofindtheremaininganglesandsideofthetriangle.

40

SECONDARY MATH III // MODULE 5

MODELING WITH GEOMETRY - 5.7

5.7

Needhelp?Visitwww.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

20.UsetheLawofcosinestofindthethree

anglesofthetriangle.

21.UsetheLawofcosinestofindthethreeanglesofthetriangle.

22.WhatinformationdoyouneedinordertousetheLawofcosinestosolveatriangle?

GO Topic:RecallinghetrigratiosofthespecialrighttrianglesFillinthemissingangle.DoNOTuseacalculator.

23.sin ! = √..

24.tan ! = √3

25.cos ! = ).

26.sin ! = √/.

27.tan ! = 1

28.tan ! = √//

29.sin ! = ).

30.cos ! = √..

31.cos ! = √/.

41