13
www.babcockinternational.com Marine Land Aviation Nuclear 6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff UDT, Glasgow, 2018

6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com Marine Land Aviation Nuclear

6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018

Page 2: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Introduction

UDT, 2018 2

6 Degrees-of Freedom Towed Buoy Dynamic Assessment

• Introduction of the system

• Purpose of developing this capability

• Challenges

• Simulation

• Key Performance Indicators

• Conclusion

Page 3: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Introduction

UDT, 2018 3

Comms at Speed and Depth

Environment (waves, wind etc)

Long Towing Cable

Speed, depth, manoeuvres

Operating window

Water properties

Towing Platform

Wave Affected Zone

Page 4: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Purpose

UDT, 2018 4

Provide confidence across a number of areas:

• Assess simulation performance against test data

• Validation activities

• Assess performance impact of design changes

• Developmental tool - improve design & performance

• Assess performance across wide range of operating scenarios

• Time and availability of platforms make this very challenging to achieve with testing

• Define operating envelope – interpolate between measured points of data

• De-risking tool – increase likelihood of full scale trials being successful

Page 5: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Challenges

UDT, 2018 5

Scale

• Underway towed systems are very large

‒ Towed body to towing platform spans hundreds of meters

• No test facilities large enough to accommodate full scale testing

• Requires towing platform

‒ Often actual platform due to lack of suitable research platforms

• High risk going from the drawing board to full scale tests

Hydrodynamic scaling

• Different for turbulent transition (Reynolds Number Re) and wave making resistance (Froude Number Fr)

• Not possible to scale for both simultaneously

• Scale based on Fr and add leading edge trips to artificially trigger turbulent transition at lower Reynolds Numbers.

Tank Testing

Page 6: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Challenges

UDT, 2018 6

Operating Environment

• Wind and waves by nature are chaotic and turbulent

• Repeatable experiments cannot be achieved

• Sea states are characterised in statistical terms i.e. significant wave height, period..

• Statistical methods of analysing performance becomes necessary

0 500 1000 1500 2000 2500

Time (s)

Ele

vatio

n (m

)

Wave Elevation

-4 -3 -2 -1 0 1 2 3 4

Pro

babi

lity

Den

sity

Standard Deviation

Page 7: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Challenges

UDT, 2018 7

The highly coupled nature of a towed buoy system makes testing of sub-systems and components of limited value.

Page 8: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Challenges

• Simulation in the wave affected zone:

• Full 6 degree of freedom buoy dynamics

required for complex shape

• Hydrodynamic coefficients required for all

impingement angles

• Hydrodynamic scaling challenges

0 1 2 3 4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5Fluid Velocity: 0° sea heading

Flu

id V

eloc

ity (

m/s

)

Vf luid x

Vf luid y

Vf luid z

0 1 2 3 4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5Fluid direction (xz plane)

Flu

id V

eloc

ity (

m/s

)

Time (s)

8

Page 9: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Simulation

UDT, 2018 9

Page 10: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Key Performance Indicators

UDT, 2018 10

Monitor KPIs: Availability

• Antenna depth

• Antenna orientation

Results:

• Availability (%)

• Min, max, mean, standard deviation

0 500 1000 1500 2000 2500

Time (s)

Dep

th (m

)

Towed Buoy Depth

Towed Buoy Depth

Mean

Upper Depth Bound

Lower Depth Bound

Minimum Depth

Maximum Depth

Op

era

ting W

ind

ow

Page 11: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Key Performance Indicators

UDT, 2018 11

Assessment of KPI across

operating scenarios

• Identify operating scenarios

where performance

improvements required

• Quantify performance of

design changes

• Performance prediction for

end user

Note: Random data used to demonstrate

visualisation

Depth

(m) z z z z z z z z z z z z z z z

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

x

x

x

Sea State b Sea State b Sea State b

Speed

(kts)

Heading Heading Heading

Page 12: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear

Conclusion

UDT, 2018 12

Challenges facing development of submarine towed buoy systems have been discussed

• Full scale testing is expensive and logistically difficult

• Scaling effects and highly coupled natured limits value of small scale/sub element testing

• Operating environment is chaotic and not easily replicated in a controlled test

• Statistical validation

Simulation is an enormously valuable tool

• Design and development

• Cost and risk reduction

• Predicting operating envelope

• Reducing development timescales

• Maximising chance of success for full scale testing

Page 13: 6 Degrees-of Freedom Towed Buoy Dynamic Assessment...6 Degrees-of Freedom Towed Buoy Dynamic Assessment Kristian Geleff – UDT, Glasgow, 2018 UDT 2018 Marine Land Aviation Nuclear

www.babcockinternational.com

UDT 2018

Marine Land Aviation Nuclear UDT, 2018 13