34
6.003: Signals and Systems Modulation May 6, 2010

6.003: Signals and Systemsdspace.mit.edu/.../lecture-notes/MIT6_003S10_lec24.pdfCommunications Systems Signals are not always well matched to the media through which we wish to transmit

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • 6.003: Signals and Systems

    Modulation

    May 6, 2010

  • Communications Systems

    Signals are not always well matched to the media through which we

    wish to transmit them.

    signal applications

    audio telephone, radio, phonograph, CD, cell phone, MP3

    video television, cinema, HDTV, DVD

    internet coax, twisted pair, cable TV, DSL, optical fiber, E/M

  • Amplitude Modulation

    Amplitude modulation can be used to match audio frequencies to

    radio frequencies. It allows parallel transmission of multiple channels.

    x1(t)

    z1(t)

    cos 1t

    z2(t) z(t)

    z3(t)

    cos 2t cos ct

    cos 3t

    LPFx2(t) y(t)

    x3(t)

  • Superheterodyne Receiver

    Edwin Howard Armstrong invented the superheterodyne receiver,

    which made broadcast AM practical.

    Edwin Howard Armstrong also invented and patented the “regenerative” (positive feedback) circuit for amplifying radio signals (while he was a junior at Columbia University). He also invented wide-band FM.

  • � �

    Amplitude, Phase, and Frequency Modulation

    There are many ways to embed a “message” in a carrier. Here are

    three.

    Amplitude Modulation (AM): y1(t) = x(t) cos(ωct)

    Phase Modulation (PM): y2(t) = cos(ωct + kx(t)) � tFrequency Modulation (FM): y3(t) = cos ωct + k −∞ x(τ)dτ

  • � �� �

    Frequency Modulation

    In FM, the signal modulates the instantaneous carrier frequency.

    � � t � y3(t) = cos ωct + k x(τ)dτ

    −∞ φ(t)

    ωi(t) = ωc + dφ(t) = ωc + kx(t)dt

  • Frequency Modulation

    Compare AM to FM for x(t) = cos(ωmt).

    AM: y1(t) = (cos(ωmt) + 1.1) cos(ωct)

    t

    FM: y3(t) = cos(ωct + m sin(ωmt))

    t

    Advantages of FM:

    • constant power • no need to transmit carrier (unless DC important)

    • bandwidth?

  • � � �

    � � � � � � �

    � � �

    Frequency Modulation

    Early investigators thought that narrowband FM could have arbitrar

    ily narrow bandwidth, allowing more channels than AM. Wrong! t

    y3(t) = cos ωct + k x(τ )dτ −∞ � � � � � �t t

    = cos(ωct) × cos k x(τ )dτ − sin(ωct) × sin k x(τ )dτ −∞ −∞

    If k → 0 then t

    cos k x(τ)dτ → 1 −∞ t t

    sin k x(τ)dτ → k x(τ )dτ −∞ −∞

    t y3(t) ≈ cos(ωct) − sin(ωct) × k x(τ )dτ

    −∞ Bandwidth of narrowband FM is the same as that of AM!

    (integration does not change bandwidth)

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    m sin(ωmt) m

    0

    −m

    t

    cos(m sin(ωmt))

    t increasing m

    1

    0

    −1

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 0

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 1

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 2

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 5

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 10

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 20

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 30

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 40

    |ak|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore cos(m sin(ωmt)) is periodic in T .

    cos(m sin(ωmt))1

    0 t

    −1 m = 50

    |ak|

    k0 10 20 30 40 50 60

  • � �� �

    Phase/Frequency Modulation

    Fourier transform of first part.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    ya(t)

    |Ya(jω)| m = 50

    ω ωc ωc

    50ωm

  • increasing m

    Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    m sin(ωmt) m

    0

    −m

    t

    sin(m sin(ωmt))1

    0

    −1

    t

    increasing m

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 0

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 1

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 2

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 5

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 10

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    0 t

    sin(m sin(ωmt))1

    −1 m = 20

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 30

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 40

    |bk|

    k0 10 20 30 40 50 60

  • Phase/Frequency Modulation

    Find the Fourier transform of a PM signal.

    x(t) = sin(ωmt)

    y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))

    2πx(t) is periodic in T = ωm , therefore sin(m sin(ωmt)) is periodic in T .

    sin(m sin(ωmt))1

    0 t

    −1 m = 50

    |bk|

    k0 10 20 30 40 50 60

  • � �� �

    Phase/Frequency Modulation

    Fourier transform of second part.

    x(t) = sin(ωmt) y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt))) yb(t)

    |Yb(jω)| m = 50

    ω

    ωc ωc

    50ωm

  • Phase/Frequency Modulation

    Fourier transform.

    x(t) = sin(ωmt) y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))

    = cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt))) � �� � � �� � ya(t) yb(t)

    |Y (jω)| m = 50

    ω

    ωc ωc

    50ωm

  • Frequency Modulation

    Wideband FM is useful because it is robust to noise.

    AM: y1(t) = (cos(ωmt) + 1.1) cos(ωct)

    t

    FM: y3(t) = cos(ωct + m sin(ωmt))

    t

    FM generates a very redundant signal, which is resilient to additive

    noise.

  • Summary

    Modulation is useful for matching signals to media.

    Examples: commercial radio (AM and FM)

    Close with unconventional application of modulation – in microscopy.

  • MIT OpenCourseWarehttp://ocw.mit.edu

    6.003 Signals and Systems Spring 2010

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.eduhttp://ocw.mit.edu/terms

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 300 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice