39
PG 1::> ETANK FULL REPORT - NEW JOB 1 ETank2000 Demo 1.9.15 (20 Jan 2012) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 7 BOTTOM HEAD DESIGN PAGE 25 BOTTOM HEAD DESIGN PAGE 28 SEISMIC CALCULATIONS PAGE 33 ANCHOR BOLT DESIGN PAGE 34 CAPACITIES AND WEIGHTS PAGE 37 MAWP & MAWV SUMMARY PAGE 38 PG 2::>ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True

620

  • Upload
    ccrica

  • View
    331

  • Download
    3

Embed Size (px)

Citation preview

Page 1: 620

PG 1::> ETANK FULL REPORT - NEW JOB 1ETank2000 Demo 1.9.15 (20 Jan 2012)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 7

BOTTOM HEAD DESIGN PAGE 25

BOTTOM HEAD DESIGN PAGE 28

SEISMIC CALCULATIONS PAGE 33

ANCHOR BOLT DESIGN PAGE 34

CAPACITIES AND WEIGHTS PAGE 37

MAWP & MAWV SUMMARY PAGE 38

PG 2::>ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0.5 in. Max. Tank Corr. Allowance : 0.5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : True

PG 3::>SUMMARY OF DESIGN DATA and REMARKS

Job : NEW JOB 1Date of Calcs. : 14/03/2012 , 09:33Mfg. or Insp. Date : 14/03/2012Designer : Ricardo AyalaProject : TANQUE DE PROCESO DE AMONIACOTag Number : TK-0001Plant : DE UREA Y AMONIACO

Page 2: 620

Plant Location : CARRASCO BOLIVIADesign Basis : API-653 4th Edition, April 2009, & API-620 10th Edition, Feb 2002

----------------------------------------------------------------------- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------- Operating Ratio: 0.4- Design Standard:- API-620 10th Edition, Feb 2002 -- (None) -- Roof : A-36: 0.6502in. -- Shell (4): A-36: 0.3125in. -- Shell (3): A-36: 0.3125in. -- Shell (2): A-36: 0.3125in. -- Shell (1): A-36: 0.3125in. -- Bottom : A-36: 0.25in. -

----------------------------------------------------------------------

Design Internal Pressure = 2.03 PSI or 56.26 IN. H2ODesign External Pressure = 0.0725 PSI or 2.01 IN. H2O

MAWP = 0 PSI or 0 IN. H2OMAWV = 0 PSI or 0 IN. H2O

OD of Tank = 122 ftShell Height = 36 ftS.G. of Contents = 1Max. Liq. Level = 33 ft

Re-Rate Temperature = 122 °FTank Joint Efficiency = 1

Ground Snow Load = 9 lbf/ft^2Roof Live Load = 20 lbf/ft^2Design Roof Dead Load = 0 lbf/ft^2

PG 4::>Basic Wind Velocity = 100 mphWind Importance Factor = 1Using Seismic Method: API-650 11th Ed. - ASCE7 Mapped (Ss & S1) Seismic Use Group: II Site Class: C T_L = 0.02 sec Ss = 0 %g S1 = 0 %g S0 = 0 %g Av = 0 %g Q = 0.6666 Importance Factor = 1.25

DESIGN NOTES

NOTE 1 : There are tank calculation warnings. Search for * * Warning * * notes.

Page 3: 620

NOTE 2 : Tank is not subject to API-650 Appendix F.7

PG 5::>SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)------------------------------------------------------------------------Shell Width Material Sts Sca Weight CA# (ft) (psi) (psi) (lbf) (in)------------------------------------------------------------------------ Ratio = (t-CA)/R = (0.3125 - 0)/732 = 0.00044 9 A-36 16,000 427 43,966 0 Ratio = (t-CA)/R = (0.3125 - 0)/732 = 0.00043 9 A-36 16,000 427 43,966 0 Ratio = (t-CA)/R = (0.3125 - 0)/732 = 0.00042 9 A-36 16,000 427 43,966 0 Ratio = (t-CA)/R = (0.3125 - 0)/732 = 0.00041 9 A-36 16,000 427 43,966 0------------------------------------------------------------------------Total Weight 175,864Shell API 653 Summary (Bottom is 1)

-----------------------------------------------------------------Shell t.design(Sd) t.test(St) t.external t.required t.actual# (in.) (in.) (in.) (in.) (in.)-----------------------------------------------------------------4 0.2117 0 0 0.3107 0.31253 0.39 0 0 0.39 0.31252 0.5683 0 0 0.5683 0.31251 0.7466 0 0 0.7466 0.3125-----------------------------------------------------------------

Self Supported Domed Roof; Material = A-36

t.required = 0.5903 in. t.actual = 0.6502 in. Roof Joint Efficiency = 0.7

Weight = 331,424 lbf

Bottom Type: Dish Bottom Bottom Floor Material = A-36 t.required = 1.6281 in. t.actual = 0.25 in. Bottom Joint Efficiency = 0.7

Total Weight of Bottom = 127,783 lbf

Page 4: 620

PG 6::>TOP END STIFFENER: L5x5x5/8, A-36, 7662. lbfQTY (2) INTERMEDIATE STIFFENERS: Stiffener #1: BAR 2x1/4, 0 lbf, Elev. = 12 ft. Stiffener #2: BAR 2x1/4, 0 lbf, Elev. = 24 ft.BOTTOM END STIFFENER: L4x3x3/8, A-36, 3240. lbf

PG 7::><Roof Design Per API 653>

DOMED ROOF: A-36

JEr = Roof Joint Efficiency = 0.7Lr = Entered Roof Live Load = 20 lbf/ft^2Lr_1 = Computed Roof Live Load, including External Pressure

S = Ground Snow Load (per ASCE 7-05 Fig. 7-1) = 9 lbf/ft^2Sb = Balanced Design Snow Load (per API-650 Sec. 5.2.1.h.1) = 0.84 * S = 7.56 lbf/ft^2Su = Unbalanced Design Snow Load (per API-650 Sec. 5.2.1.h.2) = 1.5*Sb = 11.34 lbf/ft^2

Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (8)(2/12) + 26.525 + 0 = 27.8633 lbf/ft^2

Roof Loads (per API-650 Appendix R)

Pe = PV*144 = -0.0725*144 = -10.44 lbf/ft^2

e.1b = DL + MAX(Sb,Lr) + 0.4*Pe = 27.8633 + 20 + 0.4*-10.4400 = 43.687 lbf/ft^2

e.2b = DL + Pe + 0.4*MAX(Sb,Lr) = 27.8633 + -10.4400 + 0.4*20 = 25.423 lbf/ft^2

T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 43.687 lbf/ft^2

e.1u = DL + MAX(Su,Lr) + 0.4*Pe = 27.8633 + 20 + 0.4*-10.4400 = 43.687 lbf/ft^2

e.2u = DL + Pe + 0.4*MAX(Su,Lr) = 27.8633 + -10.4400 + 0.4*20 = 25.423 lbf/ft^2

U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 43.687 lbf/ft^2

Page 5: 620

Lr_1 = MAX(T,U) = 43.687 lbf/ft^2

Dish Radius (Rs) = 122 ft

Alpha = 60.0000 degrees (angle between the Normal to the roof and a horizontal line at the roof-to-shell juncture)Theta = 30.0000 degrees (angle between the Normal to the roof and a vertical line at the roof-to-shell juncture)

PG 8::>Rs = R1 = R2 = 1,464 in.

Rc = R3 = OD/2 = 732 in.

<Weight, Surface Area, and Projected Areas of Roof>

Id = OD - 2*t_roof = 1,464 - 2*0.6502 = 1,463 in. AB = Id /2 - KR = 1,463/2 - 0 = 731.3498 in. BC = R - KR = 1,464 - 0 = 1,464 in. hR = Height of Roof (Depth of roof) = R - SQRT[BC^2 - AB^2] + KR = 1,464 - SQRT[1,464^2 - 731.3498^2] + 0 = 16.314 ft

t_ins = Thickness of Roof Insulation = 0.1667 ft Ap_Vert = Vertical Projected Area of Roof = PI*([R + t_ins]^2)(Alpha/360) - OD*([R + t_ins] - hR)/2 = PI*(122.1667^2)(59.9855/360) - 122*(122.1667 - 16.314)/2 = 1,356 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*122 = 61 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*61^2 = 11,690 ft^2

Roof_Area = 288*PI*R*hR = 288*PI*122*16.314 = 1,799,243 in^2

Weight = (Density)(t)(Roof_Area)

Page 6: 620

= (0.2833)(0.6502)(1,799,243) = 331,424 lbf (New) = 299,566 lbf (Corroded)

PG 9::>< API-620 >

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-620 5.12.4.2 Eqn. 25) Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0.6 * SQRT[732 * (0.3125 - 0)] = 9.0747 in.

(From API-620 5.12.4.2 Eqn. 24) Wh = 0.6 * SQRT[R2 * (t-CA)] (Roof Plate) = 0.6 * SQRT[1,464 * (0.6502 - 0.0625)] = MIN(17.5995, 12) = 12 in.

Top End Stiffener: L5x5x5/8 Aa = (Cross-sectional Area of Top End Stiffener) = 5.86 in^2

Using API-620 Fig. 5-6, Detail h End Stiffener Detail

Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 9.0747 * (0.3125 - 0) = 2.836 in^2

Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 12 * (0.6502 - 0.0625) = 7.052 in^2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-620) = Aa + Aroof + Ashell = 5.86 + 7.052 + 2.836 = 15.748 in^2

R3 = 732 in.

At = PI*OD^2/4*144 = PI*122^2/4*144 = 1,683,341 in^2 (Cross-Sectional Area of Roof at Shell)

< Internal Pressure - Top-Head Edge >

W = - (weight roof plates) = -331,424 lbf W/At = (-331,424 / 1,683,341) = -0.1969 PSI W/At' = -0.1842 PSI

P = 2.03 PSI or 56.26 IN. H20

Page 7: 620

<Meridional and Latitudinal Forces>

PG 10::> (At the Edge of Top Head) T1 = Rs/2*(P + W/At) = 1,464/2*(2.03 + -0.1969) = 1,342 lbf/in T2 = Rs*[P + W/At*SIN(Alpha)] - T1 = 1,464*[2.03 + -0.1969*COS(60.0000)] - 1,342 = 1,380 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 1,381 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 1,381/(16,000*0.7) + 0.0625 = 0.1858 in.

t-Calc = 0.1858 in.

< Internal Pressure - Top-Head Center >

P = 2.03 PSI or 56.26 IN. H20

(At the Center of Top Head) T1' = (Rs/2)*(P + W/At) = (1,464/2)*(2.03 + (-0.1842)) = 1,351 lbf/in T2' = Rs*(P + W/At) - T1' = 1,464*(2.03 + (-0.1842)) - 1,351 = 1,351 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 1,351 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 1,351/(16,000*0.7) + 0.0625 = 0.1831 in.

t-Calc = 0.1831 in.

Since t.actual > T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 2.031, t-620 = 0.1858 Exit Condition: P_x = 9.137, t-620 = 0.6502

P_max_int = 9.137 PSI, or 253.22 IN. H2O (limited by Roof Plate)

<Minimum Participating Area>

T2s = P*R3 = (2.03)(732) = 1,486 lbf/in

Page 8: 620

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (1,380)(12)+(1,486)(9.0747)-(1,342)(732)(SIN(60)) = -820,577 lbf

PG 11::> A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = -Q/Scs = -820,577/15,000 = 54.705 in^2

Since Actual Area is Less than A_min,

Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = 1, A-620 = 54.705 Exit Condition: P_x = 0.727, A-620 = 15.766

P_max_int_Q = 0.727 PSI, or 20.15 IN. H2O (limited by Actual Participating Area)

P_max_int = MAX[MIN(9.137,0.727),0] = 0.727 PSI or 20.15 IN. H2O

< External Pressure - Top-Head Edge >

W = -(Lr + Dead_Load) * Roof_Area = -(20 + 27.8633) * 12,495 = -598,040 lbf W/At = (-598,040 / 1,683,341) = -0.3553 PSI W/At' = -0.3324 PSI

P = PV_Entered = 0.0725 PSI or 2.01 IN. H20

<Meridional and Latitudinal Forces>

(At the Edge of Top Head) T1 = Rs/2*(P + W/At) = 1,464/2*(0.0725 + -0.3553) = -207.01 lbf/in T2 = Rs*[P + W/At*SIN(Alpha)] - T1 = 1,464*[0.0725 + -0.3553*COS(60.0000)] - -207.01 = -137.32 lbf/in

< API-620 > Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2)) = 207 lb/in.

Tpp = MIN(ABS(T1),ABS(T2)) = 137.3 lb/in.

Rp = R2 = 1,464 in.

Page 9: 620

Rpp = R1 = 1,464 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA = 0.57 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA = 0.5108 in.

PG 12::> (t_18 - CA)/Rp = 0.0003 (t_19 - CA)/Rpp = 0.0003

t-Calc = MAX(t_18,t_19) Ratio = (t-CA)/R = (0.6502 - 0.0625)/1,464 = 0.0004 Sca = 10^6*Ratio (Per 5.5.4.3) = 401 PSI (Allowable Compressive Stress)

t-Calc = 0.57 in.

< External Pressure - Top-Head Center >

P = PV_Entered = 0.0725 PSI or 2.01 IN. H20

(At the Center of Top Head) T1' = (Rs/2)*(P + W/At) = (1,464/2)*(0.0725 + (-0.3324)) = -190.25 lbf/in T2' = Rs*(P + W/At) - T1' = 1,464*(0.0725 + (-0.3324)) - -190.25 = -190.24 lbf/in

< API-620 > Minimum thickness (t) requirement:

T1 & T2 Negative and Equal

T = MAX(ABS(T1), ABS(T2)) = 190.3 lb./in.Ratio < .00667

t-Calc = SQRT[T*R/10^6] + CA = SQRT[(190.3)(1,464)/10^6] + 0.0625 = 0.5903 in.

Congruent t/R ratio results per API-620 5.5.4.3 Ratio = (t-CA)/R = (0.6502 - 0.0625)/1,464 = 0.0004 Sca = 10^6*Ratio (Per 5.5.4.3) = 401 PSI (Allowable Compressive Stress)

t-Calc = 0.5903 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.5903 Exit Condition: V_x = 0.011, t-620 = 0.6494

Page 10: 620

P_max_ext= 0 PSI (due to Roof Plate)

<Minimum Participating Area>

T2s = P*R3 = (0.0725)(732) = 53.07 lbf/in

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (-137.32)(12)+(53.07)(9.0747)-(-207.01)(732)(SIN(60)) = 130,064 lbf

PG 13::> A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = Q/Sts = 130,064/16,000 = 8.129 in^2

Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = -0.9275, A-620 = 8.129 Exit Condition: P_x = -0.1985, A-620 = 15.755

P_max_ext_Q = -0.1985 PSI, or -5.5 IN. H2O (due to Actual Participating Area)

P_max_ext = MAX(0,-0.1985) = 0 PSI or 0 IN. H2O

t-Calc = MAX( 0.1858, 0.5903 ) = 0.5903 in.

t.required = t-Calc = 0.5903 in.

< ROOF DESIGN SUMMARY >

t.required = 0.5903 in. t.actual = 0.6502 in.

P_max_internal = 0.727 PSI or 20.15 IN. H2O P_max_external = 0 PSI or 0 IN. H2O

PG 14::>SHELL COURSE RE-RATING (Bottom Course is #1)

Course # 1; Material: A-36; Width = 9ft

< API-620 >

R = R2 = Rc = 732 in. At = 1,683,341 in^2

< Internal Pressure - Full >

W = - (roof plates + shell) = -507,328 lbf

Page 11: 620

W/At = (-507,328 / 1,683,341) = -0.3014 PSI

Px = P + P_liquid = 2.03 + 14.289 = 16.319 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(16.319 + -0.3014) = 5,862 lbf/in

T2 = P*Rc = 16.319*732 = 11,946 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 11,946 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 11,946/(16,000*1) + 0 = 0.7466 in.

t-Calc = 0.7466 in.

Since t.actual < T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 16.319 PSI, t-620 = 0.7466 Exit Condition: P_x = 6.83, t-620 = 0.3125

P_shell_int = 0 PSI (due to Shell Course, without Liquid Head) * * Warning * *P > P_shell_int (Design P Exceeds course_1 pressure rating.)

< External Pressure - Empty >

Lr_shell (Total Roof Live Load weight supported by shell) = Ar * Lr / 144 = 1,799,243 * 20 / 144 = 249,895 LBF

PG 15::> W = - (Roof Plates + Shell + Lr_shell + Dead Load) = - (331,424 + 175,904 + 249,895 + 112,453) = -869,676 lbf W/At = (-869,676 / 1,683,341) = -0.5166 PSI PV = 0.0725 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(0.0725 + -0.5166) = -162.54 lbf/in

Page 12: 620

T2 = P*Rc = 0.0725*732 = 53.07 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.3) T_tens = 53.1 (Tension Load),

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

N = 0.98 (N from API-620 Fig. 5-1)

Sta = Sts*N = (16,000)(0.98) = 15,680 PSI

tmin1 = T_tens / (Sta*E) + CA = 53.1/(15,680*1) + 0 = 0.0034 in.

T_comp = 162.5 (Compressive Load), N = 0.0108 (actual N, using compressive stress) M = 0.9945 (calculated M from API-620 Fig. F-1) Sca = T_comp / M = 523 PSI

tmin2 = T_comp / Sca + CA = 162.5/523 + 0 = 0.3107 in.

t-Calc = MAX(tmin1, tmin2) = 0.3107 in.

t-Calc = 0.3107 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.3107 Exit Condition: V_x = -0.053, t-620 = 0.312

P_shell_ext = -0.053 PSI (due to Shell Course)

Course # 2; Material: A-36; Width = 9ft

< API-620 >

R = R2 = Rc = 732 in. At = 1,683,341 in^2

PG 16::> < Internal Pressure - Full >

W = - (roof plates + shell) = -463,352 lbf W/At = (-463,352 / 1,683,341) = -0.2753 PSI

Px = P + P_liquid = 2.03 + 10.392 = 12.422 PSI

<Meridional and Latitudinal Forces>

Page 13: 620

T1 = Rc/2*(P + W/At) = 732/2*(12.422 + -0.2753) = 4,446 lbf/in

T2 = P*Rc = 12.422*732 = 9,093 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 9,093 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 9,093/(16,000*1) + 0 = 0.5683 in.

t-Calc = 0.5683 in.

Since t.actual < T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 12.422 PSI, t-620 = 0.5683 Exit Condition: P_x = 12.422, t-620 = 0.5683

P_shell_int = 2.03 PSI (due to Shell Course, without Liquid Head) * * Warning * *P > P_shell_int (Design P Exceeds course_2 pressure rating.)

< External Pressure - Empty >

Lr_shell (Total Roof Live Load weight supported by shell) = Ar * Lr / 144 = 1,799,243 * 20 / 144 = 249,895 LBF

W = - (Roof Plates + Shell + Lr_shell + Dead Load) = - (331,424 + 131,928 + 249,895 + 112,453) = -825,700 lbf W/At = (-825,700 / 1,683,341) = -0.4905 PSI PV = 0.0725 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(0.0725 + -0.4905) = -152.99 lbf/in

PG 17::> T2 = P*Rc = 0.0725*732 = 53.07 lbf/in

< API-620 >

Page 14: 620

Minimum thickness (t) requirement:

(Per 5.10.3.3) T_tens = 53.1 (Tension Load),

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

N = 0.9812 (N from API-620 Fig. 5-1)

Sta = Sts*N = (16,000)(0.9812) = 15,699 PSI

tmin1 = T_tens / (Sta*E) + CA = 53.1/(15,699*1) + 0 = 0.0034 in.

T_comp = 153 (Compressive Load), N = 0.0108 (actual N, using compressive stress) M = 0.9945 (calculated M from API-620 Fig. F-1) Sca = T_comp / M = 492 PSI

tmin2 = T_comp / Sca + CA = 153/492 + 0 = 0.311 in.

t-Calc = MAX(tmin1, tmin2) = 0.311 in.

t-Calc = 0.311 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.311 Exit Condition: V_x = -0.063, t-620 = 0.312

P_shell_ext = -0.063 PSI (due to Shell Course)

Course # 3; Material: A-36; Width = 9ft

< API-620 >

R = R2 = Rc = 732 in. At = 1,683,341 in^2

< Internal Pressure - Full >

W = - (roof plates + shell) = -419,376 lbf W/At = (-419,376 / 1,683,341) = -0.2491 PSI

Px = P + P_liquid = 2.03 + 6.495 = 8.525 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(8.525 + -0.2491) = 3,029 lbf/in

PG 18::> T2 = P*Rc

Page 15: 620

= 8.525*732 = 6,240 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 6,240 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 6,240/(16,000*1) + 0 = 0.39 in.

t-Calc = 0.39 in.

Since t.actual < T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 8.525 PSI, t-620 = 0.39 Exit Condition: P_x = 8.525, t-620 = 0.39

P_shell_int = 2.03 PSI (due to Shell Course, without Liquid Head) * * Warning * *P > P_shell_int (Design P Exceeds course_3 pressure rating.)

< External Pressure - Empty >

Lr_shell (Total Roof Live Load weight supported by shell) = Ar * Lr / 144 = 1,799,243 * 20 / 144 = 249,895 LBF

W = - (Roof Plates + Shell + Lr_shell + Dead Load) = - (331,424 + 87,952 + 249,895 + 112,453) = -781,724 lbf W/At = (-781,724 / 1,683,341) = -0.4644 PSI PV = 0.0725 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(0.0725 + -0.4644) = -143.44 lbf/in

T2 = P*Rc = 0.0725*732 = 53.07 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.3) T_tens = 53.1 (Tension Load),

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

Page 16: 620

N = 0.9824 (N from API-620 Fig. 5-1)

PG 19::> Sta = Sts*N = (16,000)(0.9824) = 15,718 PSI

tmin1 = T_tens / (Sta*E) + CA = 53.1/(15,718*1) + 0 = 0.0034 in.

T_comp = 143.4 (Compressive Load), N = 0.0108 (actual N, using compressive stress) M = 0.9946 (calculated M from API-620 Fig. F-1) Sca = T_comp / M = 461 PSI

tmin2 = T_comp / Sca + CA = 143.4/461 + 0 = 0.3111 in.

t-Calc = MAX(tmin1, tmin2) = 0.3111 in.

t-Calc = 0.3111 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.3111 Exit Condition: V_x = -0.073, t-620 = 0.3119

P_shell_ext = -0.073 PSI (due to Shell Course)

Course # 4; Material: A-36; Width = 9ft

< API-620 >

R = R2 = Rc = 732 in. At = 1,683,341 in^2

< Internal Pressure - Full >

W = - (roof plates + shell) = -375,400 lbf W/At = (-375,400 / 1,683,341) = -0.223 PSI

Px = P + P_liquid = 2.03 + 2.598 = 4.628 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(4.628 + -0.223) = 1,612 lbf/in

T2 = P*Rc = 4.628*732 = 3,388 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2)

Page 17: 620

T = MAX(T1, T2) = 3,388 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 3,388/(16,000*1) + 0 = 0.2117 in.

PG 20::> t-Calc = 0.2117 in.

Since t.actual > T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 4.629, t-620 = 0.2118 Exit Condition: P_x = 6.831, t-620 = 0.3125

P_shell_int = 4.233 PSI (due to Shell Course, without Liquid Head)

< External Pressure - Empty >

Lr_shell (Total Roof Live Load weight supported by shell) = Ar * Lr / 144 = 1,799,243 * 20 / 144 = 249,895 LBF

W = - (Roof Plates + Shell + Lr_shell + Dead Load) = - (331,424 + 43,976 + 249,895 + 112,453) = -737,748 lbf W/At = (-737,748 / 1,683,341) = -0.4383 PSI PV = 0.0725 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At) = 732/2*(0.0725 + -0.4383) = -133.88 lbf/in

T2 = P*Rc = 0.0725*732 = 53.07 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.3) T_tens = 53.1 (Tension Load),

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

N = 0.9835 (N from API-620 Fig. 5-1)

Sta = Sts*N = (16,000)(0.9835) = 15,736 PSI

tmin1 = T_tens / (Sta*E) + CA = 53.1/(15,736*1) + 0 = 0.0034 in.

T_comp = 133.9 (Compressive Load),

Page 18: 620

N = 0.0108 (actual N, using compressive stress) M = 0.9946 (calculated M from API-620 Fig. F-1) Sca = T_comp / M = 431 PSI

tmin2 = T_comp / Sca + CA = 133.9/431 + 0 = 0.3107 in.

t-Calc = MAX(tmin1, tmin2) = 0.3107 in.

t-Calc = 0.3107 in.

PG 21::> Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.3107 Exit Condition: V_x = -0.083, t-620 = 0.312

P_shell_ext = -0.083 PSI (due to Shell Course)

Wtr = Transposed Width of each Shell Course = Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (4)

Wtr(1) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(2) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(3) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(4) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 36 ft

INTERMEDIATE WIND GIRDERS (API 620 Section 5.10.6) V (Wind Speed) = 100 mph Ve = vf = Velocity Factor = (vs/100)^2 = (100/100)^2 = 1 Re-Rate PV = -0.0725 PSI, OR -2.01 In. H2O

<TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)

= 0 in^3 Top Comp. Ring is not required for Self-Supported Roofs if the requirements of either Section 5.10.5 or 5.10.6 are met.

Actual Z = 4.243 in^3 Using L5x5x5/8, Wc = 9.0766

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-620 Section 5.10.6)

* * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course.

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 28,799,999/28,799,999

Page 19: 620

= 1

Hu = Maximum Height of Unstiffened Shell = {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {1*600,000*0.3125*SQRT[0.3125/122]^3} / 1 = 24.3073 ft

Wtr = Transposed Width of each Shell Course = Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (4)

PG 22::> Wtr(1) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(2) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(3) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Wtr(4) = 9*[ 0.3125/0.3125 ]^2.5 = 9 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 36 ft

L_0 = Hts/# of Stiffeners + 1 = 36/3 = 12 ft.

Number of Intermediate Wind Girders Sufficient Since Hu >= L_0

Zi (Req. Wind Gird. Z) = (0.0001)(Ve)(L0)(OD^2) = (0.0001)(1)(12)(122^2) = 17.86 in^3

Actual Zi = 0.2228 in^3 using QTY (2): BAR 2x1/4 (Not Adequate)

* * Warning * * Wind Girder Zi is inadequate. Wind Girder Zi Req'd = 17.86

SHELL COURSE #1 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic) = MAX(0.7466, 0, 0) = 0.7466 in.

Course Minimum t shall not be less than 0.1" + CA (per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653) = MAX(0.7466,0.1) = 0.7466 in.

* * Warning * * t.actual < t.required < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0.7466 in.

Page 20: 620

t2 (least min. thickness in an area of shell course) t2 must be >= 0.6*(t.required - CA) + CA = 0.447960 in. t.actual = 0.3125 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*122)-0.3125]*12*9*0.3125 = 43,966 lbf (New) = 43,966 lbf (Corroded)

SHELL COURSE #2 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic) = MAX(0.5683, 0, 0) = 0.5683 in.

PG 23::> Course Minimum t shall not be less than 0.1" + CA (per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653) = MAX(0.5683,0.1) = 0.5683 in.

* * Warning * * t.actual < t.required < API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0.5683 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0.6*(t.required - CA) + CA = 0.340980 in. t.actual = 0.3125 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*122)-0.3125]*12*9*0.3125 = 43,966 lbf (New) = 43,966 lbf (Corroded)

SHELL COURSE #3 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic) = MAX(0.39, 0, 0) = 0.39 in.

Course Minimum t shall not be less than 0.1" + CA (per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653) = MAX(0.39,0.1) = 0.39 in.

* * Warning * * t.actual < t.required < API-653 4.3.2.1 >

Page 21: 620

t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0.39 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0.6*(t.required - CA) + CA = 0.234000 in. t.actual = 0.3125 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*122)-0.3125]*12*9*0.3125 = 43,966 lbf (New) = 43,966 lbf (Corroded)

SHELL COURSE #4 SUMMARY-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic) = MAX(0.3107, 0, 0) = 0.3107 in.

PG 24::> Course Minimum t shall not be less than 0.1" + CA (per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653) = MAX(0.3107,0.1) = 0.3107 in.

< API-653 4.3.2.1 > t1 (lowest average thickness in the shell course) t1 must be >= t.required = 0.3107 in. t2 (least min. thickness in an area of shell course) t2 must be >= 0.6*(t.required - CA) + CA = 0.186420 in. t.actual = 0.3125 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0.2833*PI*[(12*122)-0.3125]*12*9*0.3125 = 43,966 lbf (New) = 43,966 lbf (Corroded)

PG 25::>DISH BOTTOM HEADMaterial : A-36

Dish Radius (Rs) = 122 ft

Alpha = 60.0000 degrees (angle between the Normal to the bottom and a horizontal line at the bottom-to-shell juncture)Theta = 30.0000 degrees (angle between the Normal to the bottom a vertical line at the bottom-to-shell juncture)

Rs = R1 = R2 = 1,464 in.Rc = R3 = OD/2 = 732 in.

Page 22: 620

Wc = 0.6*SQRT[Rc(t - CA)] (Bottom Shell Course) = 0.6*SQRT[(732)(0.3125 - 0)] = 9.07 in. (per API-620 Section 5.12.4.2, Eq.25)

Wh = 0.6*SQRT[R2(t - CA)] (Bottom Plate) = 0.6[()(0.25 - 0.0625)] = 9.9408 in. (per API-620 Section 5.12.4.2 Eq. 24)

Aa = (Cross-sectional Area of Bottom End Stiffener) = 2.48 in^2 using L4x3x3/8

At = PI*OD^2/4*144 = PI*122^2/4*144 = 1,683,341 in^2 (Cross-Sectional Area of Bottom at Shell)

<Weight of Bottom Plate>

hr = Height of Bottom = R - SQRT{R^2 - (OD/2)^2} = 122 - SQRT{122^2 - (122/2)^2} = 16.3450 ft

Bottom_Area = 288*PI*R*hR = 288*PI*122*16.345 = 1,804,210 in^2

Weight = Density * t.actual * Bottom_Area = 0.2833 * 0.25 * 1,804,210 = 127,783 lbf (New) = 95,837 lbf (Corroded)

PG 26::>< API-620, Unless Otherwise Noted >

<Actual Bottom to Shell Participating Area>

A = Actual Part. Area of Bottom-to-Shell Juncture (per API-620) = Aa + Wc*(t_shell - CA) + Wh*(t_bottom - CA) = 5.199 + (9.07)(0.3125) + (9.9408)(0.1875) = 9.897 in^2

< Internal Pressure @ Bottom-Head Edge; h = 33 ft. >

W = (Bottom Plates + Dead Load + Fixed Load + Product Weight) = 127,783 + 62,646 + 0 + 815,828 = 1,006,257 lbf

W/At = (1,006,257 / 1,683,341) = 0.5978 PSI W/At' = 0.5577 PSI

P = P_Entered + P_Liquid = 2.03 + 14.289 = 16.319 PSI or 452.26 IN. H20

Page 23: 620

<Meridional and Latitudinal Forces>

(At the Edge of Bottom Head) T1 = Rs/2*(P + W/At) = 1,464/2*(16.319 + 0.5978) = 12,383 lbf/in T2 = Rs*[P + W/At*SIN(Alpha)] - T1 = 1,464*[16.319 + 0.5978*COS(60.0000)] - 12,383 = 12,266 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 12,383 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 12,383/(16,000*0.7) + 0.0625 = 1.1681 in.

t-Calc = 1.1681 in.

< Internal Pressure @ Bottom-Head Center; h = 49.3449 ft. >

P = P_Entered + P_Liquid = 2.03 + 21.3663 = 23.3963 PSI or 648.40 IN. H20

(At the Center of Bottom Head) T1' = (Rs/2)*(P + W/At) = (1,464/2)*(23.3963 + (0.5577)) = 17,534 lbf/in T2' = Rs*(P + W/At) - T1' = 1,464*(23.3963 + (0.5577)) - 17,534 = 17,534 lbf/in

< API-620 > Minimum thickness (t) requirement:

PG 27::> (Per 5.10.3.2) T = MAX(T1, T2) = 17,534 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 17,534/(16,000*0.7) + 0.0625 = 1.6281 in.

t-Calc = 1.6281 in.

Since t.actual < T620, Back-Calculating Pmax using t.actual as target, and T620 routine... Entry Condition: P_x = 23.3963 PSI, t-620 = 1.6281 Exit Condition: P_x = 2.311, t-620 = 0.25

P_max_int = 0PSI, or 0 IN. H2O (limited by Bottom Plate, without Liquid Head)

** Warning: Internal Design Pressure is Greater than Pmax (Allowed by

Page 24: 620

Bottom Plate Thickness)

<Minimum Participating Area>

T2s = P*R3 = (16.319)(732) = 11,946 lbf/in

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (12,266)(9.9408)+(11,946)(9.07)-(12,383)(732)(SIN(60)) = -7,619,748 lbf

A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = -Q/Scs = -7,619,748/15,000 = 507.983 in^2

Since Actual Area is Less than A_min,

Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = 1, A-620 = 507.983 Exit Condition: P_x = 0., A-620 = 18.311

* * Warning * *Internal Design Pressure is Greater than Pmax, (Due to Btm. End Stiffener Area)

P_max_int_Q = 0 PSI (limited by Actual Participating Area, without Liquid Head)

P_max_int = MIN(P_max_int, P_max_int_Q) = 0PSI, or 0 IN. H2O

< External Pressure - Empty, Bottom-Head Edge >

W = (Bottom Plates) = 127,783 lbf W/At = (127,783 / 1,683,341) = 0.0759 PSI W/At' = 0.0708 PSI P = PV_Entered = 0.0725 PSI or 2.01 IN. H20

<Meridional and Latitudinal Forces>

PG 28::> (At the Edge of Bottom Head) T1 = Rs/2*(P + W/At) = 1,464/2*(0.0725 + 0.0759) = 108.63 lbf/in T2 = Rs*[P + W/At*SIN(Alpha)] - T1 = 1,464*[0.0725 + 0.0759*COS(60.0000)] - 108.63 = 93.74 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 108.6 lb./in.

Page 25: 620

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 108.6/(16,000*0.7) + 0.0625 = 0.0722 in.

t-Calc = 0.0722 in.

< External Pressure - Empty, Bottom-Head Center > P = PV_Entered = 0.0725 PSI or 2.01 IN. H20

(At the Center of Bottom Head) T1' = (Rs/2)*(P + W/At) = (1,464/2)*(0.0725 + (0.0708)) = 104.9 lbf/in T2' = Rs*(P + W/At) - T1' = 1,464*(0.0725 + (0.0708)) - 104.9 = 104.89 lbf/in

< API-620 > Minimum thickness (t) requirement:

(Per 5.10.3.2) T = MAX(T1, T2) = 104.9 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 104.9/(16,000*0.7) + 0.0625 = 0.0719 in.

t-Calc = 0.0719 in.

Since t.actual > T620, Back-Calculating Pmax using t-Calc as target, and T620 routine... Entry Condition: V_x = 0.0725 PSI, t-620 = 0.0722 Exit Condition: V_x = -0.074, t-620 = 0.25

P_max_ext = -0.074 PSI, or -2.05 IN. H2O (due to Bottom Plate)

<Minimum Participating Area>

T2s = P*R3 = (0.0725)(732) = 53.07 lbf/in

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha)) = (93.74)(9.9408)+(53.07)(9.07)-(108.63)(732)(SIN(60)) = -67,451 lbf

PG 29::> A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27) = -Q/Scs = -67,451/15,000 = 4.497 in^2

Back-Calculating PmaxQ using Actual Area (A-620) as target... Entry Condition: P_x = -0.9275, A-620 = 4.497 Exit Condition: P_x = -0.4285, A-620 = 9.907

P_max_ext_Q = -0.4285 PSI, or -11.88 IN. H2O (due to Actual Participating Area)

Page 26: 620

P_max_ext = MAX(P_max_ext,P_max_ext_Q) = -0.074PSI, or -2.05 IN. H2O

t-Calc = MAX(t_internal, t_external) = MAX(1.6281,0.0722) = 1.6281 in.

<API-650 Section V.7.2.1> Pr = Max Bottom Load = Max(ABS(T1), ABS(T2)) = 108.63 = 108.63 lbf/ft^2 t_Cone = OD/SIN(Theta)*SQRT[Pr/(0.248*E)] = 122/SIN(30.0000)*SQRT[108.63/(0.248*28,799,999)] = 0.9516 in.

t_Cone = MAX(t-Calc, t_Cone) = MAX(1.6281, 0.9516) = 1.6281 in.

<Per API-620> Ac = (Required Part. Area of Bottom-to-Shell Juncture) = MAX(507.983,4.497) = 507.983 in^2

A = Actual Part. Area of Bottom-to-Shell Juncture = 9.897 in^2

Bottom End Stiffener:

Using L4x3x3/8 Area = 5.199 in^2 I = 6.658 in^4 * * Warning * * Btm. End Stiffener Area Req'd = 498.086 in^2 A_stiff_required - A_stiff_actual = 492.887in^2

* * Warning * *Bottom Stiffener Area Req'd = 498.086 in^2.

NOTE: ADDITIONAL STIFFNESS PROVIDED BY LEGS WELDED AT BOTTOM-TO-SHELL JUNCTURE, OR BRACING AGAINST BOTTOM HEAD HAS NOT BEEN FACTORED IN.

PG 30::>< BOTTOM DESIGN SUMMARY >

Head Area = 1,804,210 in^2 Head Volume = 97,821 ft^3 Plate Weight = 127,783 lbf Entered Dead Load = 5 lbf/ft^2 Fixed Load = 0 lbf Liquid Weight = 815,828 LBF t.required = t-Calc = 1.6281 in. t.actual = 0.25 in.

Page 27: 620

P_max_internal = 0 PSI P_max_external = -0.074 PSI

PG 31::>NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -475,430 lbf Anchorage NOT required for internal pressure.

WIND MOMENT (Using API-650 SECTION 5.11)

vs = Wind Velocity = 100 mph vf = Velocity Factor = (vs/100)^2 = (100/100)^2 = 1

Wind_Uplift = Iw * 30 * vf = 1 * 30 * 1 = 30 lbf/ft^2

API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0.962*36,000*15.748*10.1667/122^2 + 8*0.5877) = 13.6117 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 2.2383 PSI 1.6*P_F41 = 21.7787 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(30,2,844) = 30 lbf/ft^2

Id = OD - 2*t_roof = 1,464 - 2*0.6502 = 1,463 in. AB = Id /2 - KR = 1,463/2 - 0 = 731.3498 in. BC = R - KR = 1,464 - 0 = 1,464 in. hR = Height of Roof (Depth of roof) = R - SQRT[BC^2 - AB^2] + KR = 1,464 - SQRT[1,464^2 - 731.3498^2] + 0 = 16.314 ft

t_ins = Thickness of Roof Insulation = 0.1667 ft Ap_Vert = Vertical Projected Area of Roof = PI*([R + t_ins]^2)(Alpha/360) - OD*([R + t_ins] - hR)/2 = PI*(122.1667^2)(59.9855/360) - 122*(122.1667 - 16.314)/2 = 1,356 ft^2

Page 28: 620

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

PG 32::> Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*122 = 61 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*61^2 = 11,690 ft^2

M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (30)(11,690)(61) = 21,392,455 ft-lbf

Xs (Moment Arm of Wind Force on Shell) = H/2 = (36)/2 = 18 ft

As (Projected Area of Shell) = H*(OD + t_ins / 6) = (36)(122 + 2/6) = 4,404 ft^2

M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(1)(18)(4,404)(18) = 1,426,896 ft-lbf

Mw (Wind moment) = M_roof + M_shell = 21,392,455 + 1,426,896 = 22,819,351 ft-lbf

W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2) = 175,864 + 299,566 - 2.03*(PI/4)(144)(122^2) = -891,443 lbf

NOTE: There is net uplift on the tank.

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

Not Applicable, because Tank bottom is not flat and resting on a foundation.

RESISTANCE TO SLIDING (per API-650 5.11.4) Not Applicable, because Tank bottom is not flat and resting on a foundation.

<Anchorage Requirement>Anchorage NOT required since Criteria 1, Criteria 2, and Sliding

Page 29: 620

ARE acceptable.

PG 33::>SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2

PG 34::>ANCHOR BOLT DESIGN

Bolt Material : A-193 Gr B7 Sy = 105,000 PSI

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 122 ft P (design pressure) = 56.26 INCHES H2O Pt (test pressure per F.4.4) = P = 56.26 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0.6502 in. Mw (Wind Moment) = 22,819,351 ft-lbf Mrw (Seismic Ringwall Moment) = 6,894,128 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell)

For Tank with Self Supported Roof, W1 = Corroded Shell + Shell Insulation = 175,864 + 18,397 = 194,261 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates + Roof Dead Load = 175,864 + 18,397 + 299,566 + 1,799,243 * 18.8633/144 = 729,519 lbf W3 = New Shell + Shell Insulation = 175,864 + 18,397 = 194,261 lbf

Uplift Cases 1 to 3 are N.A.

Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5.208 = 30/5.208 = 5.7604 IN. H2O PWS = vF * 18 = 1 * 18 = 18 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 18*(122+2/6)*36^2/2 = 1,426,896 ft-lbf U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2

Page 30: 620

= 5.7604*122^2*4.08+[4*1,426,896/122]-729,519 = -332,928 lbf bt = U / N = -41,616 lbf

Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

PG 35::> Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0.4*Av) U = [4 * 6,894,128 / 122] - 729,519*(1-0.4*0) = -503,482 lbf bt = U / N = -62,935 lbf

Sd = 0.8 * 105,000 = 84,000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Uplift Cases 6 and 7 are N.A.

Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 0 in^2

d = Bolt Diameter = 1 in. n = Threads per inch = 8 A_s = Actual Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1 - 1.3 / 8)^2 = 0.5509 in^2

Exclusive of Corrosion, Bolt Diameter Req'd = 0.065 in. (per ANSI B1.1)

Actual Bolt Diameter = 1.000 in.

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>No Anchorage Required.Anchorage Meets Spacing Requirements.

PG 36::>ANCHOR CHAIR DESIGN(from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII)

Entered Parameters

Page 31: 620

Chair Material: A-36 Top Plate Type: DISCRETE Chair Style: VERT. STRAIGHT

a : Top Plate Width = 4.000 in. b : Top Plate Length = 2.500 in. k : Verical Plate Width = 2.500 in.

m : Bottom Plate Thickness = 0.2500 in. t : Shell Course + Repad Thickness = 0.3125 in.

r : Nominal Radius to Tank Centerline = 731.844 in.

Design Load per Bolt: P = 0. KIPS (1.5 * Maximum from Uplift Cases)

d = Bolt Diameter = 1 in. n = Threads per unit length = 8 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1 - 1.3 / 8)^2 = 0.551 in^2

Bolt Yield Load = A*Sy/1000 (KIPS) = 0.551*105,000/1000 = 57.855 KIPS

Seismic Design Bolt Load = Pa = 3*Pab = 0 KIPS

Anchor Chairs will be designed to withstand Design Load per Bolt.

Anchor Chair Design Load, P = 0 KIPS Anchor Bolt Chair Meets Design Calculations

PG 37::>CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 3,145,380 gal Design Capacity (to Max Liquid Level) : 2,883,264 gal Minimum Capacity (to Min Liquid Level) : 0 gal NetWorking Capacity (Design - Min.) : 2,883,264 gal

New Condition Corroded ----------------------------------------------------------- Shell 175,864 lbf 175,864 lbf Roof Plates 331,424 lbf 299,566 lbf Bottom 127,783 lbf 95,837 lbf Stiffeners 10,902 lbf 10,902 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 35,057 lbf 35,057 lbf

Page 32: 620

----------------------------------------------------------- Total 681,030 lbf 617,226 lbf

Weight of Tank, Empty : 681,030 lbfWeight of Tank, Full of Product (SG=1): 27,746,312 lbfWeight of Tank, Full of Water : 27,746,312 lbfNet Working Weight, Full of Product : 25,558,850 lbfNet Working Weight, Full of Water : 25,558,850 lbf

Foundation Area Req'd : 11,690 ft^2

Foundation Loading, Empty : 58.26 lbf/ft^2Foundation Loading, Full of Product (SG=1) : 2,374 lbf/ft^2Foundation Loading, Full of Water : 2,374 lbf/ft^2

SURFACE AREASRoof 12,495 ft^2Shell 13,798 ft^2Bottom 12,495 ft^2

Wind Moment 22,819,351 ft-lbfSeismic Moment 6,894,128 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

PG 38::>MAWP & MAWV SUMMARY FOR NEW JOB 1

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 15 PSI or 415.7 IN. H2O (per API-620)

MAWP = Maximum Calculated Internal Pressure (due to shell) = 0 PSI or 0 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof) = 0.727 PSI or 20.15 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to bottom) = 0 PSI or 0 IN. H2O

TANK MAWP = 0 PSI or 0 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE

MAWV = Maximum Calculated External Pressure (due to shell) = -0.045 PSI or -1.25 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof) = 0 PSI or 0 IN. H2O

MAWV = Maximum Calculated External Pressure (due to bottom plate) = -0.074 PSI or -2.05 IN. H2O

Page 33: 620

TANK MAWV = 0 PSI or 0 IN. H2O