22
6.6 DeMoivre’s Theorem

6.6 DeMoivre’s Theorem

Embed Size (px)

DESCRIPTION

6.6 DeMoivre’s Theorem. I. Trigonometric Form of Complex Numbers. A.) The standard form of the complex number is very similar to the component form of a vector If we look at the trigonometric form of v , we can see. - PowerPoint PPT Presentation

Citation preview

Page 1: 6.6 DeMoivre’s Theorem

6.6 DeMoivre’s Theorem

Page 2: 6.6 DeMoivre’s Theorem

I. Trigonometric Form of Complex Numbers

A.) The standard form of the complex number

is very similar to the component form of a vector

If we look at the trigonometric form of v, we can see

.ai bj v

z a b i

cos sini j v v

Page 3: 6.6 DeMoivre’s Theorem

P (a, b)

B.) If we graph the complex z = a + bi on the complex plane, we can see the similarities with the polar plane.

z = a + bi

θ

r

a

b

Page 4: 6.6 DeMoivre’s Theorem

C.) If we let and then,

where

sin b r cosa r

2 2 ,r z a b

cos sinz a b r r i i

tan and 1b

a i

Page 5: 6.6 DeMoivre’s Theorem

D.) Def. – The trigonometric form of a complex number z is given by

Where r is the MODULUS of z and θ is the ARGUMENT of z.

cos sin

or

z r

z rcis

i

Page 6: 6.6 DeMoivre’s Theorem

E.) Ex.1 - Find the trig form of the following:1 3

2.) 2 2

i1.) 2i

2 2

1

0 2 2

2tan

0 2

0 2

(cos sin )

2 cos sin2 2

22

r

z i

r

cis

i

i

22

1

1 31

2 2

5tan 3

3

1 3

2 2(cos sin )

5 51 cos sin

3 3

5

3

r

z i

r

cis

i

i

Page 7: 6.6 DeMoivre’s Theorem

A.) Let .

Mult.-

Div. -

1 1 1 1 2 2 2 2cos sin and cos sinz r i z r i

1 2 1 2 1 2 1 2cos sinz z r r i

II. Products and Quotients

1 11 2 1 2

2 2

cos sinz r

iz r

DERIVE THESE!!!!

Page 8: 6.6 DeMoivre’s Theorem

B.) Ex. 2 – Given .

find 11 2

2

and z

z zz

1 2 5 2 cos 120 sin 120

1 310

2 2

5 5 3

z z i

i

i

1

2

5cos 90 sin 90

2

50

25

2

zi

z

i

i

1

2

5 cos15 sin15 &

2 cos105 sin105

z i

z i

Page 9: 6.6 DeMoivre’s Theorem

III. Powers of Complex Numbers

A.) DeMoivre’s (di-’moi-vərz) Theorem –

If z = r(cosθ + i sinθ) and n is a positive integer, then,

(cos sin ) cos sinnn nz r i r n i n

Why??? – Let’s look at z2-

Page 10: 6.6 DeMoivre’s Theorem

2z z z

2 cos sin cos sinz r i r i

2 2 cos sin cos sinz r i i

2 2 2 2 2cos 2 cos sin sinz r i i

2 2 cos 2 sin 2z r i

2 2 2 2cos 1 sin 2cos sinz r i

Page 11: 6.6 DeMoivre’s Theorem

B.) Ex. 3 – Find by “Foiling” 3

1 3i

1 3 1 3 1 3i i i

1 2 3 3 1 3i i

2 2 3 1 3i i

8

2 6

Page 12: 6.6 DeMoivre’s Theorem

C.) Ex. 4– Now find using DeMoivre’s Theorem

3

1 3i

2 3

r

3

3 2 cos sin3 3

z i

3 32 cos3 sin 33 3

z i

3 8( 1 0) 8z

3 8 cos sinz i

Page 13: 6.6 DeMoivre’s Theorem

D.) Ex. 5 –Use DeMoivre’s Theorem to simplify10

3 3

2 2i

2

3 62 =

2 2 4r

10

10 6 10 10cos sin

2 4 4z i

510

10

6 5 5cos sin

2 2 2z i

510

10

6

2z i

Page 14: 6.6 DeMoivre’s Theorem

IV. nth Roots of Complex Numbers

A.) Roots of Complex Numbers –

v = a + bi is an nth root of z iff vn = z .

If z = 1, then v is an nth ROOT OF UNITY.

Page 15: 6.6 DeMoivre’s Theorem

B.) If , then the n distinct complex numbers

cos sinz r i

+ 2 + 2cos sinn k k

rn n

i

Where k = 0, 1, 2, …, n-1 are the nth roots of the complex number z.

Page 16: 6.6 DeMoivre’s Theorem

C.) Ex. 6- Find the 4th roots of

41

2164

z cis

16 .2

z cis

4

3

4216

4z cis

42

2216

4z cis

44

6216

4z cis

1 28

z cis

3

92

8z cis

2

52

8z cis

4

132

8z cis

Page 17: 6.6 DeMoivre’s Theorem

A.) Ex. 7 - Find the cube roots of -1.

2( 1) 1 0z z z

3 1z

V. Finding Cube Roots

3 1 0z 1 1 4(1)(1)1 or

2(1)z z

1 3 1 31, ,

2 2 2 2z i i

Page 18: 6.6 DeMoivre’s Theorem

Now....

1

1 3cos sin

3 3 2 2z i

i

1 0z i

1 cos sinz i

2

3 3cos sin 1 0

3 3z i i

3

5 5 1 3cos sin

3 3 2 2z i

i

Plot these points on the complex plane. What do you notice about them?

Page 19: 6.6 DeMoivre’s Theorem

1

-1

2

1z

2z

3z

Equidistant from the origin and equally spaced about the origin.

Page 20: 6.6 DeMoivre’s Theorem

VI. Roots of Unity

A.) Any complex root of the number 1 is also known as a ROOT OF UNITY.

B.) Ex. 8 - Find the 6 roots of unity.

1 0 0z i cis

Page 21: 6.6 DeMoivre’s Theorem

1

0

6z cis

2

0 2

6z cis

3

0 4

6z cis

1

3cis

1 3

2 2i

2

3cis

1 3

2 2i

Page 22: 6.6 DeMoivre’s Theorem

4

0 6

6z cis

6

0 10

6z cis

5

0 8

6z cis

cis 1

4

3cis

1 3

2 2i

5

3cis

1 3

2 2i